Light Gravitinos at Colliders and Implications for Cosmology
(\textit{arXiv:1004.4213; PRD 82, 015012 (2010)})

Samuel K. Lee (Caltech)
with Marc Kamionkowski (Caltech)
and Jonathan L. Feng (UCI)

TASC 2010 - Caltech
October 29, 2010
Supersymmetry and Supergravity

SUSY fixes problems in the SM
Spontaneously-broken SUSY = supergravity

Gravitino \tilde{G} is superpartner of graviton

Standard particles

- Quarks
- Leptons
- Force particles

Samuel Lee (Caltech)

TASC - Light Gravitinos
Supersymmetry and Supergravity

- SUSY fixes problems in the SM
- SUSY fixes problems in the SM
- Spontaneously-broken SUSY = supergravity
- Gravitino \tilde{G} is superpartner of graviton
Light Gravitinos: Overview

Light gravitinos \((\text{eV} \lesssim m_{\tilde{G}} \lesssim \text{MeV})\)

- Arise in supergravity theories without flavor violation
- Are the LSP, and hence are a dark matter candidate
- Have “stronger-than-gravitational” interactions \(\propto \frac{1}{M_{\text{pl}}} \frac{1}{m_{\tilde{G}}}\)
Light Gravitinos: Overview

Light gravitinos (eV \lesssim m_{\tilde{G}} \lesssim \text{MeV})

- Arise in supergravity theories without flavor violation
- Are the LSP, and hence are a dark matter candidate
- Have “stronger-than-gravitational” interactions \propto \frac{1}{M_{\text{pl}}} \frac{1}{m_{\tilde{G}}}

Cosmology (Viel et al. 2005, Boyarsky et al. 2009)

- Canonical: After reheating, light \tilde{G} are thermally produced
- Then at \(t \lesssim \text{ns} \), \tilde{G} freeze out as relativistic thermal relics
- Abundance and small-scale structure constraints on \(m_{\tilde{G}} \)
Light gravitinos (eV $\lesssim m_{\tilde{G}} \lesssim$ MeV)

- Arise in supergravity theories without flavor violation
- Are the LSP, and hence are a dark matter candidate
- Have “stronger-than-gravitational” interactions $\propto \frac{1}{M_{pl}} \frac{1}{m_{\tilde{G}}}$

Cosmology (Viel et al. 2005, Boyarsky et al. 2009)

- Canonical: After reheating, light \tilde{G} are thermally produced
- Then at $t \lesssim \text{ns}$, \tilde{G} freeze out as relativistic thermal relics
- Abundance and small-scale structure constraints on $m_{\tilde{G}}$

Collider Signals

- Pair-produce SUSY particles; SUSY \rightarrow SM + \tilde{G} signals
- Before decaying, SUSY particles travel a distance

$$c\tau_{\text{SUSY}} \sim 10 \text{ m} \left(\frac{m_{\tilde{G}}}{\text{keV}}\right)^2 \sim \text{detector sizes!}$$

- Location of decay signals in detector depends on $m_{\tilde{G}}$
Collider Signals: Scenario I

Since $c\tau_{\text{SUSY}} \propto m_{\tilde{G}}^2$: For very light $m_{\tilde{G}}$, SUSY decays occur promptly.

Example: $\tilde{\chi}^0 \rightarrow \gamma + \tilde{G} \Rightarrow \text{PROMPT DI-PHOTONS}$
Since $c\tau_{\text{SUSY}} \propto m_{\tilde{G}}^2$: For very light $m_{\tilde{G}}$, SUSY decays occur promptly.

Example: $\tilde{\chi}^0 \rightarrow \gamma + \tilde{G} \Rightarrow \text{PROMPT DI-PHOTONS}$
Collider Signals: Scenario I

Since $c\tau_{\text{SUSY}} \propto m^2_{\tilde{G}}$: For very light $m_{\tilde{G}}$, SUSY decays occur promptly.

Example: $\tilde{\chi}^0 \rightarrow \gamma + \tilde{G} \Rightarrow \text{PROMPT DI-PHOTONS}$
Collider Signals: Scenario I

Since $c\tau_{\text{SUSY}} \propto m_{\tilde{G}}^2$: For very light $m_{\tilde{G}}$, SUSY decays occur promptly.

Example: $\tilde{\chi}^0 \to \gamma + \tilde{G} \Rightarrow \text{PROMPT DI-PHOTONS}$

Hundreds of events at LHC7 for $m_{\tilde{G}} \lesssim 10\text{s of eV}$.
Collider Signals: Scenario II

Since $c\tau_{\text{SUSY}} \propto m_{\tilde{G}}^2$; For intermediate $m_{\tilde{G}}$, SUSY decays occur within the detector.

Example: $\tilde{\chi}^0 \rightarrow \gamma + \tilde{G} \Rightarrow$ DELAYED PHOTONS

Hundreds of events at LHC7 for 10s of eV $\lesssim m_{\tilde{G}} \lesssim$ keV.
Collider Signals: Scenario II

Since $c\tau_{\text{SUSY}} \propto m_{\tilde{G}}^2$: For intermediate $m_{\tilde{G}}$, SUSY decays occur within the detector.

Example: $\tilde{\tau}^\pm \rightarrow \tau^\pm + \tilde{G} \Rightarrow \text{KINKED CHARGED TRACKS}$

Hundreds of events at LHC7 for 10s of eV $\lesssim m_{\tilde{G}} \lesssim$ keV.
Collider Signals: Scenario III

Since $c\tau_{\text{SUSY}} \propto m_{\tilde{G}}^2$: For heavier $m_{\tilde{G}}$, SUSY decays occur outside the detector.

Example: $\tilde{\tau}^\pm \rightarrow \tau^\pm + \tilde{G} \Rightarrow \text{METASTABLE CHARGED TRACKS}$

Hundreds of events at LHC7 for keV $\lesssim m_{\tilde{G}}$.

Samuel Lee (Caltech)
Collider Signals: Scenarios I-III

<table>
<thead>
<tr>
<th>Scenario</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collider signals</td>
<td>prompt di-photons</td>
<td>delayed photons or kinked tracks</td>
<td>metastable tracks</td>
</tr>
<tr>
<td>Event rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{\tilde{G}}$</td>
<td>$\lesssim 10s$ of eV</td>
<td>$10s$ of eV - keV</td>
<td>\gtrsim keV</td>
</tr>
</tbody>
</table>
3 DISTINCT COLLIDER+COSMOLOGY SCENARIOS, CATEGORIZED BY COINCIDENT $m_{\tilde{G}}$ RANGES!

<table>
<thead>
<tr>
<th>Scenario</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collider signals</td>
<td>prompt di-photons</td>
<td>delayed photons or</td>
<td>metastable tracks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kinked tracks</td>
<td></td>
</tr>
<tr>
<td>$m_{\tilde{G}}$</td>
<td>$\lesssim 10s$ of eV</td>
<td>$10s$ of eV - keV</td>
<td>\gtrsim keV</td>
</tr>
<tr>
<td>Small-scale</td>
<td>hot DM (but allowed)</td>
<td>too warm (not allowed)</td>
<td>cold DM (allowed)</td>
</tr>
<tr>
<td>structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abundance ($\propto m_{\tilde{G}}$)</td>
<td>$\sim 10s$ of % of DM (allowed)</td>
<td>overabundant (not allowed)</td>
<td>overabundant (not allowed)</td>
</tr>
<tr>
<td>Consistent?</td>
<td>YES</td>
<td>NO!</td>
<td>NO!</td>
</tr>
</tbody>
</table>
Collider Signals + Cosmology

3 DISTINCT COLLIDER+COSMOLOGY SCENARIOS, CATEGORIZED BY COINCIDENT $m_{\tilde{G}}$ RANGES!

<table>
<thead>
<tr>
<th>Scenario</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collider signals</td>
<td>prompt di-photons</td>
<td>delayed photons or kinked tracks</td>
<td>metastable tracks</td>
</tr>
<tr>
<td>$m_{\tilde{G}}$</td>
<td>\lesssim 10s of eV</td>
<td>10s of eV - keV</td>
<td>\gtrsim keV</td>
</tr>
<tr>
<td>Small-scale structure</td>
<td>hot DM (but allowed)</td>
<td>too warm (not allowed)</td>
<td>cold DM (allowed)</td>
</tr>
<tr>
<td>Abundance ($\propto m_{\tilde{G}}$)</td>
<td>\sim10s of % of DM (allowed)</td>
<td>overabundant (not allowed)</td>
<td>overabundant (not allowed)</td>
</tr>
<tr>
<td>Consistent?</td>
<td>YES</td>
<td>NO!</td>
<td>NO!</td>
</tr>
</tbody>
</table>

SMOKING-GUN LIGHT-GRAVITINO COLLIDER SIGNALS MAY REQUIRE NEW EARLY-UNIVERSE ($t \lesssim$ ns) PHYSICS TO BE CONSISTENT WITH ASTROPHYSICAL CONSTRAINTS!