ODEs - ordinary differential equations

\[\frac{dy(x)}{dx} = \left[f(x, y(x)) \right] \]

"RHS" right-hand-side

(first-order, involving first derivative

- two kinds of ODE problems:

1) IVP: initial value problem: \(y(x_0) \) is given at some starting point \(x_0 \) (inner or outer boundary)

This will be the topic of next lecture

2) BVP: boundary value problem: \(y \) is known at two "ends" (the boundaries) of the domain and these "boundary conditions" must be satisfied.

Example of a system of IVP ODEs: simplified stellar structure

- Hydrostatic equilibrium:
 \[\frac{dP}{dr} = -\frac{GM}{r^2} \gamma \]

- Mass conservation:
 \[\frac{dM}{dr} = 4\pi r^2 \gamma \]

- Need: equation of state - use polytrope: \(P = K \cdot r^n \gamma \)
 (need this to relate density to pressure)

IVP: specify
 \[P_c = K \cdot r^n \gamma \]
 \(P_c = 0 \)

\(r_c = 0 \)

Note, we must take special care at \(r_c = 0 \)
Euler's Method

solve

- \(y' = f(x, y) \) with \(y(x_0) = y_0 \)
- introduce fixed step size \(h \)
- estimate of \(y(x) \) at \(x_i = x_0 + ih \) via Taylor expansion:

\[
y(x_i) = y(x_0 + h) = y(x_0) + y'(x_0) \cdot h + O(h^2)
\]

\[
= y(x_0) + h \cdot f(x_0, y(x_0)) + O(h^2)
\]

\(\text{"Forward Euler"} \)

\(y(x_{i+1}) = y_i + h \cdot f(x_i, y_i) + O(h^2) \)

note: local error \(\propto h^2 \), but \(h = \frac{L}{N} \) \(\iff \) # of points

and we are taking \(N \) steps, so

total error \(\propto N \cdot h^2 = \frac{N \cdot L^2}{N^2} = \frac{L^2}{N} = L \cdot h \rightarrow \propto h \)

- FE is an \underline{explicit method} - \(y_{n+1} \) given explicitly in terms of known quantities \(y_n, f(x_n, y_n) \)

+ simple, efficient
- \(\vdash \) can have stability problems
Stability of FE

\[y' = -ay \quad y(0) = 1, \quad a > 0, \quad \text{and} \quad y' = \frac{2y}{x^2} \]

exact solution: \[y = \exp(-at) \quad y(0) = 1 \quad y(\infty) = 0 \]

Now apply FE:

\[y_{n+1} = y_n - ah y_n = (1 - ah)^2 y_{n-1} = \ldots = (1 - ah)^{n+1} y_0 \]

So in order to prevent potential amplification of error we must require \(|1 - ah| < 1 \)

Three cases:
1. \(0 < 1 - ah < 1 \) \((1 - ah)^{n+1} \) decays (good!)
2. \(-1 < 1 - ah < 0 \) \((1 - ah)^{n+1} \) oscillates (not good!)
3. \(1 - ah < 1 \) \((1 - ah)^{n+1} \) diverges or oscillates! (no)

Overall stability criterion: \(h < \frac{2}{a} \)

"FE is conditionally stable if \(h < \frac{2}{a} \)

Central Euler:

\[y_{n+1} = y_n + h f(x_{n+1}, y_{n+1}) \]

"Implicit" because \(y_{n+1} \) depends on unknown quantities (itself!)

For our toy problem \(y' = -ay \)
\[y_{n+1} = y_n + h \cdot (-ay_{n+1}) \]

\[y_{n+1} = \frac{1}{1 + ka} \cdot y_n \quad \text{since } k > 0, \quad y_{n+1} < y_n \]

- unconditionally stable

Higher-Order Methods for ODE integration

- there are many; just go to higher order in Taylor expansion
- among the most common: Runge-Kutta Methods

2nd-order RK (RK2):

\[y'(x) = f(x, y(x)) \]

Ansatz:

\[y_{n+1} = y_n + a k_1 + b k_2 \]

Can show (note):

\[k_1 = h f(x_n, y_n) \]

\[k_2 = h f(x_n + \frac{h}{2}, y_n + \frac{1}{2} k_1) \]

\[a = 0, \quad b = 1 \]

\[y_{n+1} = y_n + k_2 + O(h^2) \]

See notes for RK3, RK4, Predictor-Corrector
Bed to our example:

2 equations: use vector form with FF

\[
\dot{\mathbf{y}}_{n+1} = \mathbf{y}_n + h \cdot \hat{F}\left(x_n, \dot{\mathbf{y}}_n\right)
\]

RHS:

\[
\begin{align*}
\mathbf{F_1} & \rightarrow -G \cdot \mathbf{N}_n \cdot \mathbf{f}_n \\
\mathbf{F_2} & \rightarrow 4\pi r_n^2 \cdot \mathbf{f}_n
\end{align*}
\]

So if RHS is a function: must pass in \(\mathbf{N}_n, \mathbf{f}_n, r_n \)

must return \(\text{RHSF1} \) and \(\text{RHSF2} \)

Step by step implementation:

1. setup grid with N points from 0 to some large radius \(R_{max} \), which is larger than what we expect the star to be

2. setup initial conditions: \(K, \Pi, f_i, M_e, P_e \),

 set integer \(nsurf = 0 \) (will contain point that represents the surface of the star)

3. loop over all grid points from 0 to \(N \) points - 1:

 (3a) call integrator function with data from point \(n \)

 to obtain data at point \(n+1 \)
(3b) if pressure \([n+1]\) < press_min and \(n_{surf} = 0\):
 \(n_{surf} = n\)

 and if \(n+1 > n_{surf}\) and \(n_{surf} \neq 0\):
 set all vars to their values at \(n = n_{surf}\)

(3c) insert EOS to obtain \(\mathfrak{f}_{n+1}\)

4. Output \(M_{surf}, \mathfrak{g}[0]\) and \(\mathfrak{f}_{x} = \mathfrak{g}[n_{surf}]\)

integrator function: this is what is passed in

\[
\text{tov_integrate}(\text{radius}[n], \text{dr}, \text{press}[n], \text{ch}[n], \text{mass}[n]):
\]
new = np.zeros(2)
old = np.zeros(2)
old \[0\] = press
old \[1\] = mass

new = old + dr \cdot \text{tov_RHS}(\text{radius}, \text{press}, \text{ch}, \text{mass})

return (new \[0\], new \[1\])