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November 1915 - the completion of general relativity
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Nov.	  	  4th,	  1915

(78 Gesaintsitzung vom 4. Novembei- 1915

Zur allgemeinen Relativitätstheorie.

Von A. Einstein.

In den letzten Jahren war ich bemülit, auf die Voraussetzung der Re-

lativität auch nicht gleichförmiger Bewegungen eine allgemeine Re-

lativitätstheorie zu gründen. Ich glaubte in der Tat, das einzige Gra-

vitationsgesetz gefunden zu haben, das dem sinngemäß gefaßten, all-

gemeinen Relativitätspostulate entspricht, und suchte die Notwendigkeit

gerade dieser Lösung in einer im vorigen Jahre in diesen Sitzimgs-

berichten erschienenen Arbeit' darzutun.

Eine erneute Kritik zeigte mir, daß sich jene Notwendigkeit auf

dem dort eingeschlagenen Wege absolut nicht erweisen läßt ; daß dies

doch der Fall zu sein schien, beruhte auf Irrtum. Das Postulat der

Relativität, soweit ich es dort gefordert habe, ist stets erfüllt,

wenn man das HAMiLTONSche Prinzip zugrunde legt; es liefert aber

in Wahrheit keine Handhabe für eine Ermittelung der HAMiLxoNScIien

Funktion H des Gravitationsfeldes. In der Tat drückt die die Wahl
von H einschränkende Gleichung (77) a. a. 0. nichts anderes aus, als

daß H eine Invariante bezüglich linearer Transformationen sein soll,

welche Forderung mit der der Relativität der Beschleunigung nichts zu

schaffen hat. Ferner wird die durch Gleichung (78) a. a. O. getroffene

Wahl durch Gleichung (77) keineswegs festgelegt.

Aus diesen Gründen verlor ich das Vertrauen zu den von mir
aufgestellten Feldgleichungen vollständig und suchte nach einem Wege,
der die Möglichkeiten in einer natürlichen Weise einschränkte. So ge-

langte ich zu der Forderung einer allgemeineren Kovarianz der Feld-

gleichungen zurück, von der ich vor drei Jahren, als ich zusammen
mit meinem Freunde Grossmanx arbeitete, nur mit schwerem Herzen
abgegangen war. In der Tat waren wir damals der im nachfolgenden

gegebenen Lösung des Problems bereits ganz nahe gekommen.
Wie die spezielle Relativitätstheorie auf das Postulat gegründet

ist, daß ihre Gleichungen bezüglich linearer, orthogonaler Transfor-

' Die füi-malc Grundlage der allgemeinen Relativitätstheorie. Sitzungslierichte

XLI, 1914, S.1066— 1077. Im folgenden werden Gleichungen dieser Abhandhmgen beim
Zitieren durch den Zusatz a.a.O... von solrhen der vorlienenden Arbeit unterschieden.

Nov.	  11th,	  1915

Einstein: Zur allgemeinen Helativitätstlieorie (Nachtrag) 799

Zur allgemeinen Relativitätstheorie (Nachtrag).

Von A. Einstein.

In einer neulich erschienenen Untersuchung' habe ich gezeigt, wie auf
RiBMANNS Kovariantentlieoiie mehrdimensionaler Mannigfaltigkeiten eine
Theorie des (Gravitationsfeldes gegründet werden kann. Hier soll nun
dargetan werden, daß durch Einfuhrung- einer allerdings kühnen zu-
sätzlichen Hypothese über die Struktur der Materie ein noch strafferer
logischer Aufbau der Theorie erzielt werden kann.

Die Hyjjothese, deren Berechtigung in Erwägung gezogen werden
soll, betrift't folgenden Gegenstand. Der Energietensor der »Materie«

T^' besitzt einen Skalar ^ 2'„" . Es ist wohlbekannt, daß dieser für

das elektromagnetische Feld verschwindet. Dagegen scheint er für die
eigentliche Materie von Null verschieden zu sein. Betrachten wir
nämlich als einfachsten Spezialfall die »inkohärente« kontinuierliche
Flüssigkeit (Druck vernachlässigt), so pflegen wir ja für sie zu setzen

dx„ dx„

so daß wir haben

^'"" = ^-^''° ds ds

^T:=%g^,.T- = py-g.

Hier verschwindet also nach dem Ansatz der Skalar des Energio-
tensors nicht.

Es ist nun daran zu erinnern, daß nach unseren Kenntnissen
die »Materie« nicht als ein primitiv Gegebenes, physikalisch Einfaches
aufzufassen ist. Es gibt sogar nicht wenige, die hoff'en, die Materie auf
rein elektromagnetische Vorgänge reduzieren zu können, die allerdings
einer gegenüber Maxwells Elektrodynamik vervollständigten Theorie
gemäß vor sich gehen würden. Nehmen wir nun einmal an, daß in

einer so vervollständigten Elektrodynamik der Skalar des Energie-
tensors ebenfalls verschwinden würde! Würde dann das soeben auf-

gezeigte Resultat beweisen, daß die Materie mit Hilfe dieser Theorie
nicht konstruiert werden könnte? Ich alaube diese Fras:e verneinen

' Diese Sitzungsberichte S. 778.

Nov.	  18th,	  1915

Nov.	  25th,	  1915
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The first experimental verification - November 18th, 1915
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Anomalous precession of the Mercury orbit

	  	  Albert	  Einstein	  to	  Arnold	  Sommerfeld	  (Dec	  9th,	  1915):	  

  Wie kommt uns da die pedantische Genauigkeit der Astronomie zu Hilfe, 
  über die ich mich im Stillen früher of lustig machte!” 
  [“How helpful to us here is astronomy’s pedantic accuracy, 
    which I often used to ridicule secretly!” ]	  



  Norbert Wex / 2016-Jul-19 / Caltech

The first experimental verification - November 18th, 1915
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Anomalous precession of the Mercury orbit

Deflection of light by the Sun, gravitational redshift
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The first light deflection experiment - May 29th, 1919
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Map data ©2016 INEGI Imagery ©2016 NASA, TerraMetrics500 km Sobral

332 SIR F. W. DYSON, PROF. A. S. EDDINGTON AND MR. C. DAVIDSON ON A 

Thus the results of the expeditions to Sobral and Principe can leave little doubt that 
a deflection of light takes place in the neighbourhood of the sun and that it is of the 
amount demanded by EINSTEIN'S generalised theory of relativity, as attributable to 
the sun's gravitational field. But the observation is of such interest that it will 
probably be considered desirable to repeat it at future eclipses. The unusually 
favourable conditions of the 1919 eclipse will not recur, and it will be necessary to 
photograph fainter stars, and these will probably be at a greater distance from the sun. 
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Diagram 2. 

This can be done with such telescopes as the astrographic wvith the object-glass stopped 
down to 8 inches, if photographs of the same high quality are obtained as in regular 
stellar work. It will probably be best to discard the use of coelostat mirrors. Thise 
are of great convenience for photographs of the corona and spectioscopIc observations, 
but for work of precision of the high order required, it is undesirable to introduce 
complications, which can be avoided, into the optical train. It would seem that some 
form of equatorial mounting (such as that employed in the Eclipse Expeditions of the 
Lick Observatory) is desirable. 

In conclusion, it is a pleasure to record the great assistance given to the Expeditions 
from many quarters. Reference has been made in the course of the paper to some 
of these. Especial thanks are due to the Brazilian noverument for- the hospitality 
and facilities accorded to the observers in Sobral. They were made guests of the 
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[	  Dyson	  et	  al.	  1920	  ]

Principe: 
δ⊙ = 1.61” ± 0.30”  
Sobral: 
δ⊙ = 1.98” ± 0.12”

Sobral
Principe

Five	  Millennium	  Canon	  of	  Solar	  Eclipses	  Database	  (X.M.	  Jubier)	  
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Modern Solar system experiments
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PPN formalism for metric theories of gravity
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The Confrontation between General Relativity and Experiment 33
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w:	  moPon	  w.r.t.	  preferred	  reference	  frame

WMAP/NASA

[	  Will	  1993,	  Will	  2014,	  Living	  Reviews	  in	  Rela9vity	  ]
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Metric	  poten+als:	  

Metric:	  

(Newtonian	  potenPal)

w:	  moPon	  w.r.t.	  preferred	  reference	  frame

WMAP/NASA

[	  Will	  1993,	  Will	  2014,	  Living	  Reviews	  in	  Rela9vity	  ]

• Terms should be of Newtonian or post-Newtonian order. 

• Terms should tend to zero as distance to source becomes large 

(asymptotically Minkowskian). 

• Matter can be idealized as perfect fluid. 

• The metric functionals should be generated by rest mass, energy, pressure, 

and velocity, not by their gradients. 

• The functionals should be “simple”, and should not contain any explicite scale. 

• …
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gravitational potentials of varying degrees of smallness. These potentials are constructed from the
matter variables (see Box 2) in imitation of the Newtonian gravitational potential

U(x, t) ⌘
Z

⇢(x0, t)|x� x0|�1 d3x0. (30)

The “order of smallness” is determined according to the rules U ⇠ v2 ⇠ ⇧ ⇠ p/⇢ ⇠ ✏, vi ⇠
|d/dt|/|d/dx| ⇠ ✏1/2, and so on (we use units in which G = c = 1; see Box 2 for definitions and
conventions).

A consistent post-Newtonian limit requires determination of g00 correct through O(✏2), g0i
through O(✏3/2), and gij through O(✏) (for details see TEGP 4.1 [420]). The only way that one
metric theory di↵ers from another is in the numerical values of the coe�cients that appear in front
of the metric potentials. The parametrized post-Newtonian (PPN) formalism inserts parameters
in place of these coe�cients, parameters whose values depend on the theory under study. In the
current version of the PPN formalism, summarized in Box 2, ten parameters are used, chosen
in such a manner that they measure or indicate general properties of metric theories of gravity
(see Table 2). Under reasonable assumptions about the kinds of potentials that can be present at
post-Newtonian order (basically only Poisson-like potentials of conventional perfect fluid sources,
absence of parity-violating potentials), one finds that ten PPN parameters exhaust the possibilities.

Table 2: The PPN Parameters and their significance (note that ↵3 has been shown twice to indicate that
it is a measure of two e↵ects).

Parameter What it measures relative
to GR

Value in
GR

Value in semi-
conservative
theories

Value in fully
conservative
theories

� How much space-curvature
produced by unit rest mass?

1 � �

� How much “nonlinearity” in
the superposition law for
gravity?

1 � �

⇠ Preferred-location e↵ects? 0 ⇠ ⇠

↵1 Preferred-frame e↵ects? 0 ↵1 0

↵2 0 ↵2 0

↵3 0 0 0

↵3 Violation of conservation 0 0 0

⇣1 of total momentum? 0 0 0

⇣2 0 0 0

⇣3 0 0 0

⇣4 0 0 0

The parameters � and � are the usual Eddington–Robertson–Schi↵ parameters used to describe
the “classical” tests of GR, and are in some sense the most important; they are the only non-
zero parameters in GR and scalar–tensor gravity. The parameter ⇠ is non-zero in any theory of
gravity that predicts preferred-location e↵ects such as a galaxy-induced anisotropy in the local
gravitational constant GL (also called “Whitehead” e↵ects); ↵1, ↵2, ↵3 measure whether or not
the theory predicts post-Newtonian preferred-frame e↵ects; ↵3, ⇣1, ⇣2, ⇣3, ⇣4 measure whether or
not the theory predicts violations of global conservation laws for total momentum. In Table 2 we
show the values these parameters take

Living Reviews in Relativity
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[	  Will	  2014,	  Living	  Reviews	  in	  Rela9vity	  ]
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Limits on PPN parameters from Solar system and pulsars
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46 Cli↵ord M. Will

e↵ect). But if that is the case, then the principle of relativity says that one can view things from
the rest frame of Jupiter. In this frame, Jupiter’s gravitational field is static, and the speed of
propagation of gravity is irrelevant. A detailed post-Newtonian calculation of the e↵ect was done
using a variant of the PPN framework, in a class of theories in which the speed of gravity could be
di↵erent from that of light [425], and found explicitly that, at first order in v/c, the e↵ect depends
on the speed of light, not the speed of gravity, in line with intuition. E↵ects dependent upon the
speed of gravity show up only at higher order in v/c. Kopeikin gave a number of arguments in
opposition to this interpretation [223, 225, 224]. On the other hand, the v/c correction term does

show a dependence on the PPN parameter ↵1, which could be non-zero in theories of gravity with
a di↵ering speed cg of gravity (see Eq. (7) of [425]). But existing tight bounds on ↵1 from other
experiments (see Table 4) already far exceed the capability of the Jupiter VLBI experiment.

Table 4: Current limits on the PPN parameters.

Parameter E↵ect Limit Remarks

� � 1 time delay 2.3⇥ 10�5 Cassini tracking

light deflection 2⇥ 10�4 VLBI

� � 1 perihelion shift 8⇥ 10�5 J2� = (2.2± 0.1)⇥ 10�7

Nordtvedt e↵ect 2.3⇥ 10�4 ⌘N = 4� � � � 3 assumed

⇠ spin precession 4⇥ 10�9 millisecond pulsars

↵1 orbital polarization 10�4 Lunar laser ranging

4⇥ 10�5 PSR J1738+0333

↵2 spin precession 2⇥ 10�9 millisecond pulsars

↵3 pulsar acceleration 4⇥ 10�20 pulsar Ṗ statistics

⇣1 — 2⇥ 10�2 combined PPN bounds

⇣2 binary acceleration 4⇥ 10�5 P̈p for PSR 1913+16

⇣3 Newton’s 3rd law 10�8 lunar acceleration

⇣4 — — not independent [see Eq. (73)]

4.2 The perihelion shift of Mercury

The explanation of the anomalous perihelion shift of Mercury’s orbit was another of the triumphs
of GR. This had been an unsolved problem in celestial mechanics for over half a century, since
the announcement by Le Verrier in 1859 that, after the perturbing e↵ects of the planets on Mer-
cury’s orbit had been accounted for, and after the e↵ect of the precession of the equinoxes on the
astronomical coordinate system had been subtracted, there remained in the data an unexplained
advance in the perihelion of Mercury. The modern value for this discrepancy is 43 arcseconds
per century. A number of ad hoc proposals were made in an attempt to account for this excess,
including, among others, the existence of a new planet Vulcan near the Sun, a ring of planetoids,
a solar quadrupole moment and a deviation from the inverse-square law of gravitation, but none
was successful. General relativity accounted for the anomalous shift in a natural way without
disturbing the agreement with other planetary observations.

The predicted advance per orbit �!̃, including both relativistic PPN contributions and the
Newtonian contribution resulting from a possible solar quadrupole moment, is given by

�!̃ =
6⇡m

p

✓

1

3
(2 + 2� � �) +

1

6
(2↵1 � ↵2 + ↵3 + 2⇣2)⌘ +

J2R
2

2mp

◆

, (66)
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[	  Will	  2014,	  Living	  Reviews	  in	  Rela9vity	  ]

PSR J1713+0747   [	  Zhu	  et	  al.,	  in	  prep.	  ]3 × 10-21   

(Nordtvedt	  parameter)
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Beyond the Solar system
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NASA

Do	  gravitaPonal	  waves	  exist?Do	  strongly	  self-‐gravitaPng	  bodies	  	  
move	  as	  predicted	  by	  GR?

AEI
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	  GW	  astronomy	  

  Gravity regimes relevant for this talk
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(1) Quasi-‐staPonary	  	  
weak-‐field	  	  
regime  
 
 

(2) Quasi-‐staPonary	  	  
strong-‐field	  	  
regime  
 
 

(3) RadiaPve	  	  
regime  
 
 

(4) Highly	  relaPvisPc	  	  
regime

	  Solar	  system	  	  
	  experiments	  

	  Binary	  pulsar	  experiments	  



Pulsars and pulsar timing
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The discovery of pulsars - 1967
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Interplanetary	  ScinPllaPon	  Array

PSR B0531+21

NASA, ESA

 f ~ 30 Hz

M ⇡ 1.4M�

R ⇡ 12 km

B ⇠ 1012 G

�c/c2 ⇡ �0.4

⇢c ⇡ 1015 g/cm3

Illustration: NASA
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The radio pulsar population
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~	  2500	  	  radio	  pulsars	  
1.4	  ms	  	  (PSR	  J1748-‐2446ad)	  
8.5	  s	  	  	  	  	  (PSR	  J2144-‐3933)	  

~	  10%	  in	  binary	  systems	  

Orbital	  period	  range	  

95	  min	   (PSR	  J0024-‐7204R)	  
>200	  yr	  	  	  	  (PSR	  	  J1024−0719)	  

Companions	  

ordinary	  stars,	  	  
white	  dwarfs,	  	  
neutron	  stars,	  	  
planets	  
SPll	  missing:	  black	  hole

[ ATNF pulsar catalogue]
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Time (ms)

   Pulsar timing – time of arrival (TOA)
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Timing	  precision	  for	  some	  millisecond	  pulsars	  <	  100	  ns	  	  	  à <	  30	  m
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   The timing model
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pulsar system

interstellar medium

Solar system barycenter

⌧psr / T , � = �0 + ⌫T + 1
2 ⌫̇T

2
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TOA residual

model

fold fold

Session i Session j

Phase-‐connected	  Pming	  soluPon:

 Pulsar timing - parameter estimation

19

[ Zhu et al. 2015 ]

PSR	  J1713+0747
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  What do we mean by precision timing?  Best of…
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Spin	  parameters:	  
	  Period:	   	   	   	   	   	   	   2.947108069160717(3)	  ms	  	  	   (Reardon	  et	  al.	  2015)	  

Astrometry:	  
	  PosiPon	  in	  the	  sky:	  	   	   	   	   0.6	  μas	   	   	   	   	   (Reardon	  et	  al.	  2015)	  
	  Proper	  moPon:	  	  	  	  	  	  	  	   	   	   	   140.911(3)	  mas/yr	   	   	   (Reardon	  et	  al.	  2015)	  
	  Distance:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	   	   156.79	  ±	  0.25	  pc	   	   	   (Reardon	  et	  al.	  2015)	  

Orbital	  parameters:	  
	  Orbital	  period:	   	   	   	   	   0.102251562472(1)	  days	   (Kramer	  et	  al.	  in	  prep.)	  
	  Projected	  semi-‐major	  axis	   	   	   31,656,123.76(15)	  km	   	   (Freire	  et	  al.	  2011)	  
	  Eccentricity:	   	   	   	   	   	   0.0000749402(6)	   	   	   (Zhu	  et	  al.	  2015)	  

Masses:	  
	  Masses	  of	  neutron	  stars:	  	  	   	   	   1.33816(2)	  /	  1.24891(2)	  M⊙	  	   (Kramer	  et	  al.	  in	  prep.)	  
	  Mass	  of	  low-‐mass	  WD:	  	   	   	   	   0.207(2)	  M⊙	   	   	   	   (Reardon	  et	  al.	  2015)	  
	  Mass	  of	  millisecond	  pulsar:	   	   	   1.667(7)	  M⊙	   	   	   	   (Freire	  et	  al.	  2011)	  
	  Main	  sequence	  star	  companion:	   	   1.029(3)	  M⊙	   	   	   	   (Freire	  et	  al.	  2011)	  

GR	  effects:	  
	  Periastron	  advance:	   	   	   	   4.226598(5)	  deg/yr	  	   	   (Weisberg	  et	  al.	  2010)	  
	  Einstein	  delay:	   	   	   	   	   4.2992(8)	  ms	   	   	   	   (Weisberg	  et	  al.	  2010)	  
	  Orbital	  GW	  damping:	  	   	   	   	   -‐39.384(6)	  μs/yr	   	   	   (Kramer	  et	  al.	  in	  prep.)

3	  ano	  seconds	  uncertainty!

	  0.1	  μs	  uncertainty!
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	  	  Pulse	  period:	  59.0	  ms	  
	  	  Orbital	  period:	  7.75	  h	  	  
	  	  Eccentricity:	  0.617	  
	  	  Companion:	  neutron	  star

PSR	  B1913+16

 58.97 ms

 59.06 ms

[ Hulse & Taylor 1975 ]

The first binary pulsar - 1974

21
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PSR B1913+16 orbit
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PSR B1913+16 Sun 

a = 1.95⇥ 1011 cm

e = 0.617

mp = 1.44M�

mc = 1.39M�

r
min

= 1.1R�

v
max

= 900 km/s = 0.003 c

LGW = 7.8⇥ 1024 W



Binary Pulsars and GR
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Pulsar timing - a spacetime view
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The effacement principle in GR
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[ Damour 1987, 2009 (SIGRAV lecture)]

MulP-‐chart	  approach	  to	  solve	  Einstein’s	  field	  equaPons	  

—>	  one	  global	  coordinate	  chart	  xµ:	  

—>	  two	  local	  coordinate	  charts	  Xµa:	  

—>	  expansions	  are	  then	  ‘matched’	  in	  some	  overlapping	  domain	  of	  common	  validity

2 Thibault Damour

2 Motion of Binary Pulsars in General Relativity

The traditional (text book) approach to the problem of motion of N separate
bodies in GR consists of solving, by successive approximations, Einstein’s field
equations (we use the signature − + ++)

Rµν − 1
2

R gµν =
8π G

c4
Tµν , (1)

together with their consequence

∇ν T µν = 0 . (2)

To do so, one assumes some specific matter model, say a perfect fluid,

T µν = (ε + p)uµ uν + p gµν . (3)

One expands (say in powers of Newton’s constant)

gµν(xλ) = ηµν + h(1)
µν + h(2)

µν + · · · , (4)

together with the use of the simplifications brought by the ‘Post-Newtonian’
approximation (∂0 hµν = c−1 ∂t hµν ≪ ∂i hµν ; v/c ≪ 1, p ≪ ε). Then one
integrates the local material equation of motion (2) over the volume of each
separate body, labelled say by a = 1, 2, . . . , N . In so doing, one must define
some ‘center of mass’ zi

a of body a, as well as some (approximately conserved)
‘mass’ ma of body a, together with some corresponding ‘spin vector’ Si

a and,
possibly, higher multipole moments.

An important feature of this traditional method is to use a unique coor-
dinate chart xµ to describe the full N -body system. For instance, the center
of mass, shape and spin of each body a are all described within this common
coordinate system xµ. This use of a single chart has several inconvenient as-
pects, even in the case of weakly self-gravitating bodies (as in the solar system
case). Indeed, it means for instance that a body which is, say, spherically sym-
metric in its own ‘rest frame’ Xα will appear as deformed into some kind of
ellipsoid in the common coordinate chart xµ. Moreover, it is not clear how to
construct ‘good definitions’ of the center of mass, spin vector, and higher mul-
tipole moments of body a, when described in the common coordinate chart
xµ. In addition, as we are interested in the motion of strongly self-gravitating
bodies, it is not a priori justified to use a simple expansion of the type (4)
because h(1)

µν ∼
∑
a

Gma/(c2 |x − za|) will not be uniformly small in the com-

mon coordinate system xµ. It will be small if one stays far away from each
object a, but, as recalled above, it will become of order unity on the surface
of a compact body.

These two shortcomings of the traditional ‘one-chart’ approach to the rela-
tivistic problem of motion can be cured by using a ‘multi-chart’ approach. The

Binary Systems as Test-Beds of Gravity Theories 3

multi-chart approach describes the motion of N (possibly, but not necessarily,
compact) bodies by using N + 1 separate coordinate systems: (i) one global
coordinate chart xµ (µ = 0, 1, 2, 3) used to describe the spacetime outside
N ‘tubes’, each containing one body, and (ii) N local coordinate charts Xα

a

(α = 0, 1, 2, 3; a = 1, 2, . . . , N) used to describe the spacetime in and around
each body a. The multi-chart approach was first used to discuss the motion
of black holes and other compact objects [4, 5, 6, 7, 8, 9, 10, 11]. Then it
was also found to be very convenient for describing, with the high-accuracy
required for dealing with modern technologies such as VLBI, systems of N
weakly self-gravitating bodies, such as the solar system [12, 13].

The essential idea of the multi-chart approach is to combine the informa-
tion contained in several expansions. One uses both a global expansion of the
type (4) and several local expansions of the type

Gαβ(Xγ
a ) = G(0)

αβ(Xγ
a ; ma) + H(1)

αβ (Xγ
a ; ma, mb) + · · · , (5)

where G(0)
αβ(X ; ma) denotes the (possibly strong-field) metric generated by an

isolated body of mass ma (possibly with the additional effect of spin).
The separate expansions (4) and (5) are then ‘matched’ in some overlap-

ping domain of common validity of the type Gma/c2 ! Ra ≪ |x− za| ≪ d ∼
|xa − xb| (with b ̸= a), where one can relate the different coordinate systems
by expansions of the form

xµ = zµ
a (Ta) + eµ

i (Ta)X i
a +

1
2

fµ
ij(Ta)X i

a Xj
a + · · · (6)

The multi-chart approach becomes simplified if one considers compact bod-
ies (of radius Ra comparable to 2 Gma/c2). In this case, it was shown [9], by
considering how the ‘internal expansion’ (5) propagates into the ‘external’ one
(4) via the matching (6), that, in General Relativity, the internal structure of
each compact body was effaced to a very high degree, when seen in the external
expansion (4). For instance, for non-spinning bodies, the internal structure of
each body (notably the way it responds to an external tidal excitation) shows
up in the external problem of motion only at the fifth post-Newtonian (5PN)
approximation, i.e. in terms of order (v/c)10 in the equations of motion.

This ‘effacement of internal structure’ indicates that it should be possible
to simplify the rigorous multi-chart approach by skeletonizing each compact
body by means of some delta-function source. Mathematically, the use of
distributional sources is delicate in a non-linear theory such as GR. However,
it was found that one can reproduce the results of the more rigorous matched-
multi-chart approach by treating the divergent integrals generated by the use
of delta-function sources by means of (complex) analytic continuation [9]. The
most efficient method (especially to high PN orders) has been found to use
analytic continuation in the dimension of space d [14].

The	  masses	  are	  always	  defined	  such	  that	  the	  Lagrangian	  for	  	  
non-‐interacPng	  compact	  objects	  reads

In	  GR,	  the	  internal	  structure	  of	  a	  compact	  (R	  ∼	  few	  Gm/c2)	  quasi-‐staPc	  body	  is	  effaced	  to	  a	  	  
very	  high	  degree	  —>	  absence	  of	  any	  explicit	  strong-‐field-‐gravity	  effect	  in	  the	  orbital	  dynamics.

hence	  mac2	  represents	  the	  total	  energy	  of	  body	  a.

L0 = �
X

a

ma

✓
1� v2a

c2

◆1/2



  Norbert Wex / 2016-Jul-19 / Caltech

Binary motion - Newtonian dynamics

Determining	  the	  world	  line	  	  
of	  the	  pulsar

t

BA

x

26

Eccentric anomaly
2⇡

Pb
(t� t0) = U � e sinU

r12 = a(1� e cosU)

'� '0 = 2arctan

"✓
1 + e

1� e

◆1/2

tan

U

2

#

(Kepler's equation)

RelaPve	  moPon	  (Keplerian	  parametrizaPon)

62 Luc Blanchet

9 Newtonian-like Equations of Motion

9.1 The 3PN acceleration and energy

We present the acceleration of one of the particles, say the particle 1, at the 3PN order, as well
as the 3PN energy of the binary, which is conserved in the absence of radiation reaction. To get
this result we used essentially a “direct” post-Newtonian method (issued from Ref. [42]), which
consists of reducing the 3PN metric of an extended regular source, worked out in Equations (115),
to the case where the matter tensor is made of delta functions, and then curing the self-field
divergences by means of the Hadamard regularization technique. The equations of motion are
simply the geodesic equations associated with the regularized metric (see Ref. [39] for a proof).
The Hadamard ambiguity parameter � is computed from dimensional regularization in Section 8.3.
We also add the 3.5PN terms which are known from Refs. [136, 137, 138, 174, 148, 164].

Though the successive post-Newtonian approximations are really a consequence of general
relativity, the final equations of motion must be interpreted in a Newtonian-like fashion. That is,
once a convenient general-relativistic (Cartesian) coordinate system is chosen, we should express
the results in terms of the coordinate positions, velocities, and accelerations of the bodies, and
view the trajectories of the particles as taking place in the absolute Euclidean space of Newton.
But because the equations of motion are actually relativistic, they must

(i) stay manifestly invariant – at least in harmonic coordinates – when we perform a global
post-Newtonian-expanded Lorentz transformation,

(ii) possess the correct “perturbative” limit, given by the geodesics of the (post-Newtonian-
expanded) Schwarzschild metric, when one of the masses tends to zero, and

(iii) be conservative, i.e. to admit a Lagrangian or Hamiltonian formulation, when the gravita-
tional radiation reaction is turned o↵.

We denote by r12 = |y1(t)�y2(t)| the harmonic-coordinate distance between the two particles,
with y1 = (yi

1) and y2 = (yi
2), by ni

12 = (yi
1 � yi

2)/r12 the corresponding unit direction, and by
vi
1 = dyi

1/dt and ai
1 = dvi

1/dt the coordinate velocity and acceleration of the particle 1 (and idem
for 2). Sometimes we pose vi

12 = vi
1 � vi

2 for the relative velocity. The usual Euclidean scalar
product of vectors is denoted with parentheses, e.g., (n12v1) = n12 · v1 and (v1v2) = v1 · v2. The
equations of the body 2 are obtained by exchanging all the particle labels 1 $ 2 (remembering
that ni

12 and vi
12 change sign in this operation):
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9 Newtonian-like Equations of Motion

9.1 The 3PN acceleration and energy

We present the acceleration of one of the particles, say the particle 1, at the 3PN order, as well
as the 3PN energy of the binary, which is conserved in the absence of radiation reaction. To get
this result we used essentially a “direct” post-Newtonian method (issued from Ref. [42]), which
consists of reducing the 3PN metric of an extended regular source, worked out in Equations (115),
to the case where the matter tensor is made of delta functions, and then curing the self-field
divergences by means of the Hadamard regularization technique. The equations of motion are
simply the geodesic equations associated with the regularized metric (see Ref. [39] for a proof).
The Hadamard ambiguity parameter � is computed from dimensional regularization in Section 8.3.
We also add the 3.5PN terms which are known from Refs. [136, 137, 138, 174, 148, 164].

Though the successive post-Newtonian approximations are really a consequence of general
relativity, the final equations of motion must be interpreted in a Newtonian-like fashion. That is,
once a convenient general-relativistic (Cartesian) coordinate system is chosen, we should express
the results in terms of the coordinate positions, velocities, and accelerations of the bodies, and
view the trajectories of the particles as taking place in the absolute Euclidean space of Newton.
But because the equations of motion are actually relativistic, they must

(i) stay manifestly invariant – at least in harmonic coordinates – when we perform a global
post-Newtonian-expanded Lorentz transformation,

(ii) possess the correct “perturbative” limit, given by the geodesics of the (post-Newtonian-
expanded) Schwarzschild metric, when one of the masses tends to zero, and

(iii) be conservative, i.e. to admit a Lagrangian or Hamiltonian formulation, when the gravita-
tional radiation reaction is turned o↵.

We denote by r12 = |y1(t)�y2(t)| the harmonic-coordinate distance between the two particles,
with y1 = (yi

1) and y2 = (yi
2), by ni

12 = (yi
1 � yi

2)/r12 the corresponding unit direction, and by
vi
1 = dyi

1/dt and ai
1 = dvi

1/dt the coordinate velocity and acceleration of the particle 1 (and idem
for 2). Sometimes we pose vi

12 = vi
1 � vi

2 for the relative velocity. The usual Euclidean scalar
product of vectors is denoted with parentheses, e.g., (n12v1) = n12 · v1 and (v1v2) = v1 · v2. The
equations of the body 2 are obtained by exchanging all the particle labels 1 $ 2 (remembering
that ni

12 and vi
12 change sign in this operation):
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1 = �Gm2n
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+
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9 Newtonian-like Equations of Motion

9.1 The 3PN acceleration and energy

We present the acceleration of one of the particles, say the particle 1, at the 3PN order, as well
as the 3PN energy of the binary, which is conserved in the absence of radiation reaction. To get
this result we used essentially a “direct” post-Newtonian method (issued from Ref. [42]), which
consists of reducing the 3PN metric of an extended regular source, worked out in Equations (115),
to the case where the matter tensor is made of delta functions, and then curing the self-field
divergences by means of the Hadamard regularization technique. The equations of motion are
simply the geodesic equations associated with the regularized metric (see Ref. [39] for a proof).
The Hadamard ambiguity parameter � is computed from dimensional regularization in Section 8.3.
We also add the 3.5PN terms which are known from Refs. [136, 137, 138, 174, 148, 164].

Though the successive post-Newtonian approximations are really a consequence of general
relativity, the final equations of motion must be interpreted in a Newtonian-like fashion. That is,
once a convenient general-relativistic (Cartesian) coordinate system is chosen, we should express
the results in terms of the coordinate positions, velocities, and accelerations of the bodies, and
view the trajectories of the particles as taking place in the absolute Euclidean space of Newton.
But because the equations of motion are actually relativistic, they must

(i) stay manifestly invariant – at least in harmonic coordinates – when we perform a global
post-Newtonian-expanded Lorentz transformation,

(ii) possess the correct “perturbative” limit, given by the geodesics of the (post-Newtonian-
expanded) Schwarzschild metric, when one of the masses tends to zero, and

(iii) be conservative, i.e. to admit a Lagrangian or Hamiltonian formulation, when the gravita-
tional radiation reaction is turned o↵.

We denote by r12 = |y1(t)�y2(t)| the harmonic-coordinate distance between the two particles,
with y1 = (yi

1) and y2 = (yi
2), by ni

12 = (yi
1 � yi

2)/r12 the corresponding unit direction, and by
vi
1 = dyi

1/dt and ai
1 = dvi

1/dt the coordinate velocity and acceleration of the particle 1 (and idem
for 2). Sometimes we pose vi

12 = vi
1 � vi

2 for the relative velocity. The usual Euclidean scalar
product of vectors is denoted with parentheses, e.g., (n12v1) = n12 · v1 and (v1v2) = v1 · v2. The
equations of the body 2 are obtained by exchanging all the particle labels 1 $ 2 (remembering
that ni

12 and vi
12 change sign in this operation):
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1 = �Gm2n
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+
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9 Newtonian-like Equations of Motion

9.1 The 3PN acceleration and energy

We present the acceleration of one of the particles, say the particle 1, at the 3PN order, as well
as the 3PN energy of the binary, which is conserved in the absence of radiation reaction. To get
this result we used essentially a “direct” post-Newtonian method (issued from Ref. [42]), which
consists of reducing the 3PN metric of an extended regular source, worked out in Equations (115),
to the case where the matter tensor is made of delta functions, and then curing the self-field
divergences by means of the Hadamard regularization technique. The equations of motion are
simply the geodesic equations associated with the regularized metric (see Ref. [39] for a proof).
The Hadamard ambiguity parameter � is computed from dimensional regularization in Section 8.3.
We also add the 3.5PN terms which are known from Refs. [136, 137, 138, 174, 148, 164].

Though the successive post-Newtonian approximations are really a consequence of general
relativity, the final equations of motion must be interpreted in a Newtonian-like fashion. That is,
once a convenient general-relativistic (Cartesian) coordinate system is chosen, we should express
the results in terms of the coordinate positions, velocities, and accelerations of the bodies, and
view the trajectories of the particles as taking place in the absolute Euclidean space of Newton.
But because the equations of motion are actually relativistic, they must

(i) stay manifestly invariant – at least in harmonic coordinates – when we perform a global
post-Newtonian-expanded Lorentz transformation,

(ii) possess the correct “perturbative” limit, given by the geodesics of the (post-Newtonian-
expanded) Schwarzschild metric, when one of the masses tends to zero, and

(iii) be conservative, i.e. to admit a Lagrangian or Hamiltonian formulation, when the gravita-
tional radiation reaction is turned o↵.

We denote by r12 = |y1(t)�y2(t)| the harmonic-coordinate distance between the two particles,
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+  2pN

Hulse-‐Taylor	  pulsar:	  3.5	  m/yr	  	  

→	  Loss	  of	  orbital	  energy	  and	  angular	  momentum

"radiaPon	  reacPon	  quadrupole	  formula"
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Hulse-‐Taylor	  pulsar:	  76	  μs/yr	  	  

Orbital	  phase	  evoluPon:	  	  
modificaPon	  of	  Kepler's	  equaPon

U � e sinU = 2⇡

"✓
t� t0
Pb

◆
� Ṗb

2

✓
t� t0
Pb

◆2
#

Hulse-‐Taylor	  pulsar	  aHer	  40	  years:	  
At	  periastron	  ΔU	  =	  2.3	  deg	  	  
-‐>	  30	  000	  km	  -‐>	  0.1	  lt-‐s
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Table 3
Orbital Parameters

Parameter Valuea

T0 (MJD) 52144.90097841(4)
x ≡ a1 sin i (s) 2.341782(3)
e 0.6171334(5)
Pb (d) 0.322997448911(4)
ω0 (deg) 292.54472(6)
⟨ω̇⟩ (deg yr−1) 4.226598(5)
γ (ms) 4.2992(8)
Ṗb −2.423(1) ×10−12

Note.a Figures in parentheses represent estimated uncer-
tainties in the last quoted digit. The estimated uncertain-
ties range from (2–6)× the formal fitted uncertainties, in
order to reflect also the variations resulting from different
assumptions regarding timing noise, etc.

appropriate expressions for ⟨ω̇⟩ and γ are

⟨ω̇⟩ = 3G2/3c−2(Pb2π )−5/3(1 − e2)−1(m1 + m2)2/3

= 2.113323(2)
[

(m1 + m2)
M⊙

]2/3

deg yr−1, (1)

γ = G2/3c−2e(Pb/2π )1/3m2(m1 + 2m2)(m1 + m2)−4/3

= 0.002936679(2)

[
m2(m1 + 2m2)(m1 + m2)−4/3

M
2/3
⊙

]

s.

(2)

In the second line of each equation we have substituted values
for Pb and e from Table 3, and used the constants GM⊙/c3 =
4.925490947 × 10−6 s and 1 Julian yr = 86400 × 365.25 s.
The figures in parentheses represent uncertainties in the last
quoted digit, determined by propagating the uncertainties listed
in Table 3. In each case, the uncertainties are dominated by the
experimental uncertainty in orbital eccentricity, e.

Equation (1) may be solved for the total mass of
the PSR B1913+16 system, yielding M = m1 + m2 =
2.828378±0.000007 M⊙. The additional constraint provided by
Equation (2) permits a solution for each star’s mass individually,
m1 = 1.4398 ± 0.0002 M⊙ and m2 = 1.3886 ± 0.0002 M⊙. As
far as we know, these are the most accurately determined stellar
masses outside the solar system. It is interesting to note that
since the value of Newton’s constant G is known to a fractional
accuracy of only 1 × 10−4, M can be expressed more accurately
in solar masses than in grams.

3.3. Gravitational Radiation Damping

According to general relativity a binary star system should
radiate energy in the form of gravitational waves. Peters &
Matthews (1963) showed that the resulting rate of change in
orbital period should be

Ṗ GR
b = − 192 π G5/3

5 c5

(
Pb

2π

)−5/3 (
1 +

73
24

e2 +
37
96

e4
)

× (1 − e2)−7/2 m1 m2 (m1 + m2)−1/3

= −1.699451(8) × 10−12

[
m1m2(m1 + m2)−1/3

M
5/3
⊙

]

.

(3)

Inserting values obtained for m1 and m2 and propagating
uncertainties appropriately, we obtain the general relativistic

predicted value

Ṗ GR
b = −2.402531 ± 0.000014 × 10−12. (4)

Equations (3) and (4) apply in the orbiting system’s reference
frame. Relative acceleration of that frame with respect to
the solar system barycenter will cause a small additional
contribution to the observed Ṗb. Damour & Taylor (1991)
presented a detailed discussion of this effect and other possible
contributions to Ṗb. Recent progress in determining the galactic-
structure parameters allows us to update the relevant quantities
and compute a new value for the kinematic correction to Ṗb.
Using R0 = 8.4 ± 0.6 kpc for the distance to the galactic center
and Θ0 = 254 ± 16 km s−1 for the circular velocity of the
local standard of rest (Ghez et al. 2008; Gillessen et al. 2009;
Reid et al. 2009), and d = 9.9 ± 3.1 kpc for the pulsar distance
(Weisberg et al. 2008), we obtain the kinematic contribution,
∆Ṗb,gal:

∆Ṗb,gal = −0.027 ± 0.005 × 10−12. (5)

Thus, we find the ratio of the observed-to-predicted rate of
orbital period decay to be

Ṗb − ∆Ṗb,gal

Ṗ GR
b

= 0.997 ± 0.002. (6)

Agreement between the observed orbital decay and the general
relativistic prediction is illustrated in Figure 2, which shows
how excess orbital phase (relative to an unchanging orbit) has
accumulated since the pulsar’s discovery in 1974. We note that
the overall experimental uncertainty embodied in Equation (6)
is now dominated by uncertainties in the galactic parameters
and pulsar distance, not the pulsar timing measurements. Even
better agreement between the observed and expected values
of Ṗb would be obtained if the true value of R0 or d were
slightly smaller, or Θ0 slightly larger. For example, observed
and expected values agree if d = 6.9 kpc, which is within the
Weisberg et al. (2008) error envelope. It will be interesting to
see whether improved future estimates of these quantities will
show one or more of these conditions to be true.

4. OTHER RELATIVISTIC EFFECTS

Two other relativistic phenomena are potentially measurable
in the PSR B1913+16 system: geodetic precession and gravita-
tional propagation delay. Spin–orbit coupling should cause the
pulsar’s spin axis to precess (Damour & Ruffini 1974; Barker
& O’Connell 1975a, 1975b), which should lead to observable
pulse shape changes. Weisberg et al. (1989) first detected such
changes, which were observed and modeled further by Kramer
(1998). Weisberg & Taylor (2002) and Clifton & Weisberg
(2008) found that the pulsar beam is elongated in the latitude
direction and becomes wider in longitude with increasing dis-
tance from the beam axis in latitude. These models suggest that
in the next decade or so, precession may move the beam far
enough that the pulsar will become unobservable from Earth for
some decades, before eventually returning to view.

The excess propagation delay (Shapiro 1964) caused by the
passage of pulsar signals through the curved spacetime of
the companion is largest at the pulsar’s superior conjunction.
The maximum amplitude varies with time because the impact
parameter at superior conjunction strongly depends on the
current value of ω. In this respect, the orbital geometry was
particularly unfavorable in the mid-1990s (see Damour & Taylor

[	  Peters	  1964	  ]

In	  GR:

Kepler's	  3rd	  law:

a3
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ȧ
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Hulse-‐Taylor	  pulsar:	  1.2	  deg/yr	  	  

L + S = J = const. 

|S| = const.  
|L| = const.

|Sp| >> |Sc|


|L| >> |Sp|

Binary	  pulsars:

[	  HT:	  >20	  ]

[	  HT:	  70	  000	  ]
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[ Andersen 1996 ]
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Hulse-‐Taylor	  pulsar:	  -‐0.00004	  deg/yr	  ∼	  40%	  of	  2pN	  	  

Spin	  of	  the	  pulsar	  causes	  a	  precession	  of	  the	  orbit:	  
➞	   Lense-‐Thirring	  precession	  of	  orbital	  angular	  momentum	  
	  	  	  	   and	  Laplace-‐Runge-‐Lenz	  vector

*
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[	  Barker	  &	  O'Connell	  1975,	  Damour	  &	  Schäfer	  1988	  ]

Consequently,	  we	  have	  a	  change	  in	  the	  orbital	  inclinaPon	  and	  an	  	  
addiPonal	  change	  in	  the	  longitude	  of	  periastron:
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Time dilation
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Hulse-‐Taylor	  pulsar:	  4.3	  ms	  	  
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Shapiro delay
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[	  Blandford	  &	  Teukolsky	  1976	  ]
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Keplerian	  parameters:
Separately	  measurable	  post-‐Keplerian	  parameters:

Not	  separately	  measurable	  post-‐Keplerian	  parameters:

Roemer	  delay:

Einstein	  delay:

Shapiro	  delay:

AberraPon	  delay:

[	  Damour	  &	  Deruelle	  1986,	  Damour	  &	  Taylor	  1992	  ]

E
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Ṗb
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=

v2

cd0
=

µ2d0
c

->

Proper motion effects

d
=

� d
2 0
+
v
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2
� 1/

2

d0
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[	  Shklovskii	  1970,	  Arzoumanian	  et	  al.	  1996,	  Kopeikin	  1996	  ]

> 0

Galactic differential acceleration

Ṗb

Pb
=

d̈

c

d̈ = ~K0 · (~gPSR � ~gSSB)

[	  Damour	  &	  Taylor	  1991	  ]

->

->

!̇ = csc i(µ↵ cos⌦asc + µ� sin⌦asc)

ẋ = x cot i(�µ↵ sin⌦asc + µ� cos⌦asc)



Applications
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   The mass-mass diagram for the Hulse-Taylor pulsar
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Ṗb
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[ Weisberg & Huang 2016 ]

PSR	  B1913+16

4 J. M. Weisberg and Y. Huang

from expressions in DT92:
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where m

1

is the pulsar mass, a
R

is the semimajor axis
of the relative orbit, S

1

= I

1

(2⇡f) is the magnitude of
the pulsar spin angular momentum, and I

1

is its mo-
ment of inertia. The fourth term of Eq. 13 results from
the changing projection of the line of sight onto the or-
bital plane due to proper motion, with µ and ⇥µ respec-
tively the amplitude and position angle of proper motion
and ⌦ the position angle of the line of nodes (Kopeikin
1996). The final term of Eq. 13, involving changes in the
Doppler factor D of Eq. 1, is caused by the relative line-
of-sight galactic accelerations of the solar system and the
binary system.
The above equations demonstrate that measurements

of ė or ẋ, along with experimental or theoretical determi-
nations of some of the other quantities appearing therein,
can usefully constrain yet others.

4. RESULTS OF THE FITS

We fitted the parameters discussed above to the full
set of TOAs, using the TEMPO software, as modified
by us.1 See Tables 1 and 2 for our results and their es-
timated uncertainties. The uncertainties quoted therein
represent the standard errors from the TEMPO fit (ex-
cept as noted). This convention di↵ers from our previous
practice, wherein many uncertainties were instead esti-
mated from fitted parameter variations across multiple
reasonable fits. While the old procedure facilitated the
incorporation of some systematic uncertainties into the
error budget; the more stable recent instrumental config-
urations appear to minimize such e↵ects.
Some of the fitted parameters shifted by several � with

respect to the values reported in Weisberg et al. (2010).
The shifts can all be attributed to the new incorporation
of a frequency and time o↵set for each WAPP observ-
ing session and center frequency in order to account for
geodetic-precession-induced profile changes (see §2), and
to our new procedure of fitting for rather than freezing
at 0 the parameter ẋ. The latter procedure also led to
a significantly larger uncertainty in the fitted value of �
and in quantities derived therefrom.
The astrometric and spin solutions are listed in Table

1. These are quite similar to those given in Weisberg
et al. (2010), except that our longer post-glitch base-
line made it clear that the previously discovered glitch at
MJD ⇡ 52770 is better modeled with the addition of a
change in spin frequency derivative, �ḟ . There remains
only one known glitch having a significantly smaller value
of �f/f [in globular cluster millisecond PSR B1821-24
(Mandal et al. 2009)], although several of magnitude sim-
ilar to the one tabulated here are now known. [See the
online Jodrell Bank Pulsar Glitch Catalogue4 (Espinoza
et al 2011)]. Note that, as with Weisberg et al. (2010),
ten higher-order spin derivatives were also fitted for to

4 http://www.jb.man.ac.uk/pulsar/glitches.html

Table 1
Astrometric and Spin Parameters

Parameter Valuea

t

0

(MJD)b . . . . . . . . . . . . 52984.0
↵ (J2000) . . . . . . . . . . . . . 19h15m27.s99942(3)
� (J2000) . . . . . . . . . . . . . 16�06027.003868(5)
µ

↵

(mas yr�1) . . . . . . . . �1.23(4)
µ

�

(mas yr�1) . . . . . . . . �0.83(4)
f (s�1) . . . . . . . . . . . . . . . 16.940537785677(3)
ḟ (s�2) . . . . . . . . . . . . . . . �2.4733(1) ⇥10�15

Glitch Parameters

Glitch epoch (MJD). . . 52777(2)
�f (s�1) . . . . . . . . . . . . . 5.49(3) ⇥10�10

�ḟ(s�2) . . . . . . . . . . . . . . �2.7(1) ⇥10�18

a Figures in parentheses represent formal TEMPO
standard errors in the last quoted digit, except for
the glitch parameters. The stated uncertainty in
glitch epoch results from empirically varying the
glitch epoch until ��

2 corresponds to the 68%
confidence level; the quoted uncertainties in the
other glitch parameters were derived from their
variations as the glitch epoch was varied over the
chosen range.
b This quantity is the epoch of the next six mea-
surements tabulated here.

Table 2
Orbital Parameters

Parameter Valuea

T

0

(MJD) . . . . . . . 52144.90097849(3)
x ⌘ a

1

sin i (s). . . 2.341776(2)
e . . . . . . . . . . . . . . . 0.6171340(4)
P

b

(d) . . . . . . . . . . . 0.322997448918(3)
!

0

(deg) . . . . . . . . 292.54450(8)
h!̇i (deg / yr) . . . 4.226585(4)
� (ms) . . . . . . . . . . 0.004307(4)
Ṗ

obs

b

. . . . . . . . . . . . �2.423(1) ⇥10�12

�

obs

✓

. . . . . . . . . . . . . 4.0(25) ⇥10�6

ẋ

obs . . . . . . . . . . . . . �0.014(9) ⇥10�12

ė

obs (s�1) . . . . . . . 0.0006(7) ⇥10�12

Shapiro Gravitational Propagation Delay Parameters

Damour & Deruelle (1986) Parametrization

s . . . . . . . . . . . . . . . 0.68+0.10

�0.06

r (µs) . . . . . . . . . . 9.6+2.7

�3.5

Freire & Wex (2010) Parametrization

& . . . . . . . . . . . . . . . 0.38(4)
h

3

. . . . . . . . . . . . . . 0.6(1) ⇥10�6

a Figures in parentheses represent formal TEMPO stan-
dard errors in the last quoted digit. The DD Shapiro pa-
rameters s and r, which are highly covariant, and their
uncertainties, were refined through a process illustrated
in Fig. 2.

eliminate the e↵ects of timing noise. Their values are
not shown in the Table as they do not correspond to
meaningful physical parameters.
Table 2 displays the results of our fit to orbital param-

eters, including the eight final entries, which are fitted
here for the first time in this system. Note that the first
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‣	  Binary	  parameters	  from	  +ming

[ Kramer et al. 2006 ]

‣	  Spin	  precession	  of	  B	  (from	  eclipses)

[ Breton et al. 2008 ]

Timing measurements. For each of the final
profiles, pulse times-of-arrival (TOAs) were com-
puted by correlating the observed pulse profiles
with synthetic noise-free templates (fig. S1)
(14). A total of 131,416 pulse TOAs were mea-
sured for A; 507 TOAs were obtained for B.
For A, the same template was used for all ob-
servations in a given frequency band, but dif-
ferent templates were used for widely separated
bands. We note that our observations still pro-
vide no good evidence for secular evolution of
A’s profile (15) despite the predictions of geo-
detic precession. The best timing precision was
obtained at 820 MHz with the Green Bank
Astronomical Signal Processor (GASP) back
end [see (16) for details of this and other
observing systems] on GBT, with typical TOA

measurement uncertainties for pulsar A of 18 ms
for a 30-s integration.

For B, because of the orbital and secular de-
pendence of its pulse profile (10), different
templates were also used for different orbital
phases and different epochs. A matrix of B
templates was constructed, dividing the data set
into 3-month intervals in epoch and 5-min
intervals in orbital phase. The results for the 29
orbital phase bins were studied, and we noticed
that although the profile changed quickly dur-
ing the two prominent bright phases, the profile
shape was simpler and more stable at orbital
phases when the pulsar is weak. This apparent
stability at some orbital phases cannot be at-
tributed to a low signal-to-noise ratio, as secular
variations in the pulse shape were still evident.

Consequently, the orbital phase was divided
into five groups of different lengths to which
the same template (for a given 3-month interval)
was applied as shown in fig. S2. In the final tim-
ing analysis, data from the two groups repre-
senting the bright phases (IV and V in fig. S2)
were excluded to minimize the systematic errors
caused by the orbital profile changes. Also, be-
cause of signal-to-noise and radio interference
considerations, only data from Parkes and the
GBT BCPM (Berkeley-Caltech Pulsar Machine)
back end (16) were used in the B timing analysis.

All TOAs were transferred to Universal Co-
ordinated Time (UTC) using the Global Posi-
tional System (GPS) to measure offsets of station
clocks from national standards and Circular
T of the Bureau International des Poids et
Mesures (BIPM) to give offsets from UTC,
and then to the nominally uniform BIPM Ter-
restrial Time (TT) time scale. These final TOAs
were analyzed using the standard software pack-
age Tempo (17), fitting parameters according to
the relativistic and theory-independent timing
model of Damour and Deruelle (DD) (11, 18).
In addition to the DD model, we also applied
the ‘‘DD-Shapiro’’ (DDS) model introduced
by Kramer et al. (19). The DDS model is a
modification of the DD model designed for
highly inclined orbits. Rather than fitting for the
Shapiro parameter s, the model uses the param-
eter z

s K jln(1j s), which gives a more reliable
determination of the uncertainties in zs and
hence in s. We quote the final result for the
more commonly used parameter s and note
that its value computed from zs is in good
agreement with the value obtained from a
direct fit for s within the DD model. Derived
pulsar and binary system parameters are listed
in Table 1.

In the timing analysis for pulsar B, we used
an unweighted fit to avoid biasing the fit toward
bright orbital phases. Uncertainties in the timing
parameters were estimated using Monte Carlo
simulations of fake data sets for a range of TOA
uncertainties, ranging from the minimum es-
timated TOA error to its maximum observed
value of about 4 ms. For B, we also fitted for
offsets between data sets derived from different
templates in the fit because the observed profile
changes prevent the establishment of a reliable
phase relationship between the derived tem-
plates. This precludes a coherent fit across the
whole orbit and hence limits the final timing
precision for B. It cannot yet be excluded that
different parts of B’s magnetosphere are active
and responsible for the observed emission at
different orbital phases.

In the final fit, we adopted the astrometric
parameters and the dispersion measure derived
for A and held these fixed during the fit, be-
cause A’s shorter period and more stable profile
give much better timing precision than is achie-
vable for B. Except for the semimajor axis—
which is observable only as the projection onto
the plane of the sky xB 0 (aB/c)sin i, where aB is

Table 1. Parameters for PSR J0737-3039A (A) and PSR J0737-3039B (B). The values were derived
from pulse timing observations using the DD (11) and DDS (19) models of the timing analysis
program Tempo and the Jet Propulsion Laboratory DE405 planetary ephemeris (41). Estimated
uncertainties, given in parentheses after the values, refer to the least significant digit of the
tabulated value and are twice the formal 1s values given by Tempo. The positional parameters are
in the DE405 reference frame, which is close to that of the International Celestial Reference
System. Pulsar spin frequencies n K 1/P are in barycentric dynamical time (TDB) units at the timing
epoch quoted in modified Julian days (MJD). The five Keplerian binary parameters (Pb, e, w, T0, and x)
are derived for pulsar A. The first four of these (with an offset of 180- added to w) and the position
parameters were assumed when fitting for B’s parameters. Five post-Keplerian parameters have
now been measured. An independent fit of ẇw for B yielded a value (shown in square brackets) that
is consistent with the much more precise result for A. The value derived for A was adopted in the
final analysis (16). The dispersion-based distance is based on a model for the interstellar electron
density (26).

Timing parameter PSR J0737-3039A PSR J0737-3039B

Right ascension a 07h37m51s.24927(3) —
Declination d j30-39¶40µ.7195(5) —
Proper motion in the RA direction (mas yearj1) j3.3(4) —
Proper motion in declination (mas yearj1) 2.6(5) —
Parallax p (mas) 3(2) —
Spin frequency n (Hz) 44.054069392744(2) 0.36056035506(1)
Spin frequency derivative ṅn (sj2) j3.4156(1) ! 10j15 j0.116(1) ! 10j15

Timing epoch (MJD) 53,156.0 53,156.0
Dispersion measure DM (cmj3 pc) 48.920(5) —
Orbital period Pb (day) 0.10225156248(5) —
Eccentricity e 0.0877775(9) —
Projected semimajor axis x 0 (a/c)sin i (s) 1.415032(1) 1.5161(16)
Longitude of periastron w (-) 87.0331(8) 87.0331 þ 180.0
Epoch of periastron T0 (MJD) 53,155.9074280(2) —
Advance of periastron ẇw (-/year) 16.89947(68) [16.96(5)]
Gravitational redshift parameter g (ms) 0.3856(26) —
Shapiro delay parameter s 0.99974(j39,þ16) —
Shapiro delay parameter r (ms) 6.21(33) —
Orbital period derivative ṖPb j1.252(17) ! 10j12 —
Timing data span (MJD) 52,760 to 53,736 52,760 to 53,736
Number of time offsets fitted 10 12
RMS timing residual s (ms) 54 2169
Total proper motion (mas yearj1) 4.2(4)
Distance d(DM) (pc) È500
Distance d(p) (pc) 200 to 1,000
Transverse velocity (d 0 500 pc) (km sj1) 10(1)
Orbital inclination angle (-) 88.69(–76,þ50)
Mass function (MR) 0.29096571(87) 0.3579(11)
Mass ratio R 1.0714(11)
Total system mass (MR) 2.58708(16)
Neutron star mass (mR) 1.3381(7) 1.2489(7)
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Timing measurements. For each of the final
profiles, pulse times-of-arrival (TOAs) were com-
puted by correlating the observed pulse profiles
with synthetic noise-free templates (fig. S1)
(14). A total of 131,416 pulse TOAs were mea-
sured for A; 507 TOAs were obtained for B.
For A, the same template was used for all ob-
servations in a given frequency band, but dif-
ferent templates were used for widely separated
bands. We note that our observations still pro-
vide no good evidence for secular evolution of
A’s profile (15) despite the predictions of geo-
detic precession. The best timing precision was
obtained at 820 MHz with the Green Bank
Astronomical Signal Processor (GASP) back
end [see (16) for details of this and other
observing systems] on GBT, with typical TOA

measurement uncertainties for pulsar A of 18 ms
for a 30-s integration.

For B, because of the orbital and secular de-
pendence of its pulse profile (10), different
templates were also used for different orbital
phases and different epochs. A matrix of B
templates was constructed, dividing the data set
into 3-month intervals in epoch and 5-min
intervals in orbital phase. The results for the 29
orbital phase bins were studied, and we noticed
that although the profile changed quickly dur-
ing the two prominent bright phases, the profile
shape was simpler and more stable at orbital
phases when the pulsar is weak. This apparent
stability at some orbital phases cannot be at-
tributed to a low signal-to-noise ratio, as secular
variations in the pulse shape were still evident.

Consequently, the orbital phase was divided
into five groups of different lengths to which
the same template (for a given 3-month interval)
was applied as shown in fig. S2. In the final tim-
ing analysis, data from the two groups repre-
senting the bright phases (IV and V in fig. S2)
were excluded to minimize the systematic errors
caused by the orbital profile changes. Also, be-
cause of signal-to-noise and radio interference
considerations, only data from Parkes and the
GBT BCPM (Berkeley-Caltech Pulsar Machine)
back end (16) were used in the B timing analysis.

All TOAs were transferred to Universal Co-
ordinated Time (UTC) using the Global Posi-
tional System (GPS) to measure offsets of station
clocks from national standards and Circular
T of the Bureau International des Poids et
Mesures (BIPM) to give offsets from UTC,
and then to the nominally uniform BIPM Ter-
restrial Time (TT) time scale. These final TOAs
were analyzed using the standard software pack-
age Tempo (17), fitting parameters according to
the relativistic and theory-independent timing
model of Damour and Deruelle (DD) (11, 18).
In addition to the DD model, we also applied
the ‘‘DD-Shapiro’’ (DDS) model introduced
by Kramer et al. (19). The DDS model is a
modification of the DD model designed for
highly inclined orbits. Rather than fitting for the
Shapiro parameter s, the model uses the param-
eter z

s K jln(1j s), which gives a more reliable
determination of the uncertainties in zs and
hence in s. We quote the final result for the
more commonly used parameter s and note
that its value computed from zs is in good
agreement with the value obtained from a
direct fit for s within the DD model. Derived
pulsar and binary system parameters are listed
in Table 1.

In the timing analysis for pulsar B, we used
an unweighted fit to avoid biasing the fit toward
bright orbital phases. Uncertainties in the timing
parameters were estimated using Monte Carlo
simulations of fake data sets for a range of TOA
uncertainties, ranging from the minimum es-
timated TOA error to its maximum observed
value of about 4 ms. For B, we also fitted for
offsets between data sets derived from different
templates in the fit because the observed profile
changes prevent the establishment of a reliable
phase relationship between the derived tem-
plates. This precludes a coherent fit across the
whole orbit and hence limits the final timing
precision for B. It cannot yet be excluded that
different parts of B’s magnetosphere are active
and responsible for the observed emission at
different orbital phases.

In the final fit, we adopted the astrometric
parameters and the dispersion measure derived
for A and held these fixed during the fit, be-
cause A’s shorter period and more stable profile
give much better timing precision than is achie-
vable for B. Except for the semimajor axis—
which is observable only as the projection onto
the plane of the sky xB 0 (aB/c)sin i, where aB is

Table 1. Parameters for PSR J0737-3039A (A) and PSR J0737-3039B (B). The values were derived
from pulse timing observations using the DD (11) and DDS (19) models of the timing analysis
program Tempo and the Jet Propulsion Laboratory DE405 planetary ephemeris (41). Estimated
uncertainties, given in parentheses after the values, refer to the least significant digit of the
tabulated value and are twice the formal 1s values given by Tempo. The positional parameters are
in the DE405 reference frame, which is close to that of the International Celestial Reference
System. Pulsar spin frequencies n K 1/P are in barycentric dynamical time (TDB) units at the timing
epoch quoted in modified Julian days (MJD). The five Keplerian binary parameters (Pb, e, w, T0, and x)
are derived for pulsar A. The first four of these (with an offset of 180- added to w) and the position
parameters were assumed when fitting for B’s parameters. Five post-Keplerian parameters have
now been measured. An independent fit of ẇw for B yielded a value (shown in square brackets) that
is consistent with the much more precise result for A. The value derived for A was adopted in the
final analysis (16). The dispersion-based distance is based on a model for the interstellar electron
density (26).

Timing parameter PSR J0737-3039A PSR J0737-3039B

Right ascension a 07h37m51s.24927(3) —
Declination d j30-39¶40µ.7195(5) —
Proper motion in the RA direction (mas yearj1) j3.3(4) —
Proper motion in declination (mas yearj1) 2.6(5) —
Parallax p (mas) 3(2) —
Spin frequency n (Hz) 44.054069392744(2) 0.36056035506(1)
Spin frequency derivative ṅn (sj2) j3.4156(1) ! 10j15 j0.116(1) ! 10j15

Timing epoch (MJD) 53,156.0 53,156.0
Dispersion measure DM (cmj3 pc) 48.920(5) —
Orbital period Pb (day) 0.10225156248(5) —
Eccentricity e 0.0877775(9) —
Projected semimajor axis x 0 (a/c)sin i (s) 1.415032(1) 1.5161(16)
Longitude of periastron w (-) 87.0331(8) 87.0331 þ 180.0
Epoch of periastron T0 (MJD) 53,155.9074280(2) —
Advance of periastron ẇw (-/year) 16.89947(68) [16.96(5)]
Gravitational redshift parameter g (ms) 0.3856(26) —
Shapiro delay parameter s 0.99974(j39,þ16) —
Shapiro delay parameter r (ms) 6.21(33) —
Orbital period derivative ṖPb j1.252(17) ! 10j12 —
Timing data span (MJD) 52,760 to 53,736 52,760 to 53,736
Number of time offsets fitted 10 12
RMS timing residual s (ms) 54 2169
Total proper motion (mas yearj1) 4.2(4)
Distance d(DM) (pc) È500
Distance d(p) (pc) 200 to 1,000
Transverse velocity (d 0 500 pc) (km sj1) 10(1)
Orbital inclination angle (-) 88.69(–76,þ50)
Mass function (MR) 0.29096571(87) 0.3579(11)
Mass ratio R 1.0714(11)
Total system mass (MR) 2.58708(16)
Neutron star mass (mR) 1.3381(7) 1.2489(7)
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➥	  mass	  raPo	  +	  5	  post-‐Keplerian	  parameters

⌦B = 4.77+0.66
�0.65

�/year

➥	  6th	  post-‐Keplerian	  parameter
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	  ∼	  1.3	  ×	  106	  TOAs	  from	  five	  different	  radio	  telescopes	  
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The Double Pulsar

GR mass-mass diagram

Mass ratio mA/mB and 

6 post-Keplerian parameters 
➡ periastron precession
➡ time dilation
➡ range (r) and shape (s) of  

Shapiro delay
➡ geodetic precession
➡ gravitational wave damping

➜ 5 tests

PpK = f(PK;mA,mB)

Kramer et al. 2006, Breton et al. 2008

sion rate of WB = 4.77°−0°.65
+0°.66 year−1, we derive

c2sB
G

! "

¼ 3:38þ0:49
−0:46 . Every successful theory of

gravity in the given generic framework must
predict this value: These observations provide a
strong-field test of gravity that complements and
goes beyond the weak-field tests of relativistic
spin precession (26). In GR, we expect to mea-

sure c2sB
G

! "

GR
¼ 2þ 3

2
mA
mB

¼ 3:60677 T 0:00035,

where we have used the masses determined from
the precisely observed orbital precession and the
Shapiro delay shape parameter under the as-
sumption that GR is correct (14). Comparing the
observed value with GR's predictions, we find
c2sB
G

! "

obs
= c2sB

G

! "

GR
¼ 0:94 T 0:13. Hence, GR

passes this test of relativistic spin precession in a
strong-field regime, confirming, within uncertain-
ties, GR's effacement property of gravity even for
spinning bodies, that is, the notion that strong in-
ternal gravitational fields do not prevent a compact
rotating body from behaving just like a spinning
test particle in an external weak field (27).

The spin precession rate, as well as the tim-
ing parameters entering in the calculation of
c2sB
G

! "

, are all independent of the assumed theory

of gravity. If the main contribution limiting the
precision of this new strong-field test comes
from the inferred spin precession rate, we expect
that the statistical uncertainty should decrease
significantly with time, roughly as the square of
the monitoring baseline for similar quantity and
quality of eclipse data. The contribution of sys-
tematics to the error budget should also decrease,
but its functional time dependence is difficult to

estimate. Although the orbital and spin phases of
pulsar B are input variables to the eclipse model,
our ability to determine the orientation of pulsar
B in space does not require the degree of high-
precision timing needed for measurement of post-
Keplerian parameters; evaluating spin phases to
the percent level, for instance, is sufficient. There-
fore, the intrinsic correctness of the model and its
ability to reproduce future changes in the eclipse
profile because of evolution of the geometry
are the most likely limitations to improving the
quality of this test of gravity, at least until the
measured precession rate reaches a precision
comparable with the timing parameters involved

in the calculation of c2sB
G

! "

. Better eclipse mod-

eling could be achieved from more sensitive
observations, and thus new-generation radio
telescopes such as the proposed Square Kilome-
ter Array could help make important progress.
Pulsar A does not show evidence of precession
(28, 29) likely because its spin axis is aligned
with the orbital angular momentum; it should
therefore always remain visible, thus allowing
long-term monitoring of its eclipses. Pulsar B,
however, could disappear if spin precession
causes its radio beam to miss our line of sight
(21). In this event, we would need to find a way
to circumvent the lack of observable spin phases
for pulsar B, which are necessary to the eclipse
fitting.
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Fig. 4. Mass-mass diagram
illustrating the present tests
constraining general rela-
tivity in the double pulsar
system. (Inset) An expanded
view of the region where
the lines intersect. If gen-
eral relativity is the cor-
rect theory of gravity, all
lines should intersect at
common values of masses.
The mass ratio (R = xB/xA)
and five post-Keplerian pa-
rameters (s and r, Shapiro
delay shape and range; ẇ,
periastron advance; Ṗb, or-
bital period decay due to
the emission of gravitation-
al waves; and g, gravita-
tional redshift and time
dilation) were reported in
(14). Shaded orange re-
gions are unphysical solu-
tions because sini ≤ 1,
where i is the orbital in-
clination. In addition to al-
lowing a test of the strong-field parameter ðc2sB

G Þ, the spin precession rate of pulsar B, WB, yields a new
constraint on the mass-mass diagram. M☉ is the mass of the Sun.
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7	  -‐	  2	  =	  5	  tests	  of	  GR

➡New	  version	  by	  Kramer	  et	  al.	  with	  greatly	  improved	  precision	  should	  become	  available	  soon.	  
➡GW	  damping	  in	  the	  Double	  Pulsar	  by	  now	  tested	  with	  a	  precision	  of	  significantly	  bener	  than	  0.1%.
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[ Perera et al. 2010 ]

No. 2, 2010 THE EVOLUTION OF PSR J0737−3039B 1195

Figure 1. Pulse profiles of BP1 on 12 different days including the very first observation (MJD 52997). All data have been observed at a frequency of 820 MHz.
Each profile covers 20 minutes of orbital longitude (from 185◦ to 235◦) and there are 256 bins across the entire profile. Since predictions of absolute pulse phase are
not available for these observations, the highest profile peak has been aligned to phase 0.5 at each epoch. The horizontal solid and dotted lines show the baseline, or
off-pulse mean, of the profile and the corresponding standard deviation of the off-peak region, respectively. The effective time resolution of the profiles is 0.01 s

2.◦6(2) yr−1 for BP1 and BP2, respectively. It appears that the
profiles in both bright regions present the same rate of change
in their component separation.

2.2. Flux Evolution of the Two Bright Phases

In both bright regions, the integrated pulse flux density
has decreased gradually over time (see Figures 1 and 2).
The pulsar was detected in both bright phases with the last
significant detection in March 2008 (MJD 54552) at 820 MHz.
We estimated flux densities at 820 MHz using the radiometer
equation. First, we calculated the radiometer noise, using a
system temperature of 35 K (the system temperature is defined
as the sum Tsys = Trec + Tspill + Tatm + Tsky), and considered
this as the flux density at the off-pulse region of the pulse
profile. The flux density is then obtained by multiplying the
pulse profile by the ratio of radiometer noise to the standard
deviation of the off-pulse phase and subtracting the mean off-
pulse level. We have carried out this calculation for only the
two bright phases, because the emission in the weak phases
disappeared much earlier (discussed in Section 2.4 with more
details). The calculated flux densities in both bright phases on
MJD 52997 (0.95(4) and 0.65(4) mJy for BP1 and BP2 at
820 MHz, respectively) are consistent with the value that

has been calculated by Lyne et al. (2004; 0−1.3(3) mJy at
1390 MHz). Figure 7 shows the mean flux densities of different
epochs which have been observed at 820 MHz. This confirms
that the flux density significantly decreases over time and almost
reaches zero around MJD 54852 in both bright phases. The rate
of decrease is calculated to be 0.177(6) and 0.089(7) mJy yr−1

for BP1 and BP2, respectively. The flux densities of the last
few epochs are only upper limits (denoted by arrows) and not
included in the fits. Our timing solution is not stable enough to
provide a reliable prediction of the expected phase of the pulsar
on these days, making it difficult to determine whether any
apparent peaks are real. The peaks on MJDs 54856 and 54852
have the same pulse phase in both bright phases, suggesting
that they are real. However, given their low signal to noise, we
describe them by upper limits.

2.3. Analysis and Comparison of Light Curves of the
Two Bright Phases

The orbital-phase binned light curves of the two bright phases
were obtained by integrating the flux in a window covering 5%
of the spin period and centered on the pulse peak to reduce the
effect of baseline noise. Then, each light curve is smoothed by
using a boxcar with a width of 30 pulses to reduce the significant

[ Ferdman et al. 2013 ]

B

A
5.1	  deg/yr

AnimaPon:	  Rene	  Breton

A

B
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[ Kramer et al., in prep.; Kehl et al., in prep. ]

!̇ = !̇1pN + !̇2pN + !̇SO

!̇1pN = 16.89 . . . deg/yr

!̇2pN = 0.00044 deg/yr

!̇SO = �0.00038 IA/(1045 g cm2) deg/yr

�!̇obs = 0.00002 deg/yr

PSR J0737-3039
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[ Boyles et al. 2013, Lynch et al. 2013, Antoniadis et al. 2013 ] 

P = 39.1226569017806(5)ms

Pb = 2.45817750533(2) h

e . 10�6

H�H�H�
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Mass of pulsar:

2.01± 0.04M�

[ Antoniadis et al. 2013 ] 

R = mp/mc = 11.70± 0.13 mc = 0.172± 0.003M�

VLT/ESO
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[ Antoniadis et al. 2013 ] 

mc

Ṗb
R



Generic approach to
PPK parameters in

alternative gravity theories 
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 a

AddiPonal	  fields	  influence	  the	  structure	  of	  each	  body,	  and	  in	  turn	  affect	  its	  moPon	  	  
—>	  violaPon	  of	  the	  strong	  equivalence	  principle	  (SEP).	  

ProperPes	  of	  a	  body	  depend	  on	  the	  values	  of	  the	  addiPonal	  fields	  in	  the	  matching	  region	  𝜓a.	  	  
Hence,	  one	  can	  write	  mass,	  moment	  of	  inerPa,	  etc.	  as	  a	  funcPon	  of	  the	  external	  auxiliary	  field(s)	  	  
evaluated	  at	  the	  locaPon	  of	  the	  body

mA( a[xA(⌧A)])

IA( a[xA(⌧A)])
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2
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(viA � viB)n
j
AB

3

5

Strong-field PPN parameters

1pN orbital dynamics (N-body system) - modified EIH formalism

Spin-orbit strong-field parameter

Strong-field modification of G:

RestricPon	  to	  boost-‐invariant	  gravity	  theories	  without	  Whitehead	  term	  in	  the	  post-‐Newtonian	  limit

�B
A = (2 + �̄AB)GABPPN limit suggests:

Post-Keplerian parameters for a two-body system

s =
xn
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mA ⌘ m(0)
A

[	  Will	  1993,	  Damour	  &	  Taylor	  1992	  ]
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[	  Will	  1993	  ]

rAB

↵B

 A(t) =  0 +
q( )B

rAB(t)

In	  alternaPves	  to	  GR,	  the	  local	  gravitaPonal	  constant	  at	  the	  locaPon	  of	  the	  pulsar	  	  
my	  depend	  on	  the	  gravitaPonal	  potenPal	  of	  the	  companion	  star

⌘⇤B = ⌘N = 4� � � � 3If	  the	  companion	  is	  a	  weakly	  self-‐gravitaPng	  body:	  
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In	  alternaPve	  gravity	  one	  generally	  expects	  radiaPon	  of	  all	  mul+poles	  

monopole	  radiaPon	  

dipole	  radiaPon	  

quadrupole	  radiaPon

mA, qA mB , qB

 =
X

A


dqA
dt

+
qA
6c2

d3

dt3
(r2A)

�
+O(c�3)
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X
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(qAr

i
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10c2
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+O(c�3)

Ėq /  ̇2

c
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 ̈i ̈i

3c3
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...
 ij

...
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30c5
+O(c�7)

dqA
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3
r2A�ij

◆
+O(c�2)

—>	  Leading	  contribuPon:	  dipole	  radia+on	  damping	  at	  1.5	  post-‐Newtonian	  order / �3
b (qA � qB)

2

[	  Will	  1993,	  Damour	  &	  Esposito-‐Farèse	  1992	  ]



  Norbert Wex / 2016-Jul-19 / Caltech

Time-varying gravitational constant

60

�(1)
B

�(2)
B

�(3)
B

In many alternatives to GR, the effective gravitational
constant gets promoted to a dynamical field               .

Expansion of the universe then generally leads to
changes in the background value of       and consequently
to a time varying G.

A change of G leads to a change in the orbital period  
of a binary pulsar according to

“sensitivity”: 

�B

G �! �

si ⌘
G

mi

@mi

@G

[ Nordtvedt 1990 ]

T1(0.0001, −4.3) 

EoS: MPA1

[ Wex 2014 ]

Binary pulsars limits (95% C.L.) 

J1713+0747 (1.3 M⊙):

J0437-4715 (1.45 M⊙):

J1614-2230  (1.93 M⊙):
Zhu, Stairs, et al. 2015; Freire et al. 2012; Deller et al. 2008; NANOGrav 

Konopliv et al. 2014 

Ġ/G = (�0.6± 1.1)⇥ 10�12 yr�1

Ġ/G = (�0.6± 3.2)⇥ 10�12 yr�1

|Ġ/G| . 10�11 yr�1

Solar system: |Ġ/G| < 3⇥ 10�13 yr�1

Ṗb

Pb
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m1s1 +m2s2
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and PPK parameters
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[	  Damour	  &	  Esposito-‐Farèse	  1992,	  1993,	  1996	  ]

24 Thibault Damour

a(ϕ) vanishes17, all observable quantities at the 1PN level depend only on the
values of the first two derivatives of the a(ϕ) at ϕ = ϕ0. More precisely, if one
defines

α(ϕ) ≡ ∂ a(ϕ)
∂ ϕ

; β(ϕ) ≡ ∂ α(ϕ)
∂ ϕ

=
∂2 a(ϕ)
∂ ϕ2

, (58)

and denotes by α0 ≡ α(ϕ0), β0 ≡ β(ϕ0) their asymptotic values, one finds
(see, e.g., [33]) that the effective gravitational constant between two bodies
(as measured by a Cavendish experiment) is given by

G = G∗(1 + α2
0) , (59)

while, among the PPN parameters, only the two basic Eddington ones, γ̄ ≡
γPPN − 1, and β̄ ≡ βPPN − 1, do not vanish, and are given by

γ̄ ≡ γPPN − 1 = −2
α2

0

1 + α2
0

, (60)

β̄ ≡ βPPN − 1 =
1
2

α0 β0 α0

(1 + α2
0)2

. (61)

The structure of the results (60) and (61) can be transparently expressed
by means of simple (Feynman-like) diagrams (see, e.g., [77]). Eqs. (59) and
(60) correspond to diagrams where the interaction between two worldlines
(representing two massive bodies) is mediated by the sum of the exchange
of one graviton and one scalar particle. The scalar couples to matter with
strength ∼ α0

√
G∗. The exchange of a scalar excitation then leads to a term

∝ α2
0. On the other hand, Eq. (61) corresponds to a non-linear interaction

between three worldlines involving: (i) the ‘generation’ of a scalar excitation
on a first worldline (factor α0), (ii) a non-linear vertex on a second worldline
associated to the quadratic piece of a(ϕ) (aquad(ϕ) = 1

2 β0(ϕ − ϕ0)2; so that
one gets a factor β0), and (iii) the final ‘absorption’ of a scalar excitation on
a third worldline (second factor α0).

Eqs. (60) and (61) can be summarized by saying that the first two coeffi-
cients in the Taylor expansion of the coupling function a(ϕ) around ϕ = ϕ0

(after setting a(ϕ0) = 0)

a(ϕ) = α0(ϕ − ϕ0) +
1
2

β0(ϕ − ϕ0)2 + · · · (62)

suffice to determine the quasi-stationary, weak-field (1PN) predictions of any
tensor–scalar theory. In other words, the solar-system tests only explore the
‘osculating approximation’ (62) (slope and local curvature) to the function
a(ϕ). Note that GR corresponds to a vanishing coupling function a(ϕ) = 0
(so that α0 = β0 = · · · = 0), the JFBD model corresponds to keeping only

17 In these units the Einstein metric g∗
µν and the physical metric g̃µν asymptotically

coincide.
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Tensor	  field	  g*μν	  plus	  massless/low	  mass	  scalar	  field	  𝜑	  

Field	  equaPons	  in	  Einstein	  frame:

gµ⌫ = g⇤µ⌫ exp 2a(')

Physical	  metric	  (Jordan	  frame)

= ↵0 + �0('� '0) [	  "coupling	  strength"	  ]
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EffecPve	  gravitaPonal	  constant	  (Cavendish	  experiment)

[	  "logarithmic	  coupling	  funcPon"	  ]

General	  RelaPvity:	  	   	   	   α0=0,	  β0=0	   	  
Jordan-‐Fierz-‐Brans-‐Dicke:	  	   α0≠0,	  β0=0	  	  [	  ωBD=(1-‐3α02)/2α02	  ]
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[	  see	  e.g.	  Damour	  2009	  (SIGRAV	  lecture)	  ]

No	  effacement	  of	  the	  internal	  structure	  
→	  structure	  related	  parameters	  enter	  the	  equaPons	  of	  moPon.

Binary Systems as Test-Beds of Gravity Theories 29

the point sources, so that ϕ(zA) is a priori undefined. One can either deal
with this problem by coming back to the physically well-defined matching
approach (which shows that ϕ(zA) should be replaced by ϕa, the value of ϕ in
an intermediate domain RA ≪ r ≪ |zA − zB|), or use the efficient technique
of dimensional regularization. This means that the spacetime dimension D in
Eq. (72) is first taken to have a complex value such that ϕ(zA) is finite, before
being analytically continued to its physical value D = 4.

One then derives from the action (72) two important consequences for the
motion and timing of binary pulsars. First, one derives the Lagrangian describ-
ing the relativistic interaction between N strongly self-gravitating bodies (in-
cluding orbital ∼ (v/c)2 effects, and neglecting O(v4/c4) ones) [11, 7, 33, 39].
It is the sum of one-body, two-body and three-body terms.

The one-body action has the usual form of the sum (over the label A) of
the kinetic term of each point mass:

Lone-body
A = −mA c2

√
1 − v2

A/c2

= −mA c2 +
1
2

mA v2
A +

1
8

mA
(v2

A)2

c2
+ O

(
1
c4

)
. (73)

Here, we use Einstein units, and the inertial mass mA entering Eq. (73) is
mA ≡ mA(ϕ0), where ϕ0 is the asymptotic value of ϕ far away from the
considered N -body system.

The two-body action is a sum over the pairs A, B of a term L2-body
AB which

differs from the GR-predicted 2-body Lagrangian in two ways: (i) the usual
gravitational constant G appearing as an overall factor in L2-body

AB must be
replaced by an effective (body-dependent) gravitational constant (in the ap-
propriate units mentioned above) given by

GAB = G∗(1 + αA αB) , (74)

and (ii) the relativistic (O(v2/c2)) terms in L2-body
AB contain, in addition to

those predicted by GR, new velocity-dependent terms of the form

δγL2-body
AB = (γ̄AB)

GAB mA mB

rAB

(vA − vB)2

c2
, (75)

with
γ̄AB ≡ γAB − 1 = − 2

αA αB

1 + αA αB
. (76)

In these expressions αA ≡ αA(ϕ0) ≡ ∂ ln mA(ϕ0)/∂ϕ0 (see Eq. (69) with
ϕa → ϕ0).

Finally, the 3-body action is a sum over the pairs B, C and over A (with
A ̸= B, A ̸= C, but the possibility of having B = C) of

L3-body
ABC = −(1 + 2 β̄A

BC)
GAB GAC mA mB mC

c2 rAB rAC
(77)

Already	  at	  Newtonian	  level:

28 Thibault Damour
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Fig. 2. Dependence upon the baryonic mass m̄A of the coupling parameter αA in
the theory T1(α0, β0) with α0 = −0.014, β0 = −6. Figure taken from [80].

nearly independently of the externally imposed α0 = αa = α(ϕa). This inter-
esting non-perturbative behaviour was related in [34, 35] to a mechanism of
spontaneous scalarization, akin to the well-known mechanism of spontaneous
magnetization of ferromagnets. See also [51] for a simple analytical description
of the behaviour of αA.

Let us also mention in passing that, in the case where A is a black hole,
the effective coupling strength αA actually vanishes [33]. This result is related
to the impossibility of having (regular) ‘scalar hair’ on a black hole.

We have sketched above the first part of the matching approach to the
motion and timing of strongly self-gravitating bodies: the ‘internal problem’.
It remains to describe the remaining ‘external problem’. As already mentioned
(and emphasized, in the present context, by Eardley [7, 11]), the most efficient
way to describe the external problem is, instead of matching in detail the
external fields (g∗µν , ϕ) to the fields generated by each body in its co-moving
frame, to ‘skeletonize’ the bodies by point masses. Technically this means
working with the action

S =
c4

16π G∗

∫
dDx

c
g1/2
∗ [R∗ − 2 gµν

∗ ∂µϕ∂νϕ]

−
∑

A

c

∫
mA(ϕ(zA))(−g∗µν(zA) dzµ

A dzν
A)1/2 , (72)

where the function mA(ϕ) in the last term on the R.H.S. is the function
mA(ϕa) obtained above by solving the internal problem. Eq. (72) indicates
that the argument of this function is taken to be ϕa = ϕ(zA), i.e., the value
that the scalar field (as viewed in the external problem) takes at the location
zµ

A of the center of mass of body A. However, as body A is described, in
the external problem, as a point mass this causes a technical difficulty: the
externally determined field ϕ(x) becomes formally singular at the location of

effective scalar coupling

�0 = �6
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At	  post-‐Newtonian	  level:
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[	  Damour	  &	  Esposito-‐Farèse	  1996	  ]

Modifica+on	  of	  the	  moment-‐of-‐iner+a

obtained from considering not only the limit a0
2,1023, Eq.

~1.6!, coming from time-delay and light-deflection experi-
ments @8#, but also the limit

ub0ua0
2,1.231023, ~4.6!

coming from the lunar-laser-ranging constraint ub u
,631024

@19# on the Eddington parameter ub u
[bEdd21'

1
2b0a0

2
@see Eq. ~1.4b!#. When ub0u.1.2, the

limit ~4.6! is more stringent than the limit ~1.6! and defines
the maximal allowed value for ua0u and thereby for
uw0u'ua0 /b0u ~see the exclusion plot in Sec. V D below!.
Besides the variation of the shapes of the curves in Fig. 3

when w0 is allowed to vary ~which is always a sharpening of
the bumps and a stabilization of the other features6!, we have
also numerically explored the effect of varying the curvature
parameter b in Eq. ~2.1!. The two main effects of varying
b are ~i! to enlarge the values of the form factors uaAu,
ubAu, u]lnIA /]w0u as 2b increases, and ~ii! to displace the
location of the critical point m cr . For instance, we find
@within the models ~2.1!# mcr(b525)51.56m( ,
m cr(b524.5)51.84m( . These values are below the ~ex-
pected! maximum mass of a neutron star. However, observed
neutron stars have baryonic masses around 1.5m( ~corre-
sponding to general relativistic Einstein masses around
1.4m(); therefore, we expect that strong-scalar-field effects
can have significant observational consequences only when
b<25.

B. Scalar-field effects in the timing parameter g

Up to now, the non-Einsteinian effects linked to the field
dependence of the inertia moment have been treated by an
approximation @17,18,5# which is insufficient for tackling the
nonperturbative phenomena discussed here. One of the main
aims of the present paper is to remedy this situation. Let us
first clarify the observable effect of the variation of the pulsar
inertia moment with the local scalar background7 wA[w0A

loc

@17,18#.
The central tool of binary-pulsar experiments is the ‘‘tim-

ing formula’’ ~see, e.g., @20,21#!, i.e., the mathematical func-
tion relating the ‘‘intrinsic time’’ of the pulsar clock T to the
arrival time on Earth of radio pulses. The successive ticks of
the pulsar time T are defined to correspond to successive
2p rotations of the pulsar around itself: f

PSR52pT/Pp ,
where Pp is the intrinsic period of the pulsar ~for simplicity
we neglect here the slowdown of the rotation of the pulsar as
well as aberration effects!. In other words, adding the label
A and passing to a differential formulation, dTA5CdfA for
a certain constant C . In ~local! Einstein units, the pulsar
angular momentum reads JA5IAVA5IAdfA /dtA* , where
dtA*5udsA*u/c5(2g

mn

*AdzA
mdzA

n )1/2/c is the Einstein proper
time in a local inertial frame around A . The angular momen-

tum JA is an action variable @

J5p
f

5(1/2p)rpidqi
#

and
therefore an adiabatic invariant under slow changes of pa-
rameters. It remains therefore constant as the pulsar moves
on its orbit and feels a slowly changing wA from its compan-
ion. This yields dTA5C8dtA*/IA for some new constant
C8. The latter equation can be approximately rewritten in
terms of some coordinate time t used to describe the binary
motion:

dTA'C8A2g00*AA12vA
2 /c2dt/IA„wA~

t
!

…, ~4.7!

where ~to sufficient accuracy! vA
2 is the Euclidean square of

the coordinate velocity of the pulsar vA5dzA /dt . Using ~see
@5#!

A2g00*A512
G*mB

rABc2 1OS 1c4D , ~4.8a!

wA~

t
!

5w02
G*mBaB

rABc2 1OS 1c4D , ~4.8b!

and the standard relations given by Newtonian orbital dy-
namics @with effective Newtonian constant
GAB5G*(11aAaB)#, we find a usual ‘‘Einstein’’ contribu-
tion DE5gsinu to the timing formula @20,21#. In DE , u de-
notes the function of TA defined by solving
u2esinu52p

@

(TA2T0)/Pb2
1
2Ṗb((TA2T0)/Pb)2], and8

g[g

th
~

mA ,mB!

5
e
n

XB

11aAaB
S GAB~

mA1mB!

n
c3 D 2/3

3
@

XB~

11aAaB!

111KA
B
#

. ~4.9!

The timing parameter g should not be confused with the
Eddington parameter gEdd . Here e is the orbital eccentricity,
n[2p/Pb the orbital circular frequency, XB[mB /
(mA1mB), and the new contribution KA

B coming from the
variation of IA under the influence of the companion B is
defined by

KA
B
[2aB

]lnIA

]w0
. ~4.10!

Note the dissymmetric roles of the labels A and B . It is
important, for applications, to recognize that the dependence
of the correction KA

B upon the two masses mA ,mB is factor-
ized ~in the single scalar case that we consider here!. Accord-
ingly, it might be convenient to define the quantity

kA~

mA!

[2]lnIA /]w0 , ~4.11!

so that KA
B(mA ,mB)5kA(mA)aB(mB).

The reasoning above ~based on the use of the Einstein
conformal frame! could be done using the ‘‘physical’’ ~or
Jordan-Fierz! conformal frame. Indeed, the angular momen-
tum is independent of the conformal frame ~being an action
variable!. This means IAVA5 ĨAṼA so that the pulsar intrin-
sic time ~which is a conformal invariant, being proportional

6See, for instance, Fig. 1 above which shows that the wide plateau
in aA , beyond m cr , varies very little when w0 tends to zero.
7This denotes the nearly uniform value of w on a sphere centered
on A having a radius much larger than the radius of the neutron star
A but much smaller than the distance to the companion.

8The notation g

th(mA ,mB) in Eq. ~4.9! refers to the theoretical
prediction, within tensor-scalar models, giving the phenomenologi-
cal timing parameter g as a function of the masses. See below.
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rAB

↵B

�! modification of �E

IA
I0

' 1 +
G⇤mB↵B

rABc2
kA

SA = ⌦AIA = adiabatic invariant

� 1

IA

@IA
@'a

p̃ 5Kñ0m̃bS ñ
ñ0

D G

. ~4.1b!

All quantities in Eqs. ~4.1! are in local physical units;
m̃b[1.66310224 g is a fiducial baryon mass and
ñ 0[0.1 fm23 a typical nuclear number density. We shall
use the following specific values of the polytropic param-
eters G and K:

G52.34, K50.0195, ~4.2!

which have been chosen to fit a realistic equation of state
which is neither too hard nor too soft: the equation of state II
of Ref. @12#. ~The polytropic constant K should not be con-
fused with the parameter KA

B linked to the scalar-field-
induced variation of the inertia moment.! The precise values
~4.2! were adjusted to fit the curve giving, in general relativ-
ity, the fractional binding energy f [(m 2m)/m as a func-
tion of the baryonic mass. In particular they lead to the same
maximum baryonic mass m max52.23m( in general relativ-
ity. Let us note in passing that to convert from the nuclear
fiducial quantities to more adequate astrophysical units
(m( for masses, G*m( /c2 for distances!, it is convenient to
use the numerical value

4pG*ñ0m̃b

c2 S G*m(

c2 D 25 1
296.135 . ~4.3!

For technical convenience, when comparing different theo-
ries we keep fixed G*56.6731028cm3g21s22 ~and
m(51.9931033 g, measured in g* units!. See Ref. @5# for

the factors ~differing from unity by &1023) relating
g*-frame quantities to directly observable ones.
We present in Fig. 3 some of our numerical results for the

dependence upon the baryonic mass of aA , bA , IA @in units
of m((G*m( /c2)2# and ]lnIA /]w0 . All the results of these
figures have been computed within the tensor-scalar theory
defined by the particular coupling function

A 6 ~

w

!

[exp
~

23w

2
!

. ~4.4!

This model belongs to the class of quadratic models ~2.1!,
and possesses a curvature parameter for the logarithm of the
coupling function, b5b05]

2lnA/]w0
2526. In the limit

where w0!0, this model exhibits a spontaneous scalariza-
tion above a critical baryonic mass m cr51.24m( . As ex-
plained in Sec. II, the presence of a nonzero external scalar
background w0fi0 smoothes the scalarization and leads to
continuous variations of aA ,bA , . . . as functions of m A .
For instance, instead of having a Curie-type blowup
}um A2m cru21 for the zero-external-field ‘‘susceptibility’’
bA5]aA /]w0 , we get a ‘‘resonance’’ bump in bA when
m A'm cr . There remains, however, an infinite blowup in
bA when m A reaches the maximum baryonic mass. It is easy
to see analytically that this blowup must be there. ~The same
remark applies to ]lnIA /]w0 .) For definiteness, we have
drawn Fig. 3 for the value

w05w0
max

[2.431023, ~4.5!

which is the maximum value of w0 allowed by present weak-
field tests within the model ~4.4!. This maximum value is

FIG. 3. Dependence upon the baryonic mass m A of the coupling parameters aA , bA , the inertia moment IA , and its derivative
]lnIA /]w0 . These plots correspond to the model A(w)5exp(23w2) and the maximum value of w0 allowed by solar-system experiments. As
in Fig. 1, the dotted lines correspond to unstable configurations of the star.
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ṖDipole
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General relativity Scalar-tensor gravity

GAB = G⇤(1 + ↵A↵B)

r =
G⇤mB

c3

Ṗb = ṖQ
b

�
mA,mB , {pK}

�

s5
nx
XB

@

GAB~

mA1mB!

n/c3
#

21/3, ~5.8!

where we have used the same notation as in Eqs. ~4.9! and
~5.3! above, and where x5a1s/c is the projection of the
semimajor axis (a1) of the pulsar orbit on the line of sight
~in light-seconds!.
We have plotted the three curves defined by this

(v̇ -g -s)1534112 test for various values of b and w0 . For
instance, we exhibit the case b526, w05w0solar

max in Fig. 8
~together with the case of general relativity!. From our ~par-
tial! numerical study, we conclude that the quadratic models
A

b

fail the (v̇ -g -s)1534112 test when b,25.5. The corre-
sponding exclusion plot is very similar to that defined by
PSR 1913116 ~see below!.

C. PSR 0655164 experiment

The binary pulsar PSR 0655164 is composed of a neu-
tron star of mass '1.4m( and a white dwarf companion of
mass '0.8m( . They move around each other on a nearly
circular orbit in a period of about 1 day. In tensor-scalar
gravity, such a dissymmetrical system is a powerful emitter
of dipolar scalar waves, especially in the presence of nonper-
turbative scalar effects. The theoretical prediction @5# for the
corresponding orbital period decay is dominated by the
O(v3/c3) dipole contribution in Eq. ~5.4! above:

Ṗb
th
~

mA ,mB!

' Ṗ
w

dipole52
2pG*mAmBn
~

mA1mB!

c3
11e2/2

~

12e2
!

5/2

3
~

aA2aB!

21OS v5

c5 D . ~5.9!

The fact that the observed value of Ṗb in PSR 0655164 is
very small ~and, in fact, consistent with zero! constrains very
much the magnitude of the effective coupling strength aA ,
and therefore the possibility of nonperturbative effects. The
experimental data we need for our analysis are taken from
Ref. @23#:

Pb588 877.061 94~4 !

s, ~5.10a!

e,331025, ~5.10b!

x[

~

a1sini !/c54.125 60
~

2
!

s, ~5.10c!

Ṗb5~

164
!

310213. ~5.10d!

The masses of the pulsar and its companion are not known
independently. From the observed mass function, the a priori
statistics of the inclination angle i , and the observed small
statistical spread of neutron star masses around 1.35m( , one
can deduce a range of probable values for the pair
(mA ,mB): Essentially, one is limited to a subregion of the
rectangle mA5(1.3560.05)m( , mB5(0.860.1)m( in the
mass plane16 @23#. In our calculations, we will choose the
mass pair which gives the most conservative bounds on
tensor-scalar gravity, namely, mA51.30m( , mB50.7m( .
Finally, using the fact that the self-gravity of the white

dwarf companion is negligible compared to that of the pulsar
~so that aB'a0), we get from Eqs. ~5.9! and ~5.10! the 1s
level constraint

@

aA~

mA!

2a0#
2,331024. ~5.11!

D. Exclusion plots within a generic two-dimensional plane
of tensor-scalar theories

It is instructive to contrast the pulsar constraints on
tensor-scalar gravity with the constraints obtained from
solar-system experiments. We can use the class of quadratic
models ~2.1! as a generic description of the shape of the
coupling function around the current cosmological value of
w . In other words, we can parametrize an interesting class of
tensor-scalar models by two parameters:17 say, a0[a(w0)
and b0[]a(w0)/]w0 . ~In quadratic models, a05bw0 , and
b05b is field independent.! We can then interpret all experi-
mental data ~solar-system and pulsar ones! as constraints in
the two-dimensional theory plane (a0 ,b0). For instance, ne-
glecting the correlations in the measurements of the two Ed-
dington parameters gEdd and bEdd , solar-system data rule out
the regions of the (a0 ,b0) plane where the inequalities
ugEdd21u,231023

~i.e., a0
2,1023) @8# and

ubEdd21u,631024
~i.e., ub0ua0

2,1.231023) @19# are not

16We use here the fact that the scalar modifications to the link
between the observed mass function n2(a1sini)3 and the Einstein
masses mA , mB due to the factor GAB /G511aAaB are small
because aB'a0 for the white dwarf companion.
17This two-parameter class of models is representative of the large
class of coupling functions A(w) which admit a local minimum and
contain no large dimensionless parameters @i.e., we assume that
higher derivatives b08[]b(w0)/]w0 , b09[]b8(w0)/]w0 are of or-
der unity#.

FIG. 8. The (v̇ -g -s)1534112 test for general relativity ~GR! and
for the quadratic model A(w)5exp(23w2) ~i.e., b526) when
w0 takes the maximum value allowed by solar-system experiments.
The widths of the strips correspond to 1s standard deviations. The
arrow indicates the intersection of the three strips in general rela-
tivity. In the model b526, the three strips do not intersect.
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21/3, ~5.8!

where we have used the same notation as in Eqs. ~4.9! and
~5.3! above, and where x5a1s/c is the projection of the
semimajor axis (a1) of the pulsar orbit on the line of sight
~in light-seconds!.
We have plotted the three curves defined by this

(v̇ -g -s)1534112 test for various values of b and w0 . For
instance, we exhibit the case b526, w05w0solar

max in Fig. 8
~together with the case of general relativity!. From our ~par-
tial! numerical study, we conclude that the quadratic models
A

b

fail the (v̇ -g -s)1534112 test when b,25.5. The corre-
sponding exclusion plot is very similar to that defined by
PSR 1913116 ~see below!.

C. PSR 0655164 experiment

The binary pulsar PSR 0655164 is composed of a neu-
tron star of mass '1.4m( and a white dwarf companion of
mass '0.8m( . They move around each other on a nearly
circular orbit in a period of about 1 day. In tensor-scalar
gravity, such a dissymmetrical system is a powerful emitter
of dipolar scalar waves, especially in the presence of nonper-
turbative scalar effects. The theoretical prediction @5# for the
corresponding orbital period decay is dominated by the
O(v3/c3) dipole contribution in Eq. ~5.4! above:
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~
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w

dipole52
2pG*mAmBn
~

mA1mB!
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21OS v5

c5 D . ~5.9!

The fact that the observed value of Ṗb in PSR 0655164 is
very small ~and, in fact, consistent with zero! constrains very
much the magnitude of the effective coupling strength aA ,
and therefore the possibility of nonperturbative effects. The
experimental data we need for our analysis are taken from
Ref. @23#:
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The masses of the pulsar and its companion are not known
independently. From the observed mass function, the a priori
statistics of the inclination angle i , and the observed small
statistical spread of neutron star masses around 1.35m( , one
can deduce a range of probable values for the pair
(mA ,mB): Essentially, one is limited to a subregion of the
rectangle mA5(1.3560.05)m( , mB5(0.860.1)m( in the
mass plane16 @23#. In our calculations, we will choose the
mass pair which gives the most conservative bounds on
tensor-scalar gravity, namely, mA51.30m( , mB50.7m( .
Finally, using the fact that the self-gravity of the white

dwarf companion is negligible compared to that of the pulsar
~so that aB'a0), we get from Eqs. ~5.9! and ~5.10! the 1s
level constraint

@

aA~

mA!

2a0#
2,331024. ~5.11!

D. Exclusion plots within a generic two-dimensional plane
of tensor-scalar theories

It is instructive to contrast the pulsar constraints on
tensor-scalar gravity with the constraints obtained from
solar-system experiments. We can use the class of quadratic
models ~2.1! as a generic description of the shape of the
coupling function around the current cosmological value of
w . In other words, we can parametrize an interesting class of
tensor-scalar models by two parameters:17 say, a0[a(w0)
and b0[]a(w0)/]w0 . ~In quadratic models, a05bw0 , and
b05b is field independent.! We can then interpret all experi-
mental data ~solar-system and pulsar ones! as constraints in
the two-dimensional theory plane (a0 ,b0). For instance, ne-
glecting the correlations in the measurements of the two Ed-
dington parameters gEdd and bEdd , solar-system data rule out
the regions of the (a0 ,b0) plane where the inequalities
ugEdd21u,231023

~i.e., a0
2,1023) @8# and

ubEdd21u,631024
~i.e., ub0ua0

2,1.231023) @19# are not

16We use here the fact that the scalar modifications to the link
between the observed mass function n2(a1sini)3 and the Einstein
masses mA , mB due to the factor GAB /G511aAaB are small
because aB'a0 for the white dwarf companion.
17This two-parameter class of models is representative of the large
class of coupling functions A(w) which admit a local minimum and
contain no large dimensionless parameters @i.e., we assume that
higher derivatives b08[]b(w0)/]w0 , b09[]b8(w0)/]w0 are of or-
der unity#.

FIG. 8. The (v̇ -g -s)1534112 test for general relativity ~GR! and
for the quadratic model A(w)5exp(23w2) ~i.e., b526) when
w0 takes the maximum value allowed by solar-system experiments.
The widths of the strips correspond to 1s standard deviations. The
arrow indicates the intersection of the three strips in general rela-
tivity. In the model b526, the three strips do not intersect.
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b + ṖQ,g⇤

b

r =
GmB

c3

!̇ = nk =
3n

1� e2

✓
GMn

c3

◆2/3

s = xn

✓
GMn

c

3

◆�1/3

X

�1
B

�E =
e

n

✓
GMn

c3

◆2/3

XB(XB + 1)

s = xn

✓
GABMn

c

3

◆�1/3

X

�1
B

!̇ =
3n

1� e2

✓
GABMn

c3

◆2/3 1� 1
3↵A↵B

1 + ↵A↵B
� XA↵2

A�B +XB↵2
B�A

6(1 + ↵A↵B)

�

n = 2⇡/Pb, M = mA +mB , XA = mA/M, XB = mB/M = 1�XA

�E =
e

n

✓
GABMn

c3

◆2/3 XB(XB + 1 +XB↵A↵B + ↵BkA)

1 + ↵A↵B



  Norbert Wex / 2016-Jul-19 / Caltech

Constraining scalar-tensor gravity
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allowed region

GR: ↵0 = �0 = 0

Jordan-Fierz-Brans-Dicke: �0 = 0
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Triple system pulsar and the violation of SEP
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[ Ransom et al., 2014 ] 

PSR J0337+1715:  P = 2.7 ms, MPSR = 1.44 M⊙ 
Inner orbit:  1.6 d,  MWD = 0.20 M⊙ 
Outer orbit: 327 d,  MWD = 0.41 M⊙
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Triple system pulsar and the violation of SEP
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[ Ransom et al., 2014 ] 

PSR J0337+1715:  P = 2.7 ms, MPSR = 1.44 M⊙ 
Inner orbit:  1.6 d,  MWD = 0.20 M⊙ 
Outer orbit: 327 d,  MWD = 0.41 M⊙
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Three-body system in scalar-tensor gravity
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[	  see	  e.g.	  Damour	  2009	  (SIGRAV	  lecture)	  ]

—>	  ViolaPon	  of	  the	  universality	  of	  free	  fall	  for	  self-‐gravitaPng	  bodies

GAB = G⇤(1 + ↵A↵B)EffecPve	  gravitaPonal	  constant:	  

A

B

C

G
⇤ (1 +

↵
A↵

C )G⇤(1 + ↵B↵C )

J0337+1715	  (pulsar	  in	  the	  triple	  system)

GAC = G⇤(1 + ↵0↵p)

GBC = G⇤(1 + ↵2
0)

GAC

GBC
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Expected limits on scalar-tensor gravity from PSR J0337+1715
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allowed region


