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Things we can use to test screening

Neutron stars Dwarf stars

Cepheid stars Rotation curves

Clusters



Aim of the talk

“This will be a small meeting with a very tight 
focus on a single problem -- how to effectively 
combine GR constraints on small (solar system/
pulsar/BH/GW) and large (cosmological) scales.”

-Phil Bull

We can do this for beyond Horndeski theories!!!!!



Screened

Unscreened

(�PPN = 1)



Vainshtein breaking - Newtonian 
potential
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Rule of thumb - works well for stars 
(not true in strong field regime)

⌥1 < 0

⌥1 > 0

— gravity stronger than GR

— gravity weaker than GR!



“Effective field theory”

5 functions that control linear cosmology

NR systems probe combinations of three of them:
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kinetic braiding

“beyond Horndeski”

speed of tensors



Completeness: second parameter 
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Won’t talk about this here Lensing



Stellar structure tests
Main idea:

• Stars burn fuel to stave off gravitational collapse 

• Changing gravity changes the burning rate 

• This alters the temperature, luminosity and lifetime



Gravity only effects the hydrostatic 
equilibrium equation
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Vainshtein stars

Gravity weaker

Slower burning rate

Dimmer and cooler stars that live longer



Vainshtein stars

Gravity stronger

Faster burning rate

Hotter and brighter stars that die faster



Polytropic stars

P = K⇢
n+1
n

polytropic index

• n = 3 - main sequence, white dwarfs 

• n = 1.5 - convective stars, high mass brown dwarfs 

• n = 1 - low mass brown dwarfs
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Dwarf stars - a new test of gravity

Red dwarf



Dwarf stars - a new test of gravity

Perfect tests:

• Chemically and structurally homogeneous 

• Equation of state is well-known 

• Polytropic models are good approximations 

• Lots of interest in low mass objects (GAIA, KEPLER)



Low mass M-R

n = 1
Brown dwarf

n = 1.5
Red dwarf

MMHB



Brown dwarfs — the radius plateau
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Theory of gravity

Constant/non-gravitational physics



Brown dwarfs — the radius plateau
JS 2015
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Gravity weaker

Core cooler and less dense at fixed mass

Higher MMHB

Red dwarfs — MMHB
Hydrogen burning when core is hot and dense enough



Red dwarfs — MMHB

LHB = Le↵

Stable burning when production balances loss

+ theory of gravity n = 1.5Proton burning

:

MMMHB = 0.08
�(⌥1)

�(⌥1 = 0)
M�



JS, PRL 2015



New constraint
Lowest mass star is Gl 886 C

M = 0.0930± 0.0008M�

) ⌥1 < 0.027



Neutron Stars

Babichev, Koyama, Langlois, Saito & JS 2016 

• Answer technical questions (e.g. asymptotics) 

• Not great probes of MG (EOS uncertainty)? 

• Need to check they exist 

• Correct precession of Mercury (�PPN = 1)



Polytropic model:           P = K⇢2



Realistic EOS (SLy4)

Highest mass NS



Realistic EOS (BSK20)



Extreme parameters



Summary - testing beyond 
Horndeski using stars

• Beyond Horndeski unscreened inside objects 

• Parameter      connects directly to Cosmology (EFT) 

• Radius of brown dwarfs is a new potential probe 

• MMHB constrains 

• NS can probe 

⌥

⌥ < 0.027

⌥ < 0
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