Detecting Chameleons with Atom Interferometry

Clare Burrage University of Nottingham <u>Clare.Burrage@nottingham.ac.uk</u>

Outline:

Chameleon screening Atom interferometry New constraints on chameleons The Chameleon - Varying Mass The mass of the chameleon changes with the environment Field is governed by an effective potential

Low density

High density

Warning: Non-renormalisible theory, no protection from quantum corrections (But see <u>arXiv:1604.06051</u>)

Khoury, Weltman. (2004). Image credit: Nanosanchez

The Scalar Potential

$$\phi = \phi_{\rm bg} - \lambda_A \frac{1}{4\pi R_A} \frac{M_A}{M} \frac{R_A}{r} e^{-m_{\rm bg}r}$$

$$\lambda_{A} = \begin{cases} 1 , & \rho_{A} R_{A}^{2} < 3M\phi_{\rm bg} \\ 1 - \frac{S^{3}}{R_{A}^{3}} \approx 4\pi R_{A} \frac{M}{M_{A}} \phi_{\rm bg} , & \rho_{A} R_{A}^{2} > 3M\phi_{\rm bg} \end{cases}$$

This determines how responsive an object is to the chameleon field

When m_{bg}r is small the ratio of the acceleration of a test particle due to the chameleon and gravity is:

$$\frac{a_{\phi}}{a_N} = \frac{\partial_r \phi}{M} \frac{r^2}{GM_A} = 3\lambda_A \left(\frac{M_P}{M}\right)^2$$

Why Atom Interferometry?

In a spherical vacuum chamber, radius 10 cm, pressure 10⁻¹⁰ Torr

Atoms are unscreened above black lines (dashed = caesium, dotted = lithium)

CB, Copeland, Hinds. (2015)

What is Atom Interferometry?

An interferometer where the wave is made of atoms

Atoms can be moved around by absorption of laser photons

Photon Momentum = k Atom in ground state

Atom in excited state with velocity = V

An Atom Interferometer

Probability measured in excited state at output

$$P = \cos^2\left(\frac{kaT^2}{2}\right)$$

Atom Interferometry for Chameleons

The walls of the vacuum chamber screen out any external chameleon forces

Macroscopic spherical mass (blue), produces chameleon potential felt by cloud of atoms (red)

Proposed Sensitivity

Systematics: Stark effect, Zeeman effect, phase shifts due to scattered light, movement of beams

All negligible at 10⁻⁶ g sensitivity (solid black line)

Controllable down to 10⁻⁹g (dashed white line)

CB, Copeland, Hinds. (2015)

For numerical estimates see: Schlögel, Clesse, Füzfa (2015). Elder et al. (2016).

Berkley Experiment

Using an existing set up with an optical cavity The cavity provides power enhancement, spatial filtering, and a precise beam geometry

Hamilton et al. (2015)

Berkley Experiment

See also: Neutron interferometry experiments: Lemmel et al. 2015 Optically levitated microspheres: Rider et al. 2016

Combined Constraints

Symmetron Constraints

$$V_{\rm eff}(\phi) = \frac{1}{2} \left(\frac{\rho}{M^2} - \mu^2\right) \phi^2 + \frac{1}{4}\lambda\phi^4$$

CB, Kuribayashi-Coleman, Thrussell (to appear)

Imperial Experiment

Development underway at the Centre for Cold Matter, Imperial College

Experiment rotated by 90 degrees from the Berkeley experiment, so that no sensitivity to Earth's gravity

Summary

Screening mechanisms hide dark energy from standard searches for fifth forces

- Can still be detected in suitably designed experiments
- Atom interferometry a particularly powerful technique

Prospects for ruling out chameleon dark energy within a few years

Shape dependence of the screening mechanism could lead to important enhancements in sensitivity