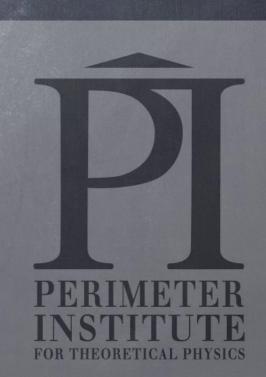

Unifying Tests of GR Burke Institute/Caltech July 21, 2016

Niayesh Afshordi

UNIVERSITY OF WATERLOO FACULTY OF SCIENCE Department of Physics & Astronomy


Unifying Tests of GR Burke Institute/Caltech July 21, 2016

C.F. US EVIL. (i.e. very boring)

Niayesh Afshordi

UNIVERSITY OF WATERLOO FACULTY OF SCIENCE Department of Physics & Astronomy

Oulline

Why E.F.T. is Evil What E.F.T. is good for: @ Neutron Stars and CC problem @ Dark Energy, Black Holes, and LIGO @ Pulsar Timing and Vacuum Gravity

Oulline

Why E.F.T. is Evil

- What E.F.T. is good for:
 - @ Neutron Stars and CC problem
 - @ Dark Energy, Black Holes, and LIGO
 - @ Pulsar Timing and Vacuum Gravity

Cosmological Constant problem(s)

Cosmological Constant problem(s)

@ BH Information Paradox, a.k.a. Firewalls

Cosmological Constant problem(s)

@ BH Information Paradox, a.k.a. Firewalls

Quantum Gravity is non-local (light-cone not defined)

Cosmological Constant problem(s)

- @ BH Information Paradox, a.k.a. Firewalls
- Quantum Gravity is non-local (light-cone not defined)
- o no decoupling thm in QG: e⁻e⁺ have opposite electric charge, same gravitational charge

Cosmological Constant problem(s)

- @ BH Information Paradox, a.k.a. Firewalls
- Quantum Gravity is non-local (light-cone not defined)
- no decoupling thm in QG: e⁻e⁺ have opposite electric charge, same gravitational charge
- @ EFT is boring! Think outside the Box!

Cosmological Constant (CC) Problem

o General Relativity

energy/momentum

 $G_{\mu\nu}(x) = \kappa \ T_{\mu\nu}(x)$

curvature

@ Quantum Mechanics (Standard Model)

 $\langle T_{\mu\nu}(x) \rangle_{\rm SM} \sim \pm 10^{45} \, {\rm eV}^4 \times g_{\mu\nu}$

@ Real World!

 $\kappa^{-1} \langle G_{\mu\nu}(x) \rangle_{\text{cosm.}} \sim 10^{-12} \text{ eV}^4 \times g_{\mu\nu}$

Oulline

- Why E.F.T. is Evil
- What E.F.T. is good for:

@ Neutron Stars and CC problem

Dark Energy, Black Holes, and LIGO
Pulsar Timing and Vacuum Gravity

Gravitational Aether proposal (c.f. unimodular gravity)

• Let us propose (*NA 2008*):

$$(8\pi G')^{-1}G_{\mu\nu} = T_{\mu\nu} - \frac{1}{4}T^{\alpha}_{\alpha}g_{\mu\nu} + \dots$$

• The metric is now blind to vacuum energy

$$T_{\mu\nu} = \rho_{\rm vac} g_{\mu\nu} + \text{excitations}$$

• In order to satisfy Bianchi identity:

$$(8\pi G')^{-1}G_{\mu\nu} = T_{\mu\nu} - \frac{1}{4}T^{\alpha}_{\alpha}g_{\mu\nu} + T'_{\mu\nu}, \quad T'^{\mu}_{\nu;\mu} = \frac{1}{4}T^{\alpha}_{\alpha,\nu}$$

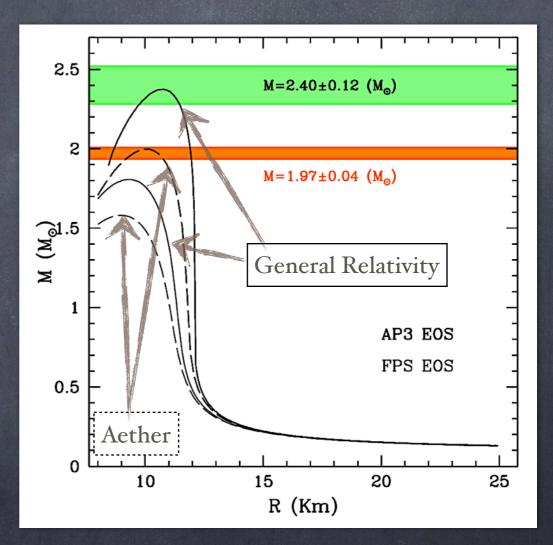
• Further assume an *incompressible* fluid (or *gravitational aether*)

$$T'_{\mu\nu} = p'(u'_{\mu}u'_{\nu} - g_{\mu\nu})$$

**Disclaimer: The field equations do not follow from an Action principle

Deviations from GR sourced by Pressure

(Kamiab & NA, 2011) (Aslanbeigi, Robbers, Foster, Kohri & NA, 2011) (Narimani, NA & Scott, 2014)


@ Neutron Star Structure (e.g. alIGO)

Cosmology (CMB, Big Bang
 Nucleosynthesis)

@ Vacuum gravity identical to GR**

neutron stars and aether

- Aether decreases the maximum mass (effectively softens EOS), so discovery of very massive Neutron Stars can rule it out
- Oucertainty in nuclear E.O.S. 8
- Can test with Gravitational Wave
 detection from NS-NS mergers
- o Strong Gravity Simulations?

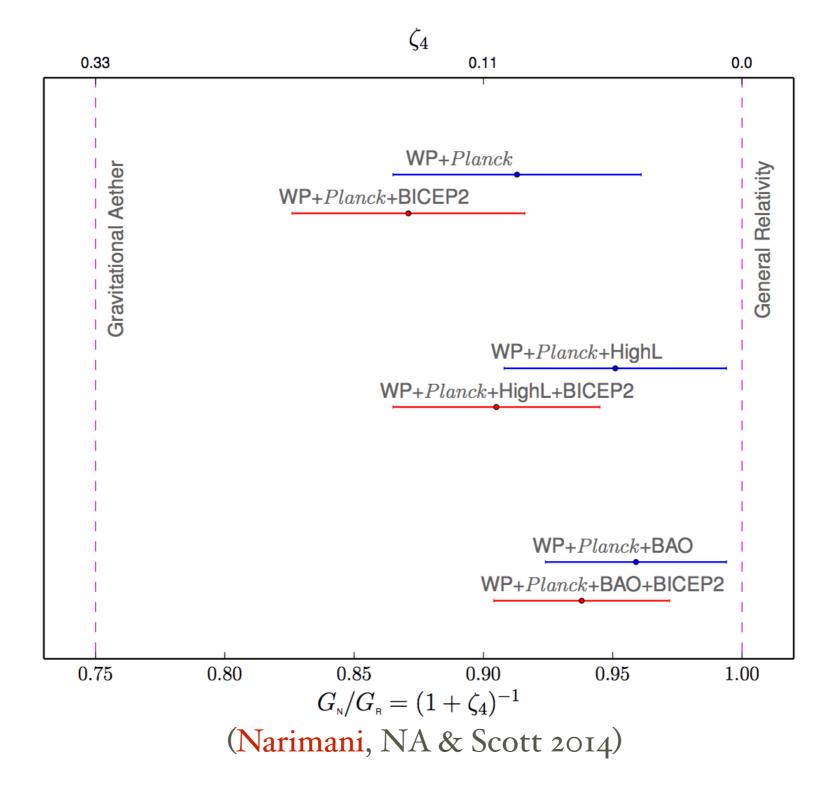
Kamiab & NA 2011

Einstein was right!**

Tests of equivalence principle

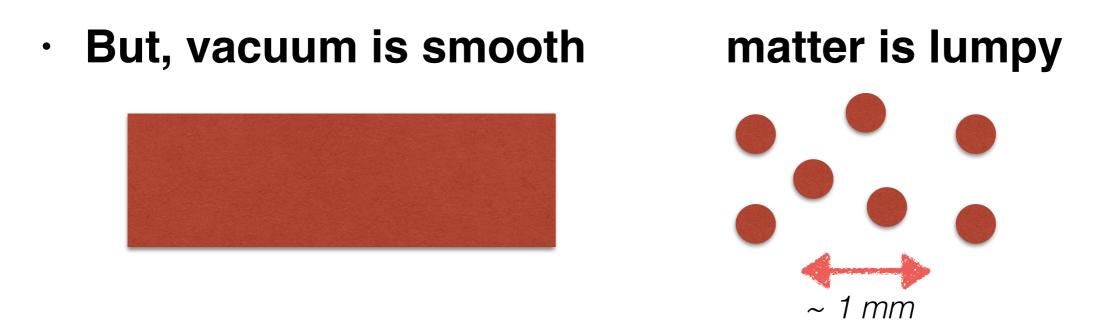
Year	Investigator	Sensitivity	Method
500?	Philoponus ^[12]	"small"	Drop Tower
1585	Stevin [13]	5×10 ⁻²	Drop Tower
1590?	Galileo ^[14]	2×10 ⁻²	Pendulum, Drop Tower
1686	Newton ^[15]	10 ⁻³	Pendulum
1832	Bessel [16]	2×10 ⁻⁵	Pendulum
1910	Southerns [17]	5×10 ⁻⁶	Pendulum
1918	Zeeman ^[18]	3×10 ⁻⁸	Torsion Balance
1922	Eötvös ^[19]	5×10 ⁻⁹	Torsion Balance
1923	Potter ^[20]	3×10 ⁻⁶	Pendulum
1935	Renner [21]	2×10 ⁻⁹	Torsion Balance
1964	Dicke,Roll,Krotkov [22]	3x10 ⁻¹¹	Torsion Balance
1972	Braginsky,Panov ^[23]	10 ⁻¹²	Torsion Balance
1976	Shapiro, et al. ^[24]	10 ⁻¹²	Lunar Laser Ranging
1981	Keiser,Faller ^[25]	4×10 ⁻¹¹	Fluid Support
1987	Niebauer, et al. ^[26]	10 ⁻¹⁰	Drop Tower
1989	Heckel, et al. ^[27]	10 ⁻¹¹	Torsion Balance
1990	Adelberger, et al. ^[28]	10 ⁻¹²	Torsion Balance
1999	Baessler, et al. ^[29]	5x10 ⁻¹⁴	Torsion Balance
cancelled?	MiniSTEP &	10 ⁻¹⁷	Earth Orbit
2015?	MICROSCOPE @	10 ⁻¹⁶	Earth Orbit
2015?	Reasenberg/SR-POEM & ^{[3}	^{0]} 2×10 ⁻¹⁷	vacuum free fall

Tests of strong gravity (Parametrized Post Newtonian)


Bounds on the PPN parameters Will (2006)

Bound	Effects	Experiment
2.3 x 10 ⁻⁵	Time delay, Light deflection	Cassini tracking
2.3×10^{-4}	Nordtvedt effect, Perihelion shift	Nordtvedt effect
0.001	Earth tides	Gravimeter data
10 - 4	Orbit polarization	Lunar laser ranging
4 x 10 ⁻⁷	Spin precession	Sun axis' alignment with ecliptic
4×10^{-20}	Self-acceleration	Pulsar spin-down statistics
0.02	-	Combined PPN bounds
4 x 10 ⁻⁵ †	Binary pulsar acceleration	PSR 1913+16
10 - 8	Newton's 3rd law	Lunar acceleration
0.006‡	-	Kreuzer experiment
	2.3×10^{-5} 2.3×10^{-4} 0.001 10^{-4} 4×10^{-7} 4×10^{-20} 0.02 4×10^{-5} 10^{-8}	2.3×10^{-5} Time delay, Light deflection 2.3×10^{-4} Nordtvedt effect, Perihelion shift 0.001 Earth tides 10^{-4} Orbit polarization 4×10^{-7} Spin precession 4×10^{-20} Self-acceleration 0.02 - 4×10^{-5} Binary pulsar acceleration 10^{-8} Newton's 3rd law

+ Will, C.M. Journal of the second of the s


 \ddagger Based on $6\zeta_4 = 3\alpha_3 + 2\zeta_1 - 3\zeta_3$ from Will (1976, 2006). It is theoretically possible for an alternative model of gravity to bypass this bound, in which case the bound is $|\zeta_4| < 0.4$ from Ni (1972).

How does pressure gravitate?

What now?

• Original Gravitational Aether proposal (NA 2008) is ruled out at 3-4 σ (still better than 10⁶⁰-10¹²⁰ σ !)

- Does that make a difference?
- The theory *must* have a cut-off/coarse-graining scale

Oulline

- Why E.F.T. is Evil
 What E.F.T. is good for:
 Neutron Stars and CC problem
 - @ Dark Energy, Black Holes, and LIGO

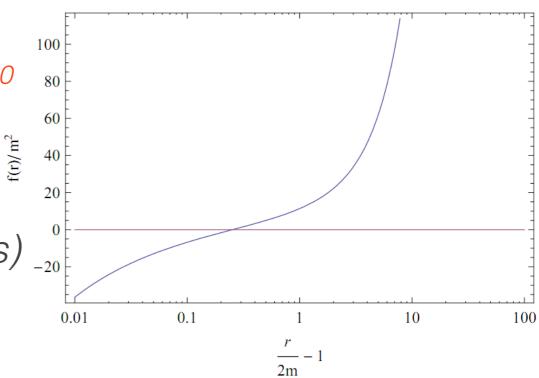
@ Pulsar Timing and Vacuum Gravity

aether and black holes

• We can solve for the black hole spacetime in this theory $(1 - 1)^{-1}$

$$ds^{2} = \left(1 - \frac{2m}{r}\right) \left[1 + 4\pi p_{0} f(r)\right]^{2} dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$

- p_0 is the aether pressure at infinity
- *f*(*r*): analytic function of *r* diverging at $r \approx 2m \& r \rightarrow \infty$
- \rightarrow UV-IR coupling thru aether pressure, p_0
- ► Finite redshift at r=2m
- **No Horizon** (similar to Fuzzball models)


$$\begin{split} f(r) &= \frac{1}{2} \left(1 - \frac{2m}{r} \right)^{-1/2} \left(-30m^2 + 5mr + r^2 \right) \\ &+ \frac{15}{2} m^2 \ln \left[\frac{r}{m} - 1 + \frac{r}{m} \left(1 - \frac{2m}{r} \right)^{1/2} \right], \end{split}$$

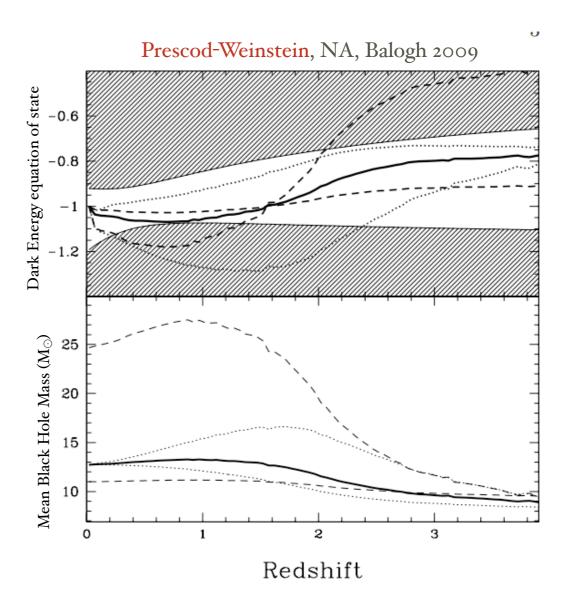
aether and black holes

• We can solve for the black hole spacetime in this theory $(2m)^{-1}$

$$ds^{2} = \left(1 - \frac{2m}{r}\right) \left[1 + 4\pi p_{0} f(r)\right]^{2} dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$

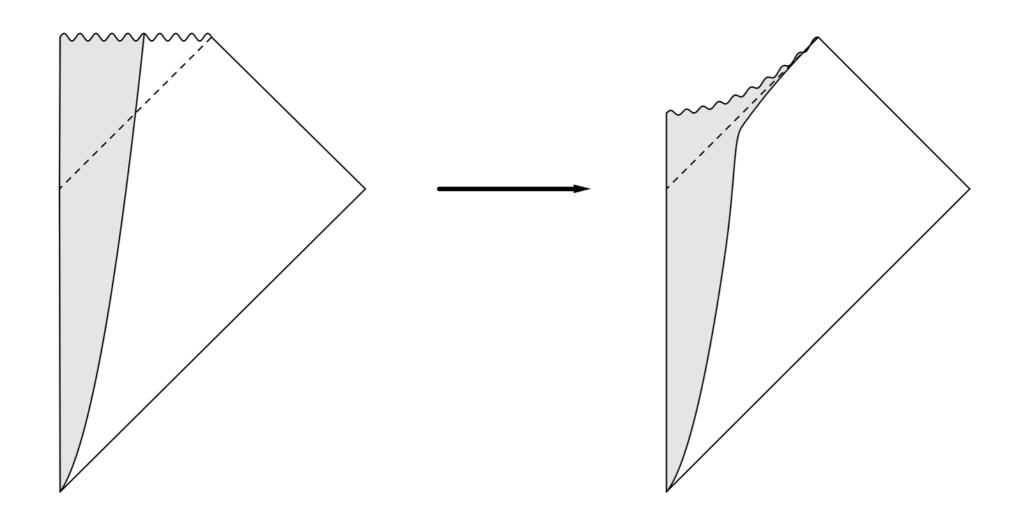
- p_0 is the aether pressure at infinity
- f(r): analytic function of r diverging at $r \approx 2m \& r \rightarrow \infty$
- \rightarrow UV-IR coupling thru aether pressure, p_0
- ► Finite redshift at r=2m
- \blacktriangleright No Horizon (similar to Fuzzball models) $_{_{-20}}^{\circ}$

... and dark energy!

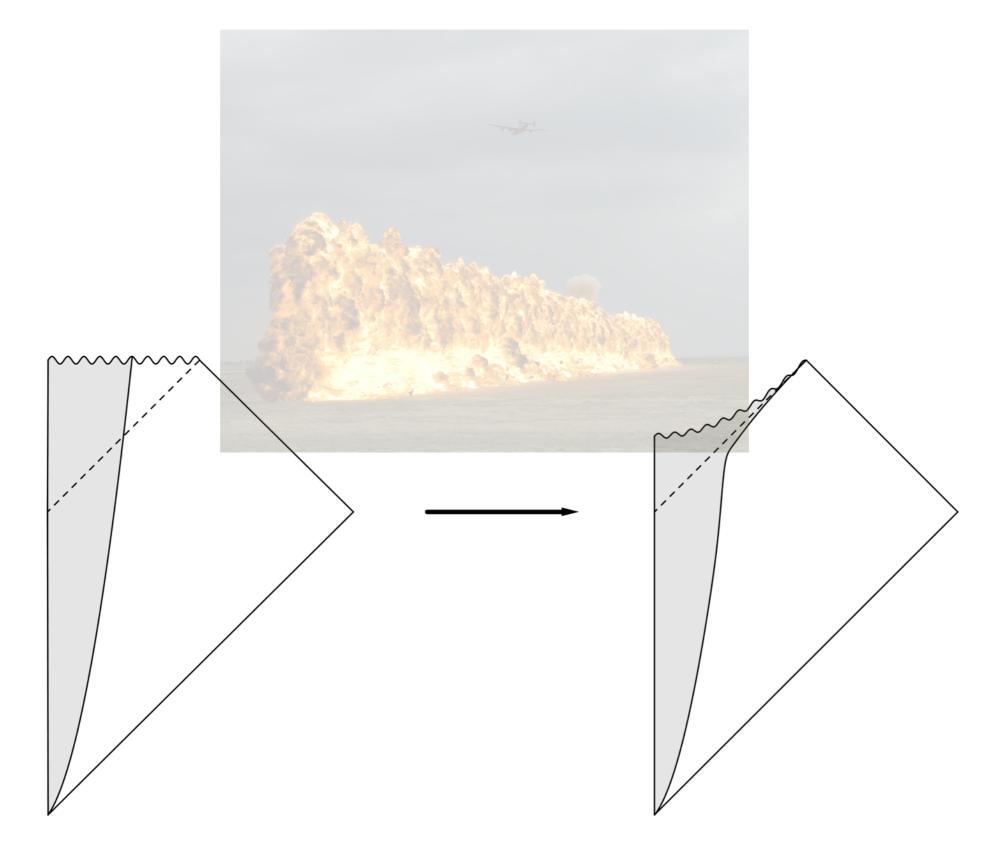

• Assume:

 $1 + z_{\max} \sim \frac{\text{Planck temperature}}{\text{Hawking temperature}}$

• then we get


$$p_0 = -\frac{1}{256\pi^2 m^3} \simeq \left(\frac{m}{74 \ M_{\odot}}\right)^{-3} p_{\rm DE,obs}!!$$

- *Pressure* has the same sign and magnitude as *Dark Energy* for stellar mass black holes!
- Conjecture: Formation of stellar black holes causes cosmic acceleration
- Conjecture: Evolution of Astrophysical black holes leads to dynamical Dark Energy


why EFT fails at "horizon"

- Information paradox: unitary black hole evaporation, not consistent with <u>local physics</u> +<u>smooth horizon</u> (*Hawking ... AMPS 2013*)
- **Quantum Tunnelling:** $exp(-S_E)x exp(entropy) \sim 1$
- Fuzzballs: Classical horizon-less spacetimes, that account for BH entropy (Mathur; Saravani, NA, Mann 2015)
- **Dark Energy:** pressure eq. with stellar BH firewalls, \rightarrow scale of dark energy (*Presocd-Weinstein*, NA, Balogh 2009)

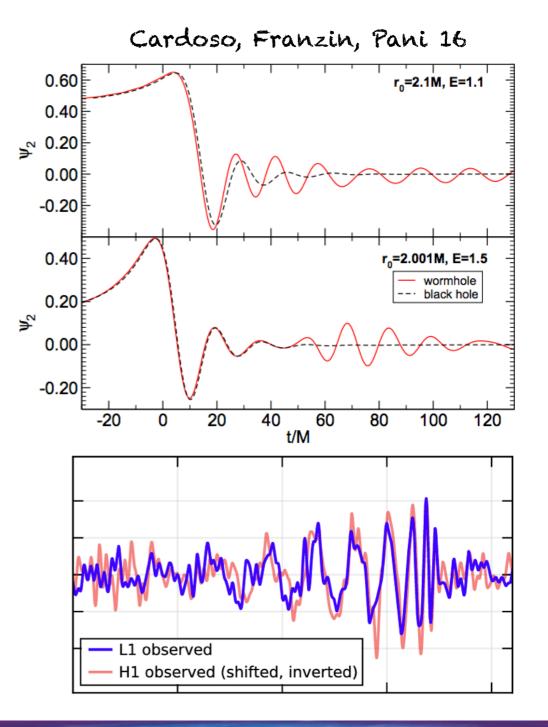
How to form a Black Hole

How to form a Firewall?!

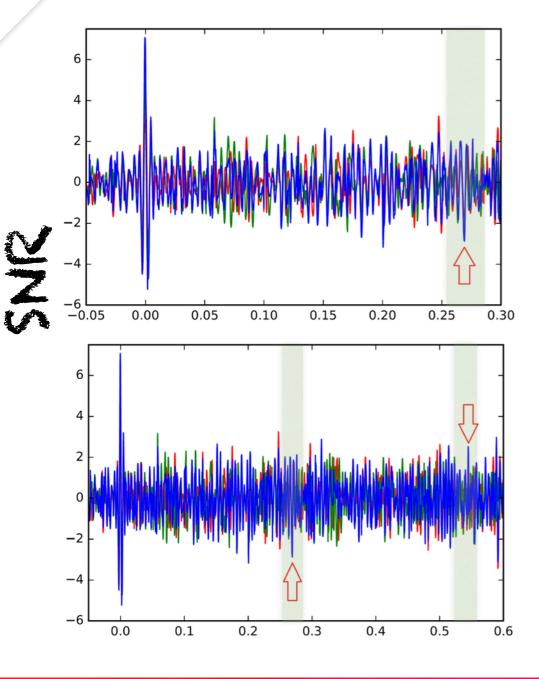
How to form a Black Hole

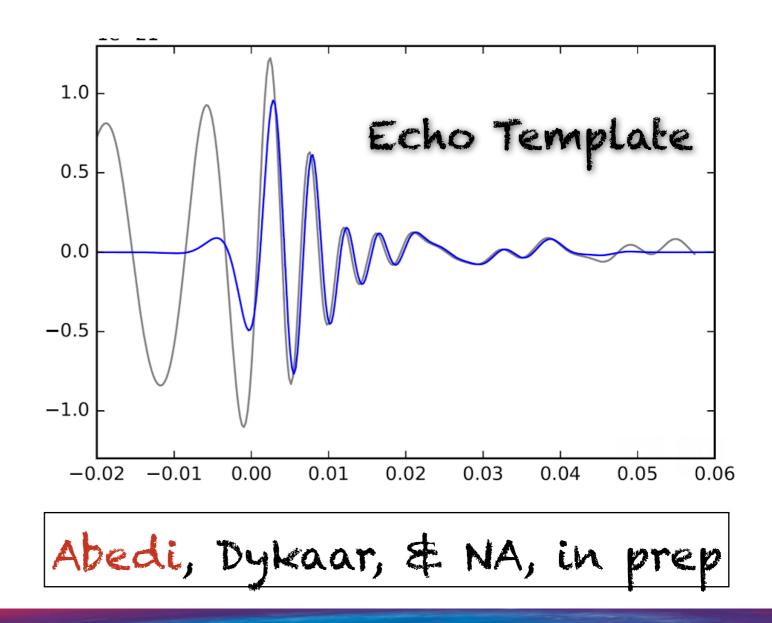
How to form a Firewall?!

Echoes from the Abyss!

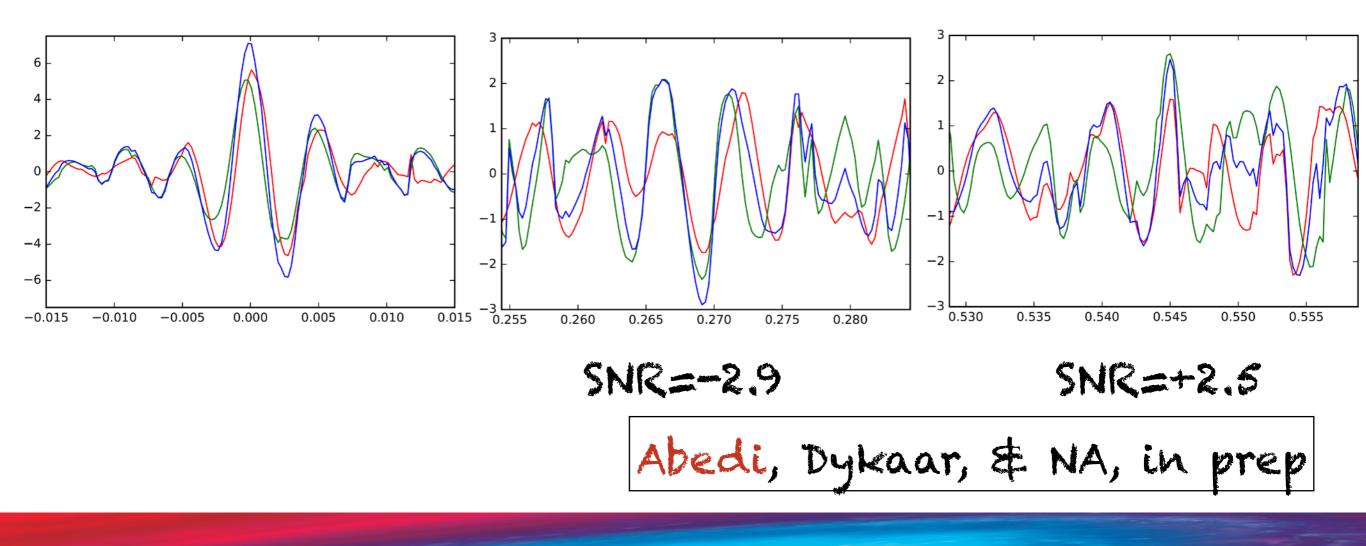

 Late echoes from Planckian structure near horizon

$$\Delta t \simeq 8M_{BH} \log\left(\frac{M_{BH}}{M_P}\right) \simeq 0.22 \, \mathrm{sec}$$


 Including the the spindependence


 $\Delta t \simeq 0.25 - 0.28 \text{ sec}$

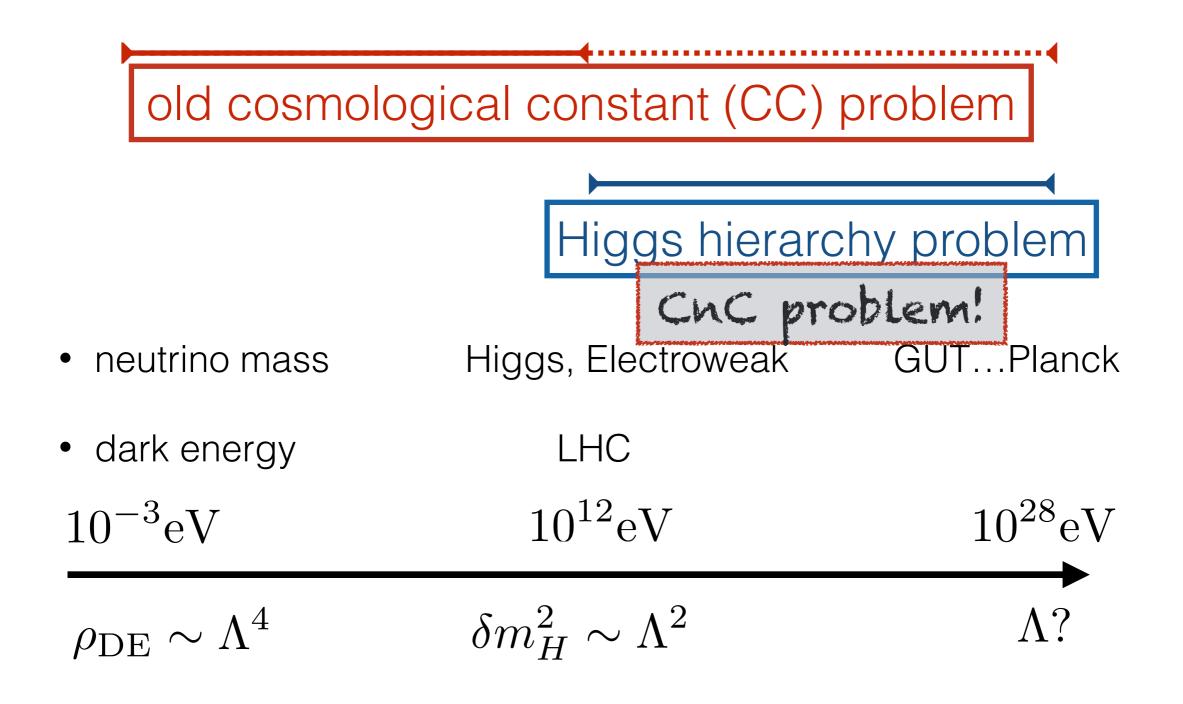
• for **GW150914**


Echoes from the Abyss!

Echoes from the Abyss!

chance probability < 6 x 10^{-4} or 3.4σ

Oulline


Why E.F.T. is Evil What E.F.T. is good for: @ Neutron Stars and CC problem @ Dark Energy, Black Holes, and LIGO @ Pulsar Timing and Vacuum Gravity

Oulline

Why E.F.T. is Evil What E.F.T. is good for: @ Neutron Stars and CC problem @ Dark Energy, Black Holes, and LIGO @ Pulsar Timing and Vacuum Gravity

with Elliot Nelson, Phys. Rev. D 93, 083505, and in prep.

HEP Hierarchy problem(s)

Punchline.

- · Gravity is different! Observables non-local
- UV physics -> IR noise in geometry
- \odot No new scale in QFT+GR \gtrsim TeV!
- -> High scale SUSY, GUT, (almost all) Inflation models
- → TeV-scale QG, Large Extra Dimensions

→ Strongly coupled UV completion (technicolor?, bootstrap?, Conformal Higgs?)

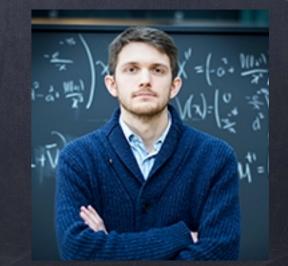
@ Quantum Fluctuations do fluctuate!

 $\langle T_{\mu\nu}T_{\alpha\beta}\rangle \neq \langle T_{\mu\nu}\rangle\langle T_{\alpha\beta}\rangle$

@ Quantum Fluctuations do fluctuate!

$\langle T_{\mu\nu}T_{\alpha\beta}\rangle \neq \langle T_{\mu\nu}\rangle\langle T_{\alpha\beta}\rangle$

What is the analog of CC for the covariance of stress fluctuations?


@ Quantum Fluctuations do fluctuate!

$\langle T_{\mu\nu}T_{\alpha\beta}\rangle \neq \langle T_{\mu\nu}\rangle\langle T_{\alpha\beta}\rangle$

What is the analog of CC for the covariance of stress fluctuations?

Can these fluctuations have an observable gravitational signature on large scales?

with Elliot Nelson, Phys. Rev. D 93, 083505

 Random stress fluctuations at UV scale Λ

 $\langle T_{ij}^{(V)}(\mathbf{x})T_{kl}^{(V)}(\mathbf{y})\rangle\sim \delta^3(\mathbf{x}-\mathbf{y})\Lambda^5$

 Random stress fluctuations at UV scale Λ

$$\langle T_{ij}^{(V)}(\mathbf{x})T_{kl}^{(V)}(\mathbf{y})\rangle \sim \delta^3(\mathbf{x}-\mathbf{y})\Lambda^5$$

• Einstein eq. for anisotropic stress

 $k^2\Phi\sim M_{\rm p}^{-2}A^{ij}T_{ij}$

- Random stress fluctuations at UV scale Λ
- $\langle T_{ij}^{(V)}(\mathbf{x}) T_{kl}^{(V)}(\mathbf{y}) \rangle \sim \delta^3(\mathbf{x}-\mathbf{y}) \Lambda^5$

 $k^2 \Phi \sim M_{\rm p}^{-2} A^{ij} T_{ij}$

- Einstein eq. for anisotropic stress
- Variance of Metric perturbations grows as distance

 $\left(\Delta_{\Phi}^{(V)}\right)^2 \sim \frac{\Lambda^5}{M_r^4 k}$

- Random stress fluctuations at UV scale A
- Einstein eq. for anisotropic stress
- Variance of Metric perturbations grows as distance
- A UV/IR Heisenberg uncertainty relation

 $\langle T_{ij}^{(V)}(\mathbf{x})T_{kl}^{(V)}(\mathbf{y})\rangle\sim\delta^3(\mathbf{x}-\mathbf{y})\Lambda^5$

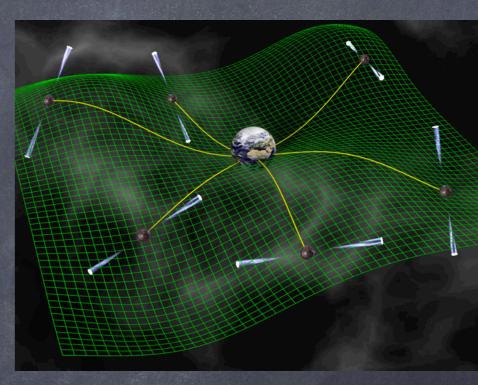
$$k^2 \Phi \sim M_{\rm p}^{-2} A^{ij} T_{ij}$$

$$\left(\Delta_{\Phi}^{(V)}\right)^2 \sim \frac{\Lambda^5}{M_p^4 k}$$
$$\Lambda_{\rm IR} = \frac{\Lambda_{\rm UV}^5}{M_p^4}$$

- Random stress fluctuations at UV scale A
- Einstein eq. for anisotropic stress
- Variance of Metric perturbations grows as distance
- A UV/IR Heisenberg uncertainty relation
- Cosmology limits the UV scale

 $\langle T_{ij}^{(V)}(\mathbf{x})T_{kl}^{(V)}(\mathbf{y})\rangle\sim\delta^3(\mathbf{x}-\mathbf{y})\Lambda^5$

$$k^2 \Phi \sim M_{\rm p}^{-2} A^{ij} T_{ij}$$

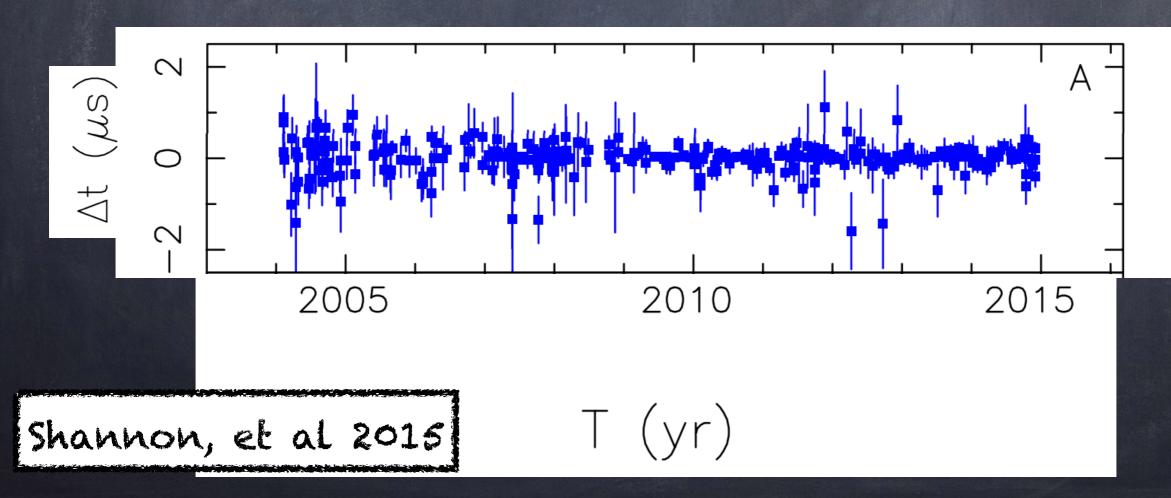

$$\left(\Delta_{\Phi}^{(V)}\right)^2 \sim \frac{\Lambda^5}{M_p^4 k}$$
$$\Lambda_{\rm IR} = \frac{\Lambda_{\rm UV}^5}{M_p^4}$$

 $\Lambda \lesssim (M_{\rm p}^4 H_0)^{1/5} \approx 2~{\rm PeV}$

Pulsar Timina

Same as ISW effect, exc.
 Odifferent times, not
 directions

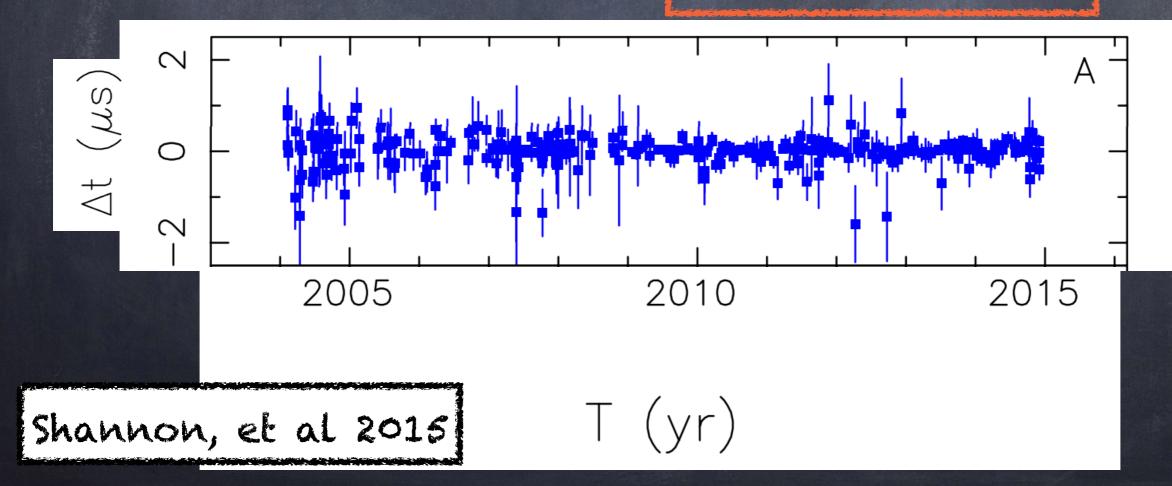
gretiminary

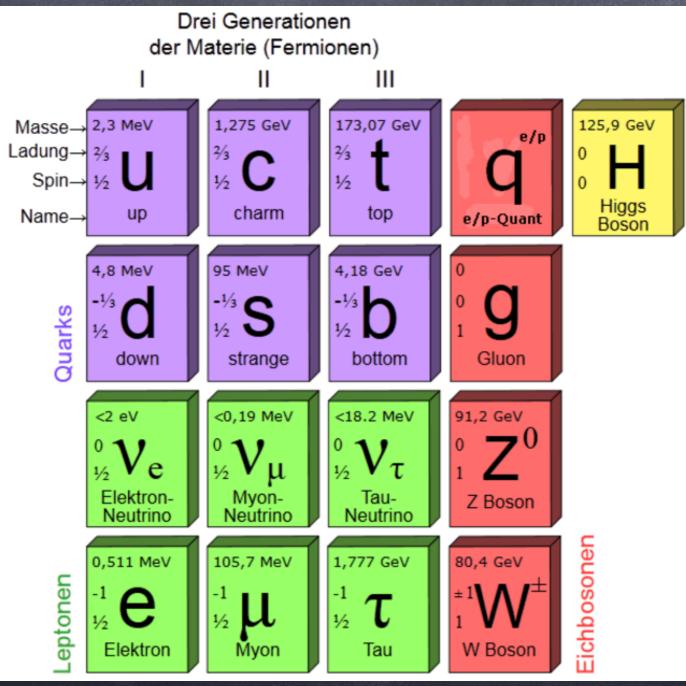


 $P^{2}f^{3}\Phi_{TN}(f) = \frac{h_{c,\text{eff}}^{2}}{12\pi^{2}} = \frac{7}{1920\pi^{2}}\frac{m^{5}d}{M_{p}^{4}}$ $= 2.6 \times 10^{-28}m^{5}(\text{TeV})d(\text{kpc})$

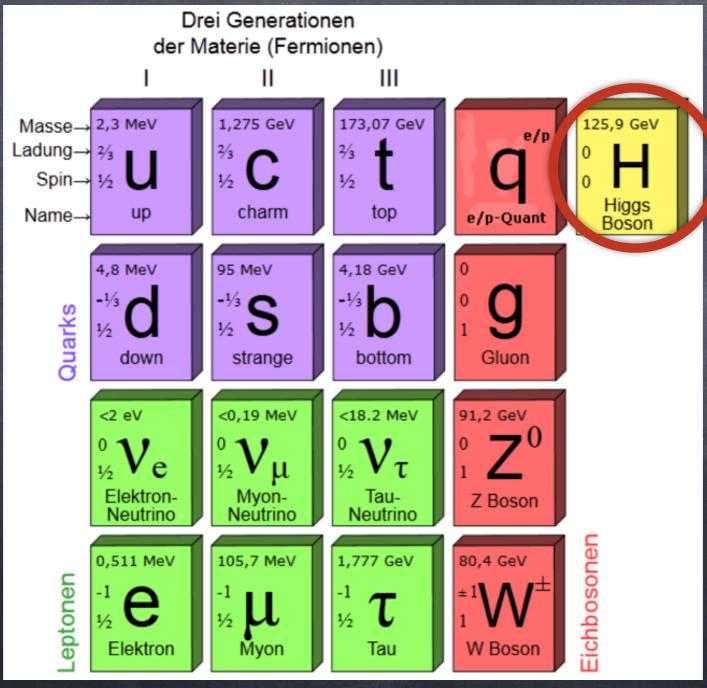
Relimination Meet PSR J1909-3744!

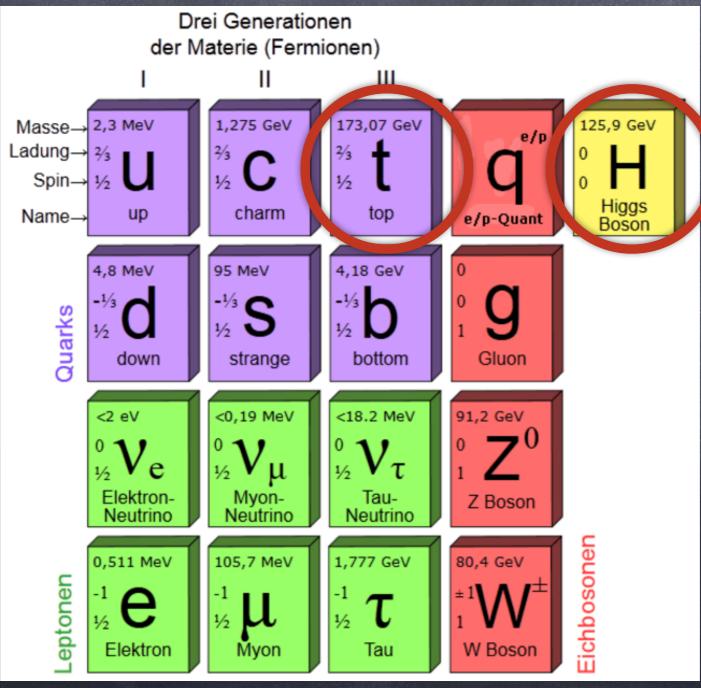
@ P=2.947 ms, d=1.26 kpc

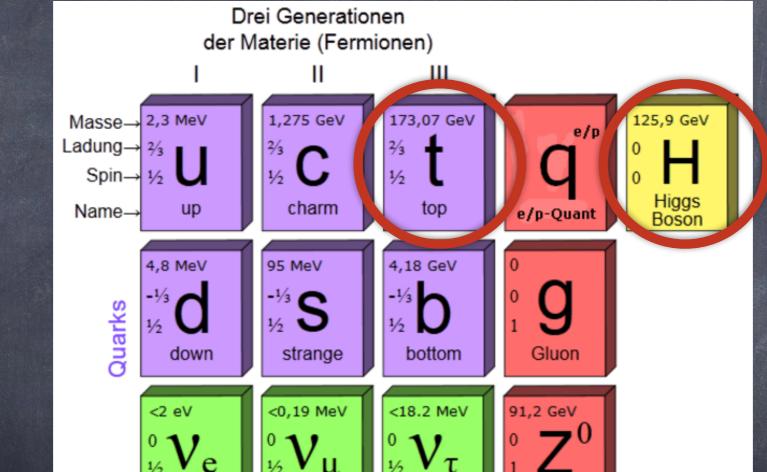

 $0 h_c < 3.2 \times 10^{-15} @ 20$


Relimination Meet PSR J1909-3744!

@ P=2.947 ms, d=1.26 kpc


 \otimes hc < 3.2×10⁻¹⁵ \otimes 20 \rightarrow m_{φ} < 192 GeV


Mo Physics "beyond" Standard Model!


Mo Physics "beyond" Standard Model!

Mo Physics "beyond" Standard Model!

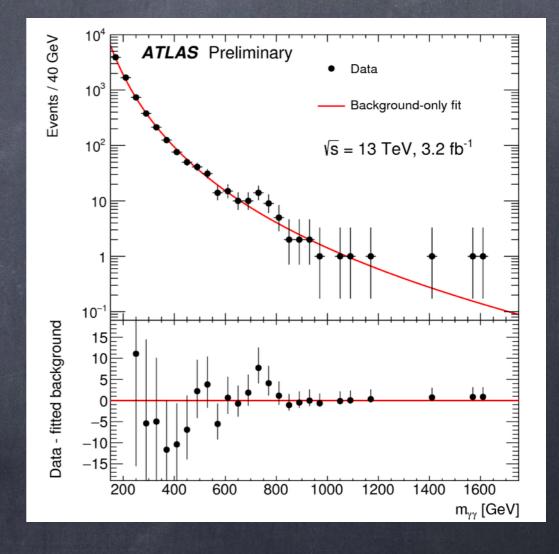
einer Physics "beyond" Standard Model!

Target for eLISA: top quark \rightarrow h_c~1.2x10⁻²⁰

Tau

Myon

Eichbos


W Boson

eptone

Elektron

reiminarit DE Photon excess?

- 3σ di-photon excess in
 LHC/CMS
- A new particle at 750
 Gev?
- If so, in contrast with
 CnC constraint from
 pulsar timing!

 Vacuum energy-momentum <u>fluctuations</u> can also source gravity

- Vacuum energy-momentum <u>fluctuations</u> can also source gravity
- They change the gravitational constraint sector in the IR, thru equal-time correlators

- Vacuum energy-momentum <u>fluctuations</u> can also source gravity
- They change the gravitational constraint sector in the IR, thru equal-time correlators
- Heisenberg Uncertainty principle for UV/IR observables

- Vacuum energy-momentum <u>fluctuations</u> can also source gravity
- They change the gravitational constraint sector in the IR, thru equal-time correlators
- Heisenberg Uncertainty principle for UV/IR observables
- CnC problem is more severe than the old CC problem, due to the positivity of the spectral functions or entropy, i.e. fine-tuning doesn't work

- Vacuum energy-momentum <u>fluctuations</u> can also source gravity
- They change the gravitational constraint sector in the IR, thru equal-time correlators
- Heisenberg Uncertainty principle for UV/IR observables
- CnC problem is more severe than the old CC problem, due to the positivity of the spectral functions or entropy, i.e. fine-tuning doesn't work
- What about Effective Field Theory?