Gravitational Recoil and Astrophysical impact

U. Sperhake

DAMTP, University of Cambridge

(a)

-

3rd Sant Cugat Forum on Astrophysics 25th April 2014

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

- Introduction and motivation
- Calculation of the recoil
- Suppression of superkicks
- Unknown
- Unknown
- Conclusions

< ロ > < 同 > < 回 > < 回 > = 回 > = 回

1. Introduction, motivation

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

▲ E → E → D へ C 25/04/2014 3 / 42

Gravitational recoil

 Recoil = move abruptly backward as a reaction on firing a bullet, shell, or other missile

- Anisotropic GW emission
 - \Rightarrow Gravitational recoil
- Here: Black-hole binary kicks Also relevant for supernovae

U. Sperhake (DAMTP, University of Cembr Gravitational Recoil and Astrophysical impact

 Anisotropic GW emission ⇒ recoil of remnant BH Bonnor & Rotenburg 1961, Peres 1962, Bekenstein 1973

- Escape velocities:

< ロ > < 同 > < 回 > < 回 >

Ejection / displacement of BH

Motivation: Galaxies harbor BHs

- Galaxies ubiquitously harbor BHs
- BH properties correlated with bulge properties
 - e. g. J.Magorrian et al., AJ 115, 2285 (1998)

Motivation: Formation history of SMBHs

- Most widely accepted scenario for galaxy formation: hierarchical growth; "bottom-up"
- Galaxies undergo frequent mergers, especially elliptic ones

large kicks

- \Rightarrow ejection of BHs
- \Rightarrow BH assembly possible?
- Higher accretion needed?
- E.g. Merrit et al 2004

Motivation: Ejection of SMBHs

- Doppler shifts of BLR vs. NLR: 2650 km/s; Komossa et al. 2008
- Galaxy CID-42: Double AGN or recoiling AGN? Blecha et al. 2012
- BH wandering from NGC 1275 to NGC 1277? Shields & Bonning 2013
- Review: Komossa 2012

U. Sperhake (DAMTP, University of Cambri Gravitational Recoil and Astrophysical impact

Motivation: BH ejection, BH populations

- Hierarchical growth ⇒ BH mergers
- Most massive dark matter halos at $z \ge 11$:
 - BHs not retained if $v_{kick} \gtrsim 150 \text{ km/s}$
 - \Rightarrow Even modest kicks suppress SMHB growth from seed BHs
 - \Rightarrow >Eddington accretion needed to assemble SMBHs by $z \approx 6$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- e.g. Merrit et al 2004, Micic et al 2006
- Ejection affects BH populations

e.g. Holley-Bockelmann et al 2008, Miller & Lauburg 2009

- BH depeleted globular clusters? e.g. Mandel et al 2008
- Kicks impact event rates for GW observatories

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

Motivation: Displacement of SMBHs, Elm signature

- Quasars kinemetically or spatially offset from host galaxy
- E.g. COSMOSJ1000+0206:
 2 optical nuclei, 2 kpc apart
 Wrobel 2014

- Moving BH ⇒ tidal disruption of star ⇒ X ray flares
 Komossa & Bade 1999, Bloom et al 2011, Komossa & Merrit 2008a,
- BHs oscillating on scale of accretion torus ⇒ repeated flares Komossa & Merrit 2008b
- BH velocity relative to accreted gas Lora-Calvijo & Guzman 2013

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

2. Calculation of kicks

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

25/04/2014 11 / 42

(ロ)

Influential work pre NR

- Non-spinning, equal-mass BH binaries
 - \Rightarrow no kick by symmetry
 - \Rightarrow Symmetry breaking through mass ratio or spins
- Quasi-Newtonian calculation for unequal masses (no spins)
 Fitchett 1983

$$v_{\text{kick}} = A\eta^2 \sqrt{1 - 4\eta} (1 + B\eta), \quad \eta = \frac{q}{(1+q)^2}, \quad q = \frac{m_2}{m_1}$$

But: Amplitude unclear.

 PN calculations including spin-orbit coupling Kidder 1995

$$\frac{d\mathbf{P}}{dt} = \frac{d\mathbf{P}_{\rm F}}{dt} + \frac{d\mathbf{P}_{SO}}{dt}, \qquad \frac{d\mathbf{P}_{\rm F}}{dt} = \text{Fitchett} \ , \qquad \frac{d\mathbf{P}_{SO}}{dt} = \text{spin-orbit contr.}$$

Kicks from non-spinning BHs

- NR simulations for BH binaries with $q \in [0.1, 1]$
 - \Rightarrow Max. kick: \sim 175 km/s for q = 0.36

González et al 2007a, 2009

Kicks from spinning BHs

• Spins $\boldsymbol{S} || \boldsymbol{L}$ but $\boldsymbol{S}_1 \neq \boldsymbol{S}_2$

 \Rightarrow kicks up to $v_{kick} \lesssim 500 \text{ km/s}$

Herrmann et al 2007, Koppitz et al 2007

Kidder 1995, Campanelli et al 2007a: maximum kick expected for

"Superkicks": $S_1 = -S_2$ in orbital plane

Superkicks

• Measured: $v_{kick} \approx 2500 \text{ km/s}$ Extrapolated maximum: $\sim 4000 \text{ km/s}$ González et al 2007b, Campanelli et al 2007b

• Sinusoidal dependency on spin orientation α

Even larger kicks: superkick and hang-up

Lousto & Zlochower, PRL 107 231102

Superkicks

- Moderate GW generation
- Large kicks

Strong GW generationNo kicks

U. Sperhake (DAMTP, University of Cambri Gravitational Recoil and Astrophysical impact

Superkicks and orbital hang-up

(I)

- Maximum kick about 25 % larger: $v_{max} \approx 5\,000 \text{ km/s}$
- Distribution asymmetric in θ ; v_{max} for partial alignment
- Higher order corrections to hang-up kick
 - \Rightarrow Further 10 % increase "Cross-kick"

Lousto & Zlochower 2013

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

Fitting formulae for the kick

- Goal: Machine, in: BH parameters, out: vkick
- Campanelli 2007b

0

$$\begin{split} \vec{V}_{\text{kick}}(q, \vec{\alpha}_i) &= v_m \boldsymbol{e}_1 + v_\perp \left[\cos \xi \, \boldsymbol{e}_1 + \sin \xi \, \boldsymbol{e}_2\right] + v_{||} \boldsymbol{e}_{||} \,, \\ v_m &= A \frac{q^2 (1-q)}{(1+q)^5} \left[1 + B \frac{q}{(1+q)^2} \right] \,, \\ v_\perp &= H \frac{q^2}{(1+q)^5} \left(\alpha_2^{||} - q \alpha_1^{||} \right) \,, \\ v_{||} &= K \cos(\Theta - \Theta_0) \frac{q^2}{(1+q)^5} |\vec{\alpha}_2^{\perp} - q \vec{\alpha}_1^{\perp}| \\ A &= 1.2 \times 10^4 \text{ km/s} \,, \ B &= -0.93 \,, \ H = 7.3 \times 10^3 \text{ km/s} \,, \ \xi \sim 145^\circ \end{split}$$

$$\vec{\alpha}_i = \boldsymbol{S}_i / m_i^2 \,, \, \Theta = \text{infall angle}$$

Extensions of the fitting formula

- Systematic spin expansion, exploit symmetry conditions to reduce terms Boyle, Kesden & Nissanke 2007, 2007a
- Calibration of higher-order spin terms,
 - \sim 100 NR simulations (q= 1) Lousto & Zlochower 2013
- Ongoing work; more simulations required

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3. Open questions

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

25/04/2014 20 / 42

<□> <□> <□> <三> <三> <三> <三> <□> <○<

Open problems with current kick predictions

- Mass ratio q
 - Current calibration through *q* = 1 runs
 - Predictions for *q* < 1 uncertain; too large?
 - Solution: More runs
- BH parameters
 - Fitting formulae apply to parameters shortly before merger
 - Astrophysical BH parameters apply to large separations
 - What happens to the statistical spin distribution during inspiral?

- Almost all galaxies harbor BHs
 - Superkicks easily eject BHs from giant hosts
 - Why are BHs still there?

- Superkicks easily eject BHs from their host galaxies
- But: Almost all observed galaxies host BHs
- How probable are superkicks?
 - EOB study of $q \in [0.1, 1]$, $\alpha_i = 0.9$ $\Rightarrow \sim 3 \%$ with $v_{kick} > 500 \text{ km/s}$, $\sim 12 \%$ with $v_{kick} > 1 000 \text{ km/s}$ Schnittman & Buonanno 2007
 - Gas-rich mergers tend to align S_{1,2} with L
 10 (30)° residual misalignment for cold (hot) gas
 ⇒ superkick suppression
 - Bogdanović et al 2010, Dotti et al 2009
 - PN inspiral of isotropic BH ensemble remains isotropic Bogdanović et al 2010

But: How about non-isotropic ensembles?

4. Spin orbit resonances

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

25/04/2014 23 / 42

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Parameters of a black-hole binary

10 intrinsic parameters for quasi-circular orbits

- 2 masses m₁, m₂
- 6 for two spins S₁, S₂
- 2 for the direction of the orbital ang. mom. $\hat{\textbf{L}}.$

Elimination of parameters in PN inspiral

- 1 mass; scale invariance
- 2 for L; fix z axis
- 2 spin magnitudes, 1 mass ratio q; conserved

・ロット (雪) (日) (日)

• 1 spin direction; fix x axis

Evolution variables

 \Rightarrow Three variables: θ_1 , θ_2 , $\Delta \phi$

<ロ> <同> <同> <同> <同> < 同>

Evolution equations

$$\begin{split} \frac{d\mathbf{S}_1}{dt} &= \mathbf{\Omega}_1 \times \mathbf{S}_1, \qquad M \mathbf{\Omega}_1 = \eta v^5 \left(2 + \frac{3q}{2} \right) \hat{\mathbf{L}} + \frac{v^6}{2M^2} \left[\mathbf{S}_2 - 3 \left(\hat{\mathbf{L}} \cdot \mathbf{S}_2 \right) \hat{\mathbf{L}} - 3q \left(\hat{\mathbf{L}} \cdot \mathbf{S}_1 \right) \hat{\mathbf{L}} \right]; \\ \frac{d\mathbf{S}_2}{dt} &= \mathbf{\Omega}_2 \times \mathbf{S}_2, \qquad M \mathbf{\Omega}_2 = \eta v^5 \left(2 + \frac{3}{2q} \right) \hat{\mathbf{L}} + \frac{v^6}{2M^2} \left[\mathbf{S}_1 - 3 \left(\hat{\mathbf{L}} \cdot \mathbf{S}_1 \right) \hat{\mathbf{L}} - \frac{3}{q} \left(\hat{\mathbf{L}} \cdot \mathbf{S}_2 \right) \hat{\mathbf{L}} \right]; \\ \frac{d\hat{\mathbf{L}}}{dt} &= -\frac{v}{\eta M^2} \frac{d}{dt} (\mathbf{S}_1 + \mathbf{S}_2); \\ \\ \frac{dv}{dt} &= \frac{32}{5} \frac{\eta}{M} v^9 \left\{ 1 - v^2 \frac{743 + 924\eta}{336} + v^3 \left[4\pi - \sum_{i=1,2} \chi_i (\hat{\mathbf{S}}_i \cdot \hat{\mathbf{L}}) \left(\frac{113}{12} \frac{m_i^2}{M^2} + \frac{25}{4} \eta \right) \right] \\ &+ v^4 \left[\frac{34103}{18144} + \frac{13661}{2016} \eta + \frac{59}{18} \eta^2 + \frac{\eta \chi_1 \chi_2}{48} \left(721 (\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{L}}) (\hat{\mathbf{S}}_2 \cdot \hat{\mathbf{L}}) - 247 (\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2) \right) \\ &+ \frac{1}{96} \sum_{i=1,2} \left(\frac{m_i \chi_i}{M} \right)^2 \left(719 (\hat{\mathbf{S}}_i \cdot \hat{\mathbf{L}})^2 - 233 \right) \right] - v^5 \pi \frac{4159 + 15876\eta}{672} \\ &+ v^6 \left[\frac{16447322263}{139708800} + \frac{16}{3} \pi^2 - \frac{1712}{105} \left(\gamma_E + \ln 4v \right) + \left(\frac{451}{48} \pi^2 - \frac{56198689}{217728} \right) \eta + \frac{541}{896} \eta^2 - \frac{5605}{2592} \eta^3 \right] \\ &+ v^7 \pi \left[-\frac{4415}{4032} + \frac{358675}{6048} \eta + \frac{91495}{1512} \eta^2 \right] + O(v^8) \right\}; \end{split}$$

- 2.5 PN: precessional motion about $\hat{\textbf{L}}$
- 3 PN: spin-orbit coupling

(DAMTP, University of Cambri Gravitational Recoil and Astrophysical impact

> ◀ Ē ▶ Ē ∽) ९ (25/04/2014 26/42

イロト イポト イヨト イヨト

Schnittman '04

For a given separation r of the binary, resonances are

- S_1 , S_2 , \hat{L}_N lie in a plane $\Rightarrow \Delta \phi = 0^\circ, \pm 180^\circ$
- Resonance condition: $\ddot{\theta}_{12} = \dot{\theta}_{12} = 0$ Apostolatos '96, Schnittman '04

•
$$\Delta \phi = 0^{\circ}$$
 resonances: always $\theta_1 < \theta_2$

 $\Delta \phi = \pm 180^{\circ}$ resonances: always $\theta_1 > \theta_2$

- The resonance θ_1 , θ_2 vary with *r* or L_N
 - ⇒ Resonances sweep through parameter plane
- Time scales: $t_{\rm orb} \ll t_{\rm pr} \ll t_{\rm GW}$

 \Rightarrow "Free" binaries can get caught by resonance

(ロ) (同) (三) (三) (三) (三) (0)

Evolution in θ_1 , θ_2 plane for q = 9/11

 $\theta_i := \angle (\vec{S}_i, \vec{L}_N)$ $\theta_1 = \theta_2$ $\mathbf{S} \cdot \mathbf{L}_N = \text{const}$ $\mathbf{S}_0 \cdot \mathbf{L}_N = \text{const}$ evolution \Rightarrow BHs approach $\theta_1 = \theta_2$ \Rightarrow **S**₁, **S**₂ align *if* θ_1 small

Kesden, US & Berti '10

25/04/2014 28 / 42

Schnittman '04

U. Sperhake (DAMTP, University of CambriGravitational Recoil and Astrophysical impact

25/04/2014 29 / 42

(1)

Resonance capture: $\Delta \phi = 180^{\circ}$

Schnittman '04

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

25/04/2014 30 / 42

Consequences of resonances

EOB spin

$$S_0 = \frac{M}{m_1}S_1 + \frac{M}{m_2}S_2$$

$$S_0 \cdot L_N = \text{const}$$
evolution

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

Consequences of resonances

Total spin $S = S_1 + S_2$ $\vec{S} \cdot \vec{L}_N = \text{const}$ evolution blue steeper red \Rightarrow **S**, **L**_N become antialigned; $\Delta \phi = 0^{\circ}$ aligned; $\Delta \phi = 180^{\circ}$

U. Sperhake (DAMTP, University of Cambri Gravitational Recoil and Astrophysical impact

Consequences of resonances

r decreases $\Rightarrow \theta_1, \theta_2 \rightarrow \text{diagonal}$ i.e. $\theta_1 = \theta_2$ $\Rightarrow \mathbf{S}_1, \mathbf{S}_2 \text{ become}$ aligned; $\Delta \phi = 0^\circ$ $\theta_{12} = \theta_1 + \theta_2; \Delta \phi = 180^\circ$

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

Summary: Resonances

- S₁, S₂, L_N precess in plane
- 2 types: I) $\Delta \phi = 0^{\circ}$, II) $\Delta \phi = 180^{\circ}$
- Free binaries can get caught by resonances
- Consequences for $\Delta \phi = 0^{\circ}$
 - S₁, S₂ aligned
 - S, L_N antialigned
- Consequences for $\Delta \phi = 180^{\circ}$
 - S_1 , S_2 approach $\theta_{12} = \theta_1 + \theta_2$
 - S, L_N aligned

5. Suppression of superkicks

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

25/04/2014 35 / 42

(日)

Setup

- BBHs inspiral from 1000 M to 10 M
- Ensemble 1: $10 \times 10 \times 10$ isotropic
- Ensemble 2: 30 × 30 isotropic in θ₂, Δφ
 fix θ₁(t₀) = 170°, 160°, 150°, 30°, 20°, 10°
- Map S₁, S₂, q to v_{kick} $\vec{v}(q, \chi_1, \chi_2) = v_m \hat{\mathbf{e}}_1 + v_\perp (\cos \xi \hat{\mathbf{e}}_1 + \sin \xi \hat{\mathbf{e}}_2) + v_{||} \hat{\mathbf{e}}_z$ $v_{||} \sim |\mathbf{\Delta}^\perp|, \quad \mathbf{\Delta} = \frac{q\chi_2 - \chi_1}{1+q}$ Campanelli, Lousto, Zlochower & Merritt '07

(ロ) (同) (三) (三) (三) (三) (0)

Kick distributions with and without PN inspiral $q = \frac{9}{11}$

Kesden, US & Berti 2010

U.Spechake (DAMTR, University of Cembr Gravitational Recoil and Astrophysical impact

25/04/2014 37 / 42

Same game for hang-up kicks: $q = \frac{9}{11}$

Berti, Kesden & US 2012

U.Spechake (DAMTR, University of Cembr Gravitational Recoil and Astrophysical impact

25/04/2014 38 / 42

Summary: Kick suppression

• Resonances attract aligned (anti aligned) configurations towards $\Delta \phi = 0^{\circ} (180^{\circ})$

- Superkicks suppressed (enhanced) for $\Delta \phi = 0^{\circ} \ (\Delta \phi = 180^{\circ})$ resonances
- If accretion torque partially aligns \vec{S}_1 with \vec{L}_N

 $\Rightarrow \Delta \phi = \mathbf{0}^{\circ}$ resonances dominate and suppress kicks

- Kick suppression still effective for hang-up kicks
- Why? Because the key angle is $\Delta \phi$

6. Conclusions

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact

25/04/2014 40 / 42

(ロ)

Conlcusions

- Kicks important for many astrophysical scenarios
 BH ejection, BH populations, SMBH assembly, galaxy struxture
- Kicks generate through asymmetry: mass ratio, spins
- Superkicks: v_{kick} up to 4 000 km/s, Hangup kicks: 5 000 km/s

<ロ> < 同 > < 同 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Kick formulae: apply to late inspiral
- Gas disks ⇒ spin alignment
- Spin-orbit resonances
 - \Rightarrow change spin distribution
 - \Rightarrow can suppress superkicks
- Open questions: q dependence, spin distribution

U. Sperhake (DAMTP, University of Cambr Gravitational Recoil and Astrophysical impact