Black-hole binary inspiral and merger in scalar-tensor theory of gravity

U. Sperhake

DAMTP, University of Cambridge

General Relativity Seminar, DAMTP, University of Cambridge $24^{\text {th }}$ January 2014

Overview

Joined work with
E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch

Berti et al. 2013 (PRD 87)

- Introduction, motivation
- Analytic results
- Numerical framework
- Numerical results
- Conclusions and outlook

1. Introduction, motivation

Motivation

- Goal: BHs in ST theory with non-trivial dynamics
- Time varying BCs (e.g. Cosmology)
\Rightarrow induce scalar charge of BHs
- Non-uniform scalar field due to galactic matter
\approx non-asymptotically flat BCs
- Super massive boson stars
\Rightarrow scalar field gradients
- Scalar field modifications of GR
- Brans-Dicke
- Bergmann-Wagoner $\omega(\phi), V(\phi)$
- Multiple scalar fields
- Here: single scalar field, vacuum

Theoretical framework

Jordan frame: Physical metric $g_{\alpha \beta}^{J}$

- Action $S=\int d^{4} x \frac{\sqrt{-g^{J}}}{16 \pi G}\left[F(\phi) R^{J}-8 \pi G Z(\phi) g_{J}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-U(\phi)\right]$
- GWs $\rightarrow 3$ degs. of freedom
- Matter couples to $g_{\alpha \beta}^{J}$

Einstein frame: Conformal metric $g_{\alpha \beta}=F(\phi) g_{\alpha \beta}^{J}$

- $\varphi(\phi)=\int d \phi\left[\frac{3}{2} \frac{F^{\prime}(\phi)^{2}}{F(\phi)^{2}}+\frac{8 \pi G Z(\phi)}{F(\phi)}\right]^{1 / 2}$
- Action $S=\frac{1}{16 \pi G} \int\left[R-g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi-W(\varphi)\right] \sqrt{-g} d^{4} x$

Einstein vs. Jordan frame

Pro Einstein

- Minimally coupled scalar field \Rightarrow numerics straightforward
- F, Z not explicitly present in evolutions
\Rightarrow Evolve whole class of theories at once

Pro Jordan

- Strongly hyperbolic formulation also available Salgado 2005 (CQG 23), Salgado et al. 2008 (PRD 77)
- Matter couples to evolved metric $g_{\alpha \beta}^{J}$

Here: Einstein frame more suitable

GWs in the Einstein and Jordan frames

Einstein frame evolution eqs. $G_{\alpha \beta}=\partial_{\alpha} \varphi \partial_{\beta} \varphi-\frac{1}{2} g_{\alpha \beta} g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi$

$$
\square \varphi=0
$$

Perturbations

$$
\begin{array}{rlrl}
g_{\alpha \beta}^{J} & =\bar{g}_{\alpha \beta}^{J}+\delta g_{\alpha \beta}^{J} & \quad g_{\alpha \beta}=\bar{g}_{\alpha \beta}+\delta g_{\alpha \beta} \\
\phi & =\bar{\phi}+\delta \phi \quad \varphi=\bar{\varphi}+\delta \varphi \\
\delta g_{\alpha \beta}^{J} & =\frac{1}{F(\bar{\phi})}\left[\delta g_{\alpha \beta}-\bar{g}_{\alpha \beta}^{J} F^{\prime}(\bar{\phi}) \delta \phi\right] \\
\delta \phi & =\left[\frac{3}{2} \frac{F^{\prime}(\bar{\phi})^{2}}{F(\bar{\phi})^{2}}+\frac{8 \pi G Z(\bar{\phi})}{F(\bar{\phi})}\right]^{-1 / 2} \delta \varphi
\end{array}
$$

Newman-Penrose scalar: $\Psi_{4}=\ddot{h}_{+}-i \ddot{h}_{\times}$ Jordan version Ψ_{4}^{J} from Ψ_{4}, φ : see Barausse et al. 2012 (PRD 87)

2. Analytic solutions

Single BH solutions to the linearized equations

- Equations: $R_{\alpha \beta}=0, \quad \square \varphi=0$
i.e. solve Laplace eq. on BH background
- Schwarzschild in isotropic coordinates

$$
\begin{aligned}
& d s^{2}=\frac{(2 \tilde{r}-M)^{2}}{(2 \tilde{r}+M)^{2}} d t^{2}+\left(1+\frac{M}{2 \tilde{r}}\right)^{4}\left[d \tilde{r}^{2}+\tilde{r}^{2} d \Omega^{2}\right] \\
& \Rightarrow \ldots \Rightarrow \varphi=2 \pi \sigma\left(1+\frac{M^{2}}{4 \tilde{r}^{2}}\right) \tilde{r} \cos \theta \approx 2 \pi \sigma z
\end{aligned}
$$

asymptotically: constant gradient in z dir.

- Kerr BH; cf. Press 1972 (ApJ 175)
$\varphi=2 \pi \sigma(r-M)\left[\frac{z}{r} \cos \gamma+\frac{x}{r} f_{a} \sin \gamma\right], \quad f_{a}=f_{a}(M, a, r)$
$\gamma=$ angle between BH spin and z axis

Contour plots of φ

Boundary conditions and multipolar expansion of φ

- Outgoing radiation condition at large r

$$
\begin{aligned}
& \varphi=\varphi_{\mathrm{ext}}+\frac{\Phi(t-r, \theta, \phi)}{r} \\
\Rightarrow \quad & \partial_{r}(r \varphi)+\partial_{t}(r \varphi)=4 \pi \sigma r \cos \theta
\end{aligned}
$$

- Multipolar expansion of Φ
$\Phi(t-r, \theta, \phi)=\mathcal{M}+n^{i} \dot{\mathcal{D}}_{i}+\frac{1}{2} n^{i} n^{j} \ddot{\mathcal{Q}}_{i j}+\ldots$
$\vec{n} \equiv \vec{r} / r$
\mathcal{M} Monopole
\mathcal{D}_{i} Dipole
$\mathcal{Q}_{i j}$ Quadrupole

Scalar radiation from BH binaries

- Scalar field background: $\varphi_{\mathrm{ext}}=2 \pi \sigma r \sin \theta \sin \phi$

Orbital plane $y z \Rightarrow \theta$ relative to x axis

- Consider rotating source with frequency Ω
\Rightarrow Modulation in $\varphi=\varphi_{\mathrm{ext}}[1+f(\phi-\Omega t)]$
$\Rightarrow \varphi=2 \pi \sigma r \sin \theta \sin \phi\left[1+\sum_{m} f_{m} e^{i m(\phi-\Omega t)}\right]$
$\Rightarrow \varphi_{I m} \sim\left[e^{-i(m+1) \Omega t}+e^{-i(m-1) \Omega t}\right]$
- Monopole: Oscillation with Ω

Dipole: Oscillation with 2Ω

- Confirmed by more elaborate calculation

3. Numerical framework

Evolution system

- "3+1" formalism with BSSN

Baumgarte \& Shapiro 1998 (PRD 59), Shibata \& Nakamura 1995 (PRD 52)

- Matter variables: $\varphi, \quad\left(\partial_{t}-\mathcal{L}_{\beta}\right) \varphi=-2 \alpha K_{\varphi}$
- "3+1" Matter sources
$8 \pi G \rho=2 K_{\varphi}^{2}+\frac{1}{2} \partial_{i} \varphi \partial^{i} \varphi$
$8 \pi G j^{i}=2 K_{\varphi} \partial^{i} \varphi$
$8 \pi G S_{i j}=\partial_{i} \varphi \partial_{j} \varphi-\frac{1}{2} \gamma_{i j} \partial^{m} \varphi \partial_{m} \varphi+2 \gamma_{i j} K_{\varphi}^{2}$
$8 \pi G S=-\frac{1}{2} \partial^{m} \varphi \partial_{m} \varphi+6 K_{\varphi}^{2}$
- Straightforward to add to Lean code

Moving punctures Campanelli et al.2005, Baker et al. 2005
Cactus, Carpet, AHFinder Schnetter et al. 2003, Thornburg 1995, 2003

Initial data

- Scalar field: Initialize as $\quad \varphi=2 \pi \sigma z$

Error: $\sigma^{2}, \quad M^{2} / 4 \tilde{r}^{2}$
\Rightarrow Brief transient at early times

- BHs: Spectral solver Ansorg et al. 2004 (PRD 70)
- Limits on σ
- Scalar field energy $\sim(\nabla \varphi)^{2} \sim \sigma^{2} \sim$ const
- Total scalar energy $M \sim \sigma^{2} R^{3}$
- Horizon if $M / R \sim \sigma^{2} R^{2} \sim 1$

$$
\Rightarrow \quad \sigma<R^{-1}=\mathcal{O}\left(10^{-3} M_{\mathrm{BH}}^{-1}\right)
$$

- Conservative choice: $M_{\mathrm{BH}} \sigma=10^{-7} \ldots 10^{-4}$

4. Numerical results

Schwarzschild BH: Num. vs. lin. solution $M \sigma=10^{-5}$

$\varphi_{10, \mathrm{lin}}=\sqrt{\frac{4 \pi}{3}} 2 \pi \sigma(r-M) \quad r_{\mathrm{ex}}=5,10,15,20,30,40,50 \mathrm{M}$
Black-hole binary inspiral and merger in scalar-tensor theory grauity

Schwarzschild BH: σ dependence

$r_{\mathrm{ex}}=50 \mathrm{M}$: Signs of collapse of scalar field for $M \sigma=10^{-4}$

Schwarzschild BH: Scalar multipoles, $\quad M \sigma=10^{-5}$

Schwarzschild BH: Scalar multipoles, $\quad M \sigma=10^{-4}$

BH binary: Animation of $r \partial_{t} \varphi$

BH binary: Gravitational waves, $\quad M \sigma=0$

$q=1 / 3, \quad S=0, \quad y z$ plane: \quad Multipoles of Ψ_{4}

BH binary: Gravitational waves, $M \sigma=2 \times 10^{-7}$

$q=1 / 3, \quad S=0, \quad y z$ plane: \quad Multipoles of Ψ_{4}

BH binary: Scalar dipole radiation, $M \sigma=2 \times 10^{-7}$

$$
r_{\mathrm{ex}}=56 \ldots 112 \mathrm{M}
$$

BH binary: Scalar dipole radiation, $M \sigma=2 \times 10^{-7}$

Dipole oscillates at $2 \Omega_{\text {orb }}$ as expected

Features of the radiation

- Ringdown of $a / M=0.543 \mathrm{BH}$
- GWs: $M \omega_{11 \text { lin }}=0.476-0.0849 i, \quad M \omega_{11 \text { num }}=0.48-0.081 i$
- Scal.: $M \omega_{11 \text { lin }}=0.351-0.0936 i, \quad M \omega_{11 \text { num }}=0.36-0.070 i$
- Drift in φ_{11}
- EFT calculation predicts some drift
- Contribution from BH kick expected but not large enough
- Frame dragging: order of magnitude ok, but r dependence not
- Injection of scalar field energy through BCs

Probably: Combination of all effects

Conclusions and outlook

- Numerical simulations of BHs in ST Theory work very well!
- Einstein frame \Rightarrow Simulate whole class of theories at once
- Single BHs: Excellent agreement with linearized calculations
- Large $M \sigma$ induces collapse of scalar field
- Our $M \sigma \gg$ values expected for dark matter models
- Large $M \sigma$ may still be possible: e.g. boson stars...
- Scalar radiation:
- Monopole oscillates at $\Omega_{\text {orb }}$
- Dipole oscillates at $2 \Omega_{\text {orb }}$
- Scalar gradients circumvent the no-hair theorem

