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Overview

@ Introduction, motivation

@ Foundations of numerical relativity
e Formulations of Einstein’s egs.: 3+1, BSSN, GHG, characteristic
o Initial data, Gauge, Boundaries

e Technical ingredients: Discretization, mesh refinement,...

@ Applications and Results of NR
o Gravitational wave physics
e High-energy physics

@ Appendix
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1. Introduction, motivation
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The Schwarzschild solution

@ Einstein 1915
General relativity: geometric theory of gravity
@ Schwarzschild 1916
ds? = — (1— 2M) g2 1 (1 — 2M) ™" gr2 4 12(d2 + sin? 0d?)

r

@ Singularities:
r = 0: physical
r = 2M: coordinate

@ Newtonian escape velocity

2m

v=4/%
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Evidence for astrophysical black holes

@ X-ray binaries
e. g. Cygnus X-1 (1964)
MS star + compact star

= Stellar Mass BHs
~5...50 M,

@ Stellar dynamics
near galactic centers,
iron emission line profiles
= Supermassive BHs
~108...10% M, : -
AGN engines I e
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Conjectured BHs

@ Intermediate mass BHs
~10%...10° M,

@ Primordial BHs

< MEarth

@ Mini BHs, LHC
~ TeV

=)
i

Note: BH solution is scale invariant!
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Research areas: Black holes have come a long way!

Astrophysics

Gauge-gravity duality Fundamental studies
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General Relativity: Curvature

@ Curvature generates
acceleration

“geodesic deviation”

No “force”!!

@ Description of geometry
Metric 9ap

Connection Fg7

i (67
Riemann Tensor  R%g.s
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The metric defines everything

@ Christoffel connection

5y = 39 (859 + 839u8 — 0uGpr)
@ Covariant derivative

VaTl, =0, TE, +T5,TH, — T8, TE,

@ Riemann Tensor
R%gy5 = (%Fgé — &;ng + rgyrg(; — F/C;(SF’;7
@ = Geodesic deviation,

Parallel transport,
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How to get the metric?

,,5—-» . @
rw 2 jr\'R T """

A. :msrsln

@ Solve for the metric g.z

= &
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How to get the metric?

@ The metric must obey the Einstein Equations

@ Ricci-Tensor, Einstein Tensor, Matter Tensor

Fl’aﬁ = R“auﬁ
Gop = Rap — 39asR*,  “Trace reversed” Ricci
Tog  “Matter”

@ Einstein Equations Gop =87T,p

@ Solutions: Easy! Take metric

= Calculate G,
= Use that as matter tensor

@ Physically meaningful solutions: Difficult!
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Solving Einstein’s equations: Different methods

@ Analytic solutions

e Symmetry assumptions

e Schwarzschild, Kerr, FLRW, Myers-Perry, Emparan-Reall,...
@ Perturbation theory

e Assume solution is close to known solution g,z

e Expand Ju.s = Gus + ehgg + ezhfg +... = linear system

o Regge-Wheeler-Zerilli-Moncrief, Teukolsky, QNMs, EOB,...
@ Post-Newtonian Theory

e Assume small velocities = expansion in ¢

e N order expressions for GWs, momenta, orbits,...

@ Blanchet, Buonanno, Damour, Kidder, Will,...

@ Numerical Relativity

A review of numerical relativity and black-hole collisions



2. Foundations of numerical
relativity
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A list of tasks

@ Target: Predict time evolution of BBH in GR

@ Einstein equations: 1) Cast as evolution system
2) Choose specific formulation
3) Discretize for computer

@ Choose coordinate conditions: Gauge

@ Fix technical aspects: 1) Mesh refinement / spectral domains
2) Singularity handling / excision
3) Parallelization

@ Construct realistic initial data

@ Extract physics from the data
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2.1 Formulations of Einstein’s
equations
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The Einstein equations

R — 2R + NG = 87T,
& R, =8r (TW — ﬁTg,w) + 525 N\Guw
@ In this form no well-defined mathematical character
hyperbolic, elliptic, parabolic?
@ Coordinate x“ on equal footing; time only through signature of g,z
@ Well-posedness of the equations? Suitable for numerics?
@ Several ways to identify character and coordinates

— Formulations
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2.1.1 ADM like D — 1 + 1
formulations
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3+1 Decomposition

@ NR: ADM 3+1 split  Arnowitt, Deser & Misner '62
York '79, Choquet-Bruhat & York ’80

@ Spacetime = Manifold (M, g)
@ Hypersurfaces

Scalar field t : M — R

such that t = const defines X;

— 1 form dt, vector 9

(dt,0r) =1
@ Def.: Timelike unit vector: n, = —a(dt),
Lapse: a = 1/||dt|| Shift: g#* = (0y)* — an*

Adapted coordinate basis: 0y = an+ 8, 0;= g
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3+1 Decomposition

Def.: A vector v* is tangentto ¥; :& (dt,v) = (df),v* =0
Projector: L%, = 6%, + n®n,
For a vector tangent to ¥; one easily shows
e n,vit =0
@ |H VF=Vv"
Projection of the metric
® Yos = 1*a 138G = Gas + NaNg = Yo = Lag
@ For v tangentto X4 g, VH*VY = vy, VHVY
Adapted coordinates: x* = (t, x')
= we can ignore t components for tensors tangential to ¥;
= v is the metric on X; First fundamental form
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3+1 decomposition of the metric

In adapted coordinates, we write the spacetime metric

_ —a? + BmfB™ ‘ B )
Jep = ( Bi | v

i o2 a-2pi
<~ g B: < 05_261 ,ylj_a—zﬁlﬁf >

& ds? = —a?dt? + v;(dx’ + p'dt)(ax¥ + Bat)

Gauge variables: Lapse «, Shift vector 3/

For any tensor tangent in all components to ¥; we raise and lower
indices with ~;:

Siy =~Ims/ . etc.

A review of numerical relativity and black-hole collisions



Projections and spatial covariant derivative

@ For an arbitrary tensor S of type ( 'Z ) its projection is
(LS)x1pp, gy = L% . L%y 1 Mg ... LY SHItpy,
“Project every free index”

@ For a tensor S on Y%y, its covariant derivative is DS := L(VS)
DpSm"'a"&._ﬂq = 1™ IPRRE J_apupJ_W By - J_ngqJ_Upng’”"'“pwml,q

@ One can show that
e D= 1V is torsion free on X; if V is on M

e (LV9)jx =0 metric compatible
e 1V is unique in satisfying these properties
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Extrinsic curvature
Def.: K5 = —LV;sn,
@ Vj3n, is not symmetric, but L Vgn, and, thus, K,z is!
@ One can show that
LnYas = MV Yag + YusVal + 70, Vn* = —2K,p

Kas = —3Ln%as
@ Two interpretations of K,3 — embedding of X in M
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The projections of the Riemann tensor

AP P17 ,1% RPo = R7508 + K'aKsg — K7'3Kso  Gauss Eq.
1Pa1?s Ry + Lo L?gn’n® R* e = Rag + KKyg — K# 3Ky,  contracted
R+2R,n"n" =R+ K2 — K"K, scalar Gauss eq.
LY,n7 #1753 RPy, = DK7Y — Do K7 Codazzi eq.
n°1"g Ry, = DgK — D,,K*5 contracted
Lapl?n7n? R = LLmKos + KayK* 5 + 1D, Dsa
1#,1%g R, = —&EmKag — 2K, K* 5 — %DaDga + Rap + KKyp
R=-2L,K — 24" D,D,a + R + K% + KK,

@ Here L is the Lie derivative and m* = ant = (9;)* + p*

@ Summation of spatial tensors: ignore time indices;
Wy Vy.ooo =M, N, ...
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Decomposition of the Einstein equations

Rag = % Rgag aF /\gaﬁ = STI'TQB

& Ry = 8r (Tag — 3 50ap T) + 525N Gas
Energy momentum tensor
@ p= T, n"n" energy density
Jo = —Twn*1”, momentum density
Sop = L#a 1V T, S=+*S,, stress tensor
@ Top = Sop+ Nujfg + Ngjo +pnang, T=S—p
Lie derivative Lm = L(5,—p)
@ LyKj = 0iKjj — p"OmKjj — KmjOip™ — Kim0;8"™
Lmii = 0rvij — B"Omij — Ymi0iB™ — Yim9; 8™
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Decomposition of the Einstein equations

Definition:

Lmj = —2aKj

1#, 1" projection:

[’mKij = —DiDjOz—i-a(R,'j—l—KK,'j—ZK,'mej)—i—SWOz [%’y;j = S,"} —%/\’y,’j
Evolution equations

n*n” projection
R+ K% — K™Kyn = 2A 4+ 16mp  Hamiltonian constraint

L #,n” projection
DiK — DpnK™; = —8nj; Momentum constraint
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Well-posedness

@ Consider a field ¢ evolved with a first-order system of PDEs

@ The system has a well posed initial value formulation
< There exists some norm and a smooth function

F:R* xR — R* suchthat  [|¢(1)l| < F([l¢(0)]], 1) [l¢(0)]]
@ Well-posed systems have unique solutions for given initial data

@ There can still be fast growth, e.g. exponential
@ Strong hyperbolicity is necessary for well-posedness
@ The general ADM equations are only weakly hyperbolic

@ Details depend on: gauge, constraints, discretization

Sarbach & Tiglio, Living Reviews Relativity 15 (2012) 9; Gundlach & Martin-Garcia,
PRD 74 (2006) 024016; Reula, gr-qc/0403007
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The BSSN system

@ Goal: modify ADM to get a strongly hyperbolic system

Baumgarte & Shapiro, PRD 59 (1998) 024007, Shibata & Nakamura, PRD 52
(1995) 5428

@ Conformal decomposition, trace split, auxiliary variable
¢=go-n N7, K=1"K;
Hj = e o A= gttyi

Aj=e% (K- plyyK) & Kj=e* (A;+ pleik)
=l

@ Auxiliary constraints
5 =detyj=1, 7™Amn=0
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The BSSN equations

O = B70md — rp—17(OmB™ — aK)

07 = B™OmAj + 23m(i0nB™ — 521 7jOmB™ — 20A;

K = B"OmK — €*95™ DpnDpa + aA™ A + 55 aK?
+255a[S + (D - 3)p] — g2zl

OiAjj = BMOmAj + 2Ani0)B™ — 25 AjOmB™ + aKAj — 20 AR A™;
+e74 (aR;j — DiDja — 8raS;) ™"

o' = BmOml" + 24T OmB™ + 4™ 0m0On B’ + 5=35™OmOnB"

+2AM2(D—1)adm¢—Omal+2af T, AN —28=2 0 5mg K —16maj’

Note: There are alternative versions using y = e % or W = =2
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The BSSN equations

In the BSSN equations we use

M = Bl +2(6'k0j6 + 6'10k¢ — A7 ™Omep)

Rj=Rj+R;

R} = 2(3— D) DiDjp—254™ Dy Dnis+4(D—3)(0i¢h 0jb — 7™ Omed Onh)
Rij = =33 OmOn Vi + Am(iOp ™ + T (ym + 7™ 2F K Fjykn + Tl il
DiDja = DiDja — 2(8 djax + 9j¢p D) + 257 ™ Onp Incx

The constraints are

H=R+52K2 - A™A,, —161p—2A =0

M; = DA™ — B=29,K + 2(D — 1)A™;0n¢p — 8j; = O
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2.1.2 Generalized Harmonic
formulation
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The Generalized Harmonic (GH) formulation

@ — Appendix
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2.1.3 Characteristic
formulation
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The characteristic formulation

@ — Appendix
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Direct methods

@ Use symmetry to write line element, e.g.
ds? = —a2(u, t)dt? + b?(p, t)dp? — R?(u, 1)dQ?
May & White, PR 141 (1966) 1232

@ Energy momentum tensor

T% = —p(1 +¢), T'y =T% =T33 =0 Lagrangian coords.
@ GRTENSOR, MATHEMATICA,...

= Field equations:

a=..

b =..

R=..
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Numerical relativity in D > 4 dimensions

@ Needed for many applications: TeV gravity, AdS/CFT, BH stability
@ Reduction to a “3+1” problem

@ Diagnostics: Wave extraction, horizons

_>
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Further reading

@ 3+1 formalism
Gourgoulhon, gr-qc/0703035

@ Characteristic formalism
Winicour, Liv. Rev. Rel. 152012 2

@ Numerical relativity in general
Alcubierre, “Introduction to 3+1 Numerical Relativity”’, Oxford University Press

Baumgarte & Shapiro, “Numerical Relativity’, Cambridge University Press

@ Well-posedness, Einstein egs. as an Initial-Boundary-Value
problem

Sarbach & Tiglio, Liv. Rev. Rel. 15 (2012) 9
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2.2. Initial data, Gauge,
Boundaries
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2.2.1. Initial data
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Analytic initial data

@ Schwarzschild, Kerr, Tangherlini, Myers Perry,...
e.g. Schwarzschild in isotropic coordinates:
ds? = —Y=2Lat? + (1 4+ 2 [r? + r3(d6? + sin® 0d¢?)]

@ Time symmetric N BH initial data: Brill-Lindquist, Misner 1960s

@ Problem: Finding initial data for dynamic systems

@ Goals
e 1) Solve constraints

o 2) Realistic snapshot of physical system
@ This is mostly done using the ADM 3+1 split
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The York-Lichnerowicz split

@ Weworkin D=4

@ Conformal metric: ; = ¢*7;

Lichnerowicz, J.Math.Pures Appl. 23 (1944) 37
York, PRL 26 (1971) 1656, PRL 28 (1972) 1082

@ Note: in contrast to BSSN we do not set ¥ = 1

@ Conformal traceless split of the extrinsic curvature
Kj = Aj + 37K
Al = ¢_1O/Z\,j = A,‘j = Q/)_zl_q,'j
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Bowen-York data

@ By further splitting Z\,-j into a longitudinal and a transverse

traceless part, the momentum constraint simplifies significantly
Cook, Living Review Relativity (2000) 05

@ Further assumptions: vacuum, K =0, ¥; =fj, ¥|e =1
where f; is the flat metric in arbitrary coordinates.

Conformal flatness, asymptotic flatness, traceless
@ Then there exists an anlytic solution to the momentum constraint
Aj = 325 [Pin; + Pin; — (f; — minj)P¥n]
+3 (exiS'nknj + ey S'nny)
where r is a coordinate radius and n’ = £

Bowen & York, PRD 21 (1980) 2047
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Properties of the Bowen York solution

@ The momentum in an asymptotically flat hypersurface associated
with the asymptotic translational and rotational Killing vectors §£a)
is
M= g 4., (Ki = 9iK) €5 d°A;
= ...= P'and S’ are the physical linear and angular momentum

of the spacetime

@ The momentum constraint is linear
=- we can superpose Bowen-York data.

The momenta then simply add up

@ Bowen-York data generalizes (analytically!) to higher D
Yoshino, Shiromizu & Shibata, PRD 74 (2006) 124022
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Puncture data

Brandt & Briigmann, PRL 78 (1997) 3606

@ The Hamiltonian constraint is now given by
V29 + T App AT = 0

@ Ansatz for conformal factor: ¢ = gy + U,
where ¥ = YN, 2‘ 7 is the Brill-Lindquist conformal factor,
i.e. the solution for A,-j = 0.

@ There then exist unique C? solutions u to the Hamiltonian
constraints

@ The Hamiltonian constraint in this form is further suitable for

numerical solution
€.g. Ansorg, Bruigmann & Tichy, PRD 70 (2004) 064011
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Properties of the puncture solutions

@ mj and r; are bare mass and position of the i" BH.

@ In the limit of vanishing Bowen York parameters P' = S’ = 0, the
puncture solution reduces to Brill Lindquist data

oo = (1+ 3, 72 ,l) (dx2 + dy? + dz?)

@ The numerical solution of the Hamiltonian constraint generalizes

rather straightforwardly to higher D

Yoshino, Shiromizu & Shibata, PRD 74 (2006) 124022
Zilhao et al, PRD 84 (2011) 084039

@ Punctures generalize to asymptotically de-Sitter BHs
Zilhdo et al, PRD 85 (2012) 104039
using McVittie coordinates McVittie, MNRAS 93 (1933) 325
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2.2.2. Gauge
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The gauge freedom

@ Remember: Einstein equations say nothing about o, '
@ Any choice of lapse and shift gives a solution
@ This represents the coordinate freedom of GR

@ Physics do not dependon o, S
So why bother?

@ The performance of the numerics DO depend strongly on the
gauge!
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What goes wrong with bad gauge?
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What goes wrong with bad gauge?
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Ingredients for good gauge

@ Singularity avoidance

@ Avoid slice stretching

@ Aim at stationarity in comoving frame

@ Well posedness of system

@ Generalize “good” gauge, e .g. harmonic

@ Lots of good luck!
Bona et al, PRL 75 (1995) 600,
Alcubierre et al., PRD 67 (2003) 084023,
Alcubierre, CQG 20 (2003) 607,

Garfinkle, PRD 65 (2001) 044029
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Moving puncture gauge

@ Gauge was a key ingredient in the Moving puncture breakthroughs

Campanelli et al, PRL 96 (2006) 111101
Baker et al, PRL 96 (2006) 111102

@ Variant of 1 + log slicing and '-driver shift
Alcubierre et al, PRD 67 (2003) 084023
@ Now in use as
O = fMOma — 2aK
and
OB = BmOmB + 3B )
otB' = MOmB' + o' — MOyl — nB’
or
O’ = B"OmB’ + 3T — !
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Moving puncture gauge continued

@ Some people drop the advection derivatives 570y, . . .

@ 7 is a damping parameter or position-dependent function

Alic et al, CQG 27 (2010) 245023, Schnetter, CQG 27 (2010) 167001,
et al, PRD 82 (2010) 064004

@ Modifications in higher D:

o Dimensional reduction Zilhdo et al, PRD 81 (2010) 084052
O = BMOma — 2a(nk K + 1k Ke)
o CARTOON Yoshino & Shibata, PTPS 189 (2011) 269
OB = 5(p-2) Vins B’
OB = o1 — B
@ Here nk, 1k, Viong are parameters
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2.2.3. Boundaries
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Inner boundary: Singularity treatment

@ Cosmic censorship = horizon protects outside

@ We get away with it...
Moving Punctures
UTB, NASA Goddard '05

@ Excision: Cut out region around singularity
Caltech-Cornell, Pretorius
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Moving puncture slices: Schwarzschild

evolved trumpet slice ) o
hol innermost grid point
wormhole i+

slice

r=0

initial
wormhole
slice

@ Wormhole — Trumpet slice = stationary 1+log slice

Hannam et al, PRL 99 (2007) 241102, PRD 78 (2008) 064020
Brown, PRD 77 (2008) 044018, CQG 25 (2008) 205004

@ Gauge might propagate at > ¢, no pathologies
Natural excision Brown, PRD 80 (2009) 084042
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Outer boundary

@ — Appendix
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Further reading

@ Initial data construction
Cook, Liv. Rev. Rel. 3 (2000) 5

Pfeiffer, gr-qc/0510016
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2.3 Discretization of the
equations

A review of numerical relativity and black-hole collisions



Finite differencing

@ Consider one spatial, one time dimension ¢, x

@ Replace computational domain by discrete points
Xi=Xo+idx, th=10+ndt

@ Function values f(t, X;) ~ fp

t

dt

dx

X
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Derivatives and finite derivatives

@ Goal: represent 95 in terms of f,

@ Fix index n; Taylor expansion:
fioy = f; — fldx + 3f’dx2 + O(dx®)
fi=f
fiq = £+ fldx + 3fdx® + O(dx®)

@ Write f/ as linear combination: f/ = Afi_y + Bf; + Cfi1

@ Insert Taylor expressions and compare coefficients on both sides
=0=A+B+C, 1=(-A+B)dx, 0=1Adx?+ JCdx?
=A=—5-, B=0, C= 55
= ff = et 4 o(ax?)

@ Higher order accuracy — more points; works same in time
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Mesh refinement

3 Length scales : BH ~1M
Wavelength ~ 10...100 M
Wave zone ~ 100...1000 M
@ Critical phenomena
Choptuik ‘93

@ First used for BBHs

Briigmann '96

@ Available Packages:

Paramesh MacNeice et al. ‘00

Carpet Schnetter et al. 03
SAMRAI MacNeice et al. *00

[m] = =
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Berger-Oliger mesh refinement

@ Goal: Update from t to t + dt
@ Refinement criteria: numerical error, curvature,...
@ Here for 1 + 1 dimensions

0) dataatt
t+dt
+di2

f o] o] ® X @ X ® X & X & x O Q
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Berger-Oliger mesh refinement

@ Goal: Update from t to t + dt
@ Refinement criteria: numerical error, curvature,...
@ Here for 1 + 1 dimensions

1) update coarse grid

+dt © O 0 O O O O Q
+di2
f X ® X & X ® X & x O Q
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Berger-Oliger mesh refinement

@ Goal: Update from t to t + dt
@ Refinement criteria: numerical error, curvature,...
@ Here for 1 + 1 dimensions

2) first update on fine grid
t+dr Q @] o O o Q @] o Qo

+di2 X X X X X X X
f @] O ®x®—I—®X®X®XO Q
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Berger-Oliger mesh refinement

@ Goal: Update from t to t + dt
@ Refinement criteria: numerical error, curvature,...
@ Here for 1 + 1 dimensions

3) prolongation

H+dt © O @] O Q
+di2 X X X X X X X X
3 o] @] l X ® X ® x ® x x
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Berger-Oliger mesh refinement

@ Goal: Update from t to t + dt

@ Refinement criteria: numerical error, curvature,...

@ Here for 1 + 1 dimensions

4) second update on fine grid
et © o O x @ B X & X & O O
+dy2 xxxj—xxxxxx

f o] o] ® X @ X ® X & X & x O Q
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Berger-Oliger mesh refinement

@ Goal: Update from t to t + dt
@ Refinement criteria: numerical error, curvature,...
@ Here for 1 + 1 dimensions

5) prolongation
et © o B X @ X & X & X &= o

+di2 X X X X X X X X X X

f o] o] ® X @ X ® X & X & x O Q
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Berger-Oliger mesh refinement

@ Goal: Update from t to t + dt
@ Refinement criteria: numerical error, curvature,...
@ Here for 1 + 1 dimensions

6) restriction

+dt © O ® X ® X & X ® X 8 x O
X X H® X X X X X X X

f o] o] ® X @ X ® X & X & x O Q
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Alternative discretization schemes

@ Spectral methods: high accuracy, efficiency, complexity
Caltech-Cornell-CITA code SpEC
http://www.black-holes.org/SpEC.html
Applications to moving punctures still in construction
e.g. Tichy, PRD 80 (2009) 104034

Also used in symmetric asymptotically AdS spacetimes
€.g. Chesler & Yaffe, PRL 106 (2011) 021601
@ Finite Volume methods

@ Finite Element methods

D. N. Arnold, A. Mukherjee & L. Pouly, gr-qc/9709038
C. F. Sopuerta, P. Sun & J. Xu, CQG 23 (2006) 251

C. F. Sopuerta & P. Laguna, PRD 73 (2006) 044028
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Further reading

@ Numerical methods
Press et al, “Numerical Recipes’, Cambridge University Press
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3 Results from BH evolutions
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3.1 BHs in GW physics
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Gravitational waves

@ Weak field limit: gog = 7 + hag

e Trace reversed perturbation hys = hog — %Miags
= Vacuum field egs.: Oh,s = 0

@ Apropriate gauge =

____________

0 0o 0 0 CY P YO |
= o 0 h+ h>< 0 ik X© b - “\\ / \'~. - et S
haﬁ B 0 h>< _h+ O e Time
0 0 0 O .
0 TI4 T2 37/4 T
where k% = null vector
, Y 00y Uy ()
@ GWs displace particles LA R W A N R

A review of numerical relativity and black-hole collisions



Gravitational wave detectors

@ Accelerated masses = GWs
@ Weak interaction!

@ Laser interferometric detectors
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The gravitational wave spectrum

The Gravitational Wave Spectrum

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei

7
[}
8 Compact Binaries in our
S Galaxy & beyond
o
(%] Compact objects
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Some targets of GW physics

@ Confirmation of GR
Hulse & Taylor 1993 Nobel Prize

@ Parameter determination
of BHs: M, S

@ Optical counter parts
Standard sirens (candles)
Mass of graviton

@ Test Kerr Nature of BHs
@ Cosmological sources

@ Neutron stars: EOS
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Free parameters of BH binaries

@ Total mass M
Relevant for GW detection: Frequencies scale with M

Not relevant for source modeling: trivial rescaling

M. —_ MM
@ Mass ratio g = M‘, n= (M11+/v?2)2

@ Spin: Si, S (6 parameters)

@ Initial parameters
Binding energy Ey Separation
Orbital ang. momentum L Eccentricity

Alternatively: frequency, eccentricity
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BBH trajectory and waveform

@ g = 4, non-spinning binary; ~ 11 orbits

US, Briigmann, Miiller & Sopuerta '11
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Morphology of a BBH inspiral

Thanks to Caltech, Cornell, CITA
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Matched filtering

@ BH binaries have 7 parameters: 1 mass ratio, 2 x 3 for spins

@ Sample parameter space, generate waveform for each point

e NR + PN

e Effective one body

Ninja, NRAR Projects

)  GEO 600 noise
O chirp signal
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Template construction

@ Stitch together PN and NR waveforms

@ EOB or phenomenological templates for > 7-dim.
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Template construction

@ Phenomenological waveform models
e Model phase, amplitude with simple functions — Model parameters

o Create map between physical and model parameters
e Time or frequency domain

Ajith et al, CQG 24 (2007) S689, PRD 77 (2008) 104017, CQG 25 (2008)
114033, PRL 106 (2011) 241101; Santamaria et al, PRD 82 (2010)
064016, Sturani et al, arXiv:1012.5172 [gr-qc]

e Effective-one-body (EOB) models

e Particle in effective metric, PN, ringdown model
Buonanno & Damour PRD 59 (1999) 084006, PRD 62 (2000) 064015

o Resum PN, calibrate pseudo PN parameters using NR
Buonanno et al, PRD 77 (2008) 026004, Pan et al, PRD 81 (2010)
084041, PRD 84 (2012) 124052; Damour et al, PRD 77 (2008) 084017,
PRD 78 (2008) 044039, PRD 83 (2011) 024006
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Going beyond GR: Scalar-tensor theory of gravity

@ Brans-Dicke theory: 1 parameter wgp; well constrained
@ Bergmann-Wagoner theories: Generalize w = w(¢)

@ No-hair theorem: BHs solutions same as in GR
€.g. Hawking, Comm.Math.Phys. 25 (1972) 167
Sotiriou & Faraoni, PRL 108 (2012) 081103

@ Circumvent no-hair theorem:
Scalar bubble

Healey et al, arXiv:1112.3928 [gr-qc]

7 Reldo, /dt] / (Mo)

@ Circumvent no-hair theorem:
Scalar gradient

Berti et al, arXiv:1304.2836 [gr-qc]
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3.2. High-energy collisions of
BHs
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The Hierarchy Problem of Physics

@ Gravity ~ 10739x other forces

@ Higgs field ~ pops = 250 GeV = /2 — N2
where A ~ 10'® GeV is the grand unification energy

@ Requires enormous finetuning!!!
@ Finetuning exist: 287831321 — 8.0000000729

@ Or Epjanck much lower? Gravity strong at small r?

= BH formation in high-energy collisions at LHC
@ Gravity not measured below 0.16 mm! Diluted due to...

o Large extra dimensions Arkani-Hamed, Dimopoulos & Dvali ‘98

e Extra dimension with warp factor Randall & Sundrum 99
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Stages of BH formation

Black Holes on Demand

Scientists are exploring the possibility of preducing miniature black heolas en demand by smashing particles
together. Theair plans hinge on the theory that the universe contains more than the three dimensions of
averyday life. Hera's tha idea:

Particles collide in three

dimensional space, shown
below as a flat plane.

9 -9

gravitational force

EXTRA DIMENSION

Asg the particles approach When the particles are ex- The extra dimensions woeuld Such a black hole would
in @ particle accelerater, tremely close, they may enter  allow gravity to increase immediately evaporate,
their gravitational alfraction  space with more dimensions,  more rapidly so a black hole sending out a unigue pat-
increases steadily. shown above as a cube. can form, tern of radiation.

@ Matter does not matter at energies well above the Planck scale
= Model particle collisions by black-hole collisions

Banks & Fischler, gr-qc/9906038; Giddings & Thomas, PRD 65 (2002) 056010
=] F = = E DA
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Does matter “matter”?

@ Hoop conjecture = kinetic energy triggers BH formation

@ Einstein plus minimally coupled, massive, complex scalar filed
“Boson stars”  Pretorius & Choptuik, PRL 104 (2010) 111101

v=4

@ BH formation threshold: v = 2.9 10 % ~ 1/3 Yhoop

@ Model particle collisions by BH collisions
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Does matter “matter”?

@ Perfect fluid “stars” model

@ v=8...12; BH formation below Hoop prediction
East & Pretorius, PRL 110 (2013) 101101

@ Gravitational focussing = Formation of individual horizons

a

NN

@ Type-| critical behaviour

@ Extrapolation by 60 orders would imply no BH formation at LHC
Rezzolla & Tanaki, CQG 30 (2013) 012001

o [ =
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Experimental signature at the LHC

Black hole formation at the LHC could be detected by the properties of
the jets resulting from Hawking radiation. BlackMax, Charybdis

@ Multiplicity of partons: Number of
jets and leptons

@ Large transverse energy

@ Black-hole mass and spin are
important for this!

ToDo:
@ Exact cross section for BH formation

@ Determine loss of energy in gravitational waves

@ Determine spin of merged black hole
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D = 4: Initial setup: 1) Aligned spins

@ Orbital hang-up Campanelli et al, PRD 74 (2006) 041501
@ 2 BHs: Total rest mass: Mo = Ma, o+ Mg, o
Boost: vy =1/v1—Vv2 ~ M=~+M,

o Impact parameter: b= 5
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D = 4: Initial setup: 2) No spins

@ Orbital hang-up Campanelli et al, PRD 74 (2006) 041501
@ 2 BHs: Total rest mass: Mo = Ma, o+ Mg, o
Boost: vy =1/v1—Vv2 ~ M=~+M,

o Impact parameter: b= 5
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D = 4: Initial setup: 3) Anti-aligned spins

@ Orbital hang-up Campanelli et al, PRD 74 (2006) 041501
@ 2 BHs: Total rest mass: Mo = Ma, o+ Mg, o
Boost: vy =1/v1—Vv2 ~ M=~+M,

o Impact parameter: b= 5
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D = 4: Head-on: b =0, S=0

@ Total radiated energy: 14 +3 % for v — 1
US et al, PRL 101 (2008) 161101

About half of Penrose '74
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@ Agreement with approximative methods
Flat spectrum, GW multipoles  Berti et al, PRD 83 (2011) 084018
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D= 4:Grazing: b#0, S=0, ~=152

@ Radiated energy up to at least 35 % M

@ Immediate vs. Delayed vs. No merger
US et al, PRL 103 (2009) 131102
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D = 4: Scattering threshold bg; for S=0

@ b < byt = Merger
b > bycar = Scattering

@ Numerical study: by = L‘/O-OSM
Shibata et al, PRD 78 (2008) 101501 (R)

@ Independent study US et al, PRL 103 (2009) 131102, arXiv:1211.6114
~v=1.23...2.93:
x = —0.6, 0, +0.6 (anti-aligned, nonspinning, aligned)

@ Limit from Penrose construction: b.i = 1.685 M
Yoshino & Rychkov, PRD 74 (2006) 124022
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D = 4: Scattering threshold and radiated energy S #£0

2=—0.85 (anti aligned)
v 2=-06 (anti aligned)
o z=0

A z=+06 (aligned)

A 74055 (aligned)
— 2.5V (Shibata etal)
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US et al, arXiv:1211.6114

@ At speeds v 2 0.9 spin effects washed out

@ E,,4 always below < 50 % M
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D = 4: Absorption

@ For large ~v: Exin =~ M
@ If En is not radiated, where does it go?
@ Answer: ~ 50 % into E 54, ~ 50 % is absorbed

US et al, arXiv:1211.6114
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3.3 Fundamental properties
of BHs
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Stability of AdS

@ m = 0 scalar field in as. flat spacetimes

Choptuik, PRL 70 (1993) 9

p > p* = BH, p < p* = flat

@ m = 0 scalar field in as. AdS Bizon & Rostworowski, PRL 107 (2011)
031102

@ Similar behaviour for “Geons” -

Dias, Horowitz & Santos '11

@ D > 4 dimensions

0.015 -

Jatmuzna et al, PRD 84 (2011) F
085021 001
@ D = 3: Mass gap: smooth oo
solutions 3

Bizon & Jatmuzna, arXiv:1306.0317
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Stability of AdS

@ Pulses narrow under successive reflections

Buchel et al, PRD 86 (2012) 123011
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@ 3 Non-linearly stable solutions in AdS

Buchel et al, arXiv:1304.4166,

Maliborski & Rostworowski arXiv:1303.3186

Dias et al, CQG 29 (2012) 235019,
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Bar mode instability of Myers-Perry BH

@ MP BHs (with single ang.mom.) should be unstable.

@ Linearized analysis Dias et al, PRD 80 (2009) 111701(R)
i
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Non-linear analysis of MP instability

Shibata & Yoshino, PRD 81 (2010) 104035
@ Myers-Perry metric; transformed to Puncture like coordinate
@ Add small bar-mode perturbation

2/ (o=l /2)2+ (I ja— 3 4)?

@ Deformation n :=

o+ /2
0.1
0.01 +
= A
0.001 | ks —
0.0001 L : :
0 50 100 150

[//Jl/4
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Cosmic Censorshipin D=5

Pretorius & Lehner, PRL 105 (2010) 101102

1=215.674 o

@ Axisymmetric code

@ Evolution of black string...

@ Gregory-Laflamme instability
cascades down
in finite time
until string has zero width

= naked singularity
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Cosmic Censorship in D = 4 de Sitter
Zilho et al, PRD 85 (2012) 124062
@ Two parameters: MH, d
@ Initial data: McVittie type binaries McVittie, MNRAS 93 (1933) 325
@ “Small BHs”: d < d;t = merger
d > dgjit = no common AH

@ “Large” holes at small d: Cosmic Censorship holds

0.5¢ 1 g

£ 090 O e o/ -0-

z/m z/m z/m
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Further reading

@ Reviews about numerical relativity
Centrella et al, Rev. Mod. Phys. 82 (2010) 3069

Pretorius, arXiv:0710.1338
Sperhake et al, arXiv:1107.2819
Pfeiffer, CQG 29 (2012) 124004
Hannam, CQG 26 (2009) 114001

Sperhake, IJMPD 22 (2013) 1330005
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Appendix
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A.1 Generalized Harmonic
formulation
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The Generalized Harmonic (GH) formulation

@ Harmonic gauge: choose coordinates such that
Ox* =V, VkEx® = —ghTi, =0

@ 4-dim. version of Einstein equations

Rug = — 39" 0,0,Gap + - - -

Principal part of wave equation = Manifestly hyperbolic
@ Problem: Start with spatial hypersurface t = const.

Does t remain timelike?

@ Solution: Generalize harmonic gauge

Garfinkle, APS Meeting (2002) 12004, Pretorius, CQG 22 (2005) 425,
Lindblom et al, CQG 23 (2006) S447

— Source functions  H* =V, VFx* = —giT%,
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The Generalized harmonic formulation

@ Any spacetime in any coordinates can be formulated in GH form!
Problem: find the corresponding H“
@ Promote H* to evolution variables
@ Einstein field equations in GH form:
29" 0.00908 = —0Gu(a 9p)9" — OaHp) + Hulhg
—Ttal%s = p23gas = 87 (T = plp Tas)
with constraints
Co=He—Ox* =0
@ Still principal part of wave equation !!! Manifestly hyperbolic

Friedrich, Comm.Math.Phys. 100 (1985) 525, Garfinkle, PRD 65 (2002)
044029, Pretorius, CQG 22 (2005) 425
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Constraint damping in the GH system

@ One can show that
C%—0 =0, 9C% =0 < The ADMH =0, M,;=0
@ Bianchi identities imply evolution of C*:
[0Cy = —CHV(,,Coy — CH [syr (T,m _ ﬁTgW) + 2 2/\gw}
@ In practice: numerical violations of C* = 0 = unstable modes
@ Solution: add constraint damping
39" 0401905 = ~0uGu(a 059" — aHs) + HuThs — Thallg
— 257\ Gas — 87 (T = pLp Tdas) — % [27(aCh) — AGapCi]
Gundlach et al, CQG 22 (2005) 3767
@ E.g. Pretorius, PRL 95 (2005) 121101: k = 1.25/m, A =1
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Gauge conditions in the GH formulation

@ How to choose H,? — some experimentation...
@ Pretorius’ breakthrough

OH; = —& 951 + &nt0,, Hy with

o

& =19/m, & =25/m, n=5 where m = mass of 1 BH

@ Caltech-Cornell-CITA spectral code:
Initialize H,, to minimize time derivatives of metric,
adjust H, to harmonic and damped harmonic gauge condition

Lindblom & Szilagyi, PRD 80 (2009) 084019, with Scheel, PRD 80 (2009)
124010

@ The H, are related to lapse and shift: n*H, = —-K — n*0,Ina
P Hu = ="y + M Om(IN @) + L0,
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Summary GH formulation

@ Specify initial data g.3, 0tgag att =0
which satisfy the constraints C* = 9;C* =0

@ Constraints preserved due to Bianchi identities

@ Alternative first-order version of GH formulation
Lindblom et al, CQG 23 (2006) S447

@ Auxiliary variables — First-order system
@ Symmetric hyperbolic system

— constraint-preserving boundary conditions
o Used for spectral BH code SpEC

Caltech, Cornell, CITA
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A.2 Characteristic
formulation
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Characteristic coordinates

@ Consider advection equation 9;f + adxf =0
@ Characteristics: curves C: x — at+xp & % =a
df |, _ of | afdx|, _ of af _
aglc = 5t T 5xgilc = 5 +@g; =0 = fconstant along C

f

X
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Characteristic “Bondi-Sachs” formulation
Here: D=4, A=0
@ Foliate spacetime using characteristic surfaces; light cones

Bondi, Proc.Roy.Soc.A 269 (1962), 21; Sachs, Proc.Roy.Soc.A 270 (1962), 103

@ ‘u=t—r, v=1t+r" — double null, ingoing or outgoing

outgoing null timelike foliation
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Characteristic “Bondi-Sachs” formulation

@ Write metric as
ds? = VEL du? — 2e?Pdudr + r2hap(dx? — UAdu)(dxB — UBdu)
2hagdx”dxB = (e® + €29)d6? + 4sin @ sinh(y — §)dode
+sin? (e 27 + e 2%)dp?
@ Introduce tetrad k, ¢, m, m such that
g(k,?) =1, g(m,m) =1 and all other products vanish

@ The Einstein equations become

4 hypersurface egs.: R, k*k” = R, k*m” = R,,m"m" =0
@ 2 evolution egs.: R, m*m” =0

1 trivial eq.: R, k*¢¥ =0

3 supplementary egs.: R, ¢#m” = R, ¢"¢* =0
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Integration of the characteristic equations

@ Provide initial data for +, § on hypersurface u = const

@ Integrate hypersurface egs. alongr — 3, V,U”atu
— 3 “constants” of integration M;(6, ¢)
@ Evolve ~, § using evolution egs.

— 2 “constants” of integration — complex news d,c(u, 6, ¢)

@ Evolve the M; through

y ~ yd
7 N A e
the supplementary egs. e v’f //

Y(r,0,0),5(r,0,¢) specified on u = uo
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Summary characteristic formulation

@ Naturally adapted to the causal structure of GR

@ Clear hierarchy of equations — isolated degrees of freedom
@ Problem: caustics — breakdown of coordinates

@ Well suited for symmetric spacetimes, planar BHs

@ Solution for binary problem?
Recent investigation: Babiuc, Kreiss & Winicour, arXiv:1305.7179 [gr-qc]

@ Application to characteristic GW extraction

Babiuc, Winicour & Zlochower, CQG 28 (2011) 134006
Reisswig et al, CQG 27 (2010) 075014
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A.3 Boundaries
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Outer boundary: Asymptotically flat case

@ Computational domains often don’t extend to oo

@ Outgoing Sommerfeld conditions

Assume f = f, + 420

where fy = asymptotic value
ou+o,u=0
Of + nf fo 4F X7'6,f: 0

@ Use upwinding, i.e. one-sided, derivatives!

O
O
O
O
O
O
0
O

o—=o0
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Non-asymptotically flat case: de Sitter

@ In McVittie coordinates:
r— oo = ds?=—df?+ a(t)?(r? + r2dQ3)
where a(t) = e, H=./A/3
@ Radial null geodesics: dt = +adr
We expect: f=fo + M
= Of — Oefo + i Orf + Nzl — H(f —f5) =0
Zilhdo et al, PRD 85 (2012) 104039

A review of numerical relativity and black-hole collisions



Anti de Sitter

Much more complicated!

Conformal diagram of:
P,
NOT
Globally % globally
hyperbolic hyperbolic

Minkowski space-time

Anti-de-Sitter space-time

@ Time-like outer boundary = affects interior

@ AdS metric diverges at outer boundary
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Anti de Sitter metric

@ Maximally symmetric solution to Einstein egs. with A < 0

e Hyperboloid X2 + X3 — S"27" X?

]
embedded in D + 1 dimensional flat spacetime of signature

——+...+
@ Global AdS
Xo=Lg%5 Xa= Lé‘é’;;

Xi = Ltanp Q,-, fori=1...D—1, Q;hyperspherical coords.

= ds? = (—dr2 + dp? +sin? p dQ3 )

cos2

where0<p<7/2, —m<7<m

@ Outer boundary at p = /2
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Anti de Sitter metric continued

@ Poincaré coordinates
Xo = o [22 + L2 Z,';_f(x")z - tz}
X; = LX' fori=1...D—-2
Xous = 3 |2 12+ S E0R — ]
Xg=14
= ds? = £ |02 + aZ? + 10 (o)

where z > 0, t e R
@ Outer boundary at z=0

€.g. Ballén Bayona & Braga, hep-th/0512182
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AdS spacetimes: Outer boundary

@ AdS boundary: p — /2 (global)

zZ — 0 (Poincaré)

@ AdS metric becomes singular
= induced metric determined up to conformal rescaling only

® Global:  dsf ~ —dr?+dQp »
Poincaré: dsg ~ —dt? + S-P=2 d(x/)2
= Different topology: R x Sp_» and RP—1

@ The dual theories live on spacetimes of different topology
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Regularization methods

@ Decompose metric into AdS part plus deviation
Bantilan & Pretorius, PRD 85 (2012) 084038

@ Factor out appropriate factors of the bulk coordinate

Chesler & Yaffe, PRL 106 (2011) 021601
Heller, Janik & Witaszczyk, PRD 85 (2012) 126002

@ Factor out singular term of the metric
Bizon & Rostworowski, PRL 107 (2011) 031102

@ Regularity of the outer boundary may constrain the gauge freedom
Bantilan & Pretorius, PRD 85 (2012) 084038
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A.4 Diagnostics
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The subtleties of diagnostics in GR

@ Successful numerical simulation = Numbers for grid functions
@ Typically: Spacetime metric g,3 and time derivative or
ADM variables vj, Kj, a, 8’

@ Challenges
e Coordinate dependence of numbers = Gauge invariants

Global quantities at oo, computational domain finite = Extrapolation

Complexity of variables, e.g. GWs =- Spherical harmonics

Local quantities: meaningful? = Horizons

@ AdS/CFT correspondence: Dictionary
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Newton'’s gravitational constant

@ Note: We wrote the Einstein equations for A = 0 as
R.s — 39.5R = 87GT,5

@ The (areal) horizon radius of a static BH in D dimensions then is

(D-3 _ _16nGM
s T (D-2)_z
D 1
where Qp_» = is the area of the D — 2 hypersphere

(D 1)

@ The Hawking entropy formula is S = 242

@ But Newton’s force law picks up geometrical factors:

F — (D-3)87G Mm 4
- (D—Z)QD,Q rb-2

See e.g. Emparan & Reall, Liv. Rev. Rel. 6 (2008)
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Global quantities

@ Assumptions
e Asymptotically, the metric is flat and time independent

e The expressions also refer to Cartesian coordinates

@ ADM mass = Total mass-energy of spacetime

Maom = z0555 IMr—co [s, VIV ™™ (Onmk — kymn)dIS)
@ Linear momentum of spacetime

Pi = gag iMro0 [, V(K™ = 8™iK)dSm
@ Angular momentumin D = 4

Ji = grei™lim oo [o AX (K"m — 6"mK)dS,

@ By construction, these are time independent!
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Apparent horizons

@ By Cosmic censorship, existence of an apparent horizon implies
an event horizon

@ Consider outgoing null geodesics with tangent vector k*
@ Def.: Expansion © = V k*
@ Def.: Apparent horizon = outermost surface where © =0

@ On a hypersurface ¥;, the condition for © = 0 becomes
Dms™ — K + Kmns™s",
where s’ = unit normal to the (D — 2) dimensional AH surface
e.g. Thornburg, PRD 54 (1996) 4899
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Apparent horizons continued

@ Parametrize the horizon by r = f(¢'),
where r is the radial and ¢ are angular coordinates

@ Rewrite the condition © = 0 in terms f(¢)
= Elliptic equation for f(¢)

@ This can be solved e.g. with Flow, Newton methods
Thornburg, PRD 54 (1996) 4899, Gundlach, PRD 57 (1998) 863

Alcubierre et al, CQG 17 (2000) 2159, Schnetter, CQG 20 (2003) 4719

@ Irreducible mass M, = |/ 724

@ BHmassin D=4: M?> = M2 + 2 e " (+P2),
where S is the spin of the BH, Christodoulou, PRL 25 (1970) 1596

A review of numerical relativity and black-hole collisions



Gravitational waves in D = 4: Newman Penrose

@ Construct a Tetrad
e n“ = Timelike unit normal field
e Spatial triad u, v, w through Gram-Schmidt orthogonalization
E.g. starting with u' = [x,y,z], V' =[xz, yz,—x? — y?],
w = € pvmw’
o ("= 5(n*+uY), k%= _5(n"—u”), m*=5(v+iw®)
= —¢-k=1=m-m, all other products vanish

@ Newman-Penrose scalar Wy = Cop,sk*M° kY m°
@ In vacuum, Ca/gwg = Raﬁ,y(g
@ For more detalils, see e.g.

Nerozzi, PRD 72 (2005) 024014, Brigmann et al, PRD 77 (2008) 024027
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Analysis of V4

@ Multipolar decomposition: Wy = 3", , tem(t, ) Y;,5(06),
where Yy, = 02” Jo W4 Y, 2sinfgdode

: CdE _ i P2 t e
@ Radiated energy: & = lim,, | 5= [o ‘f_oo \U4dt’ aQ

. oP , r2 t =
@ Momentum: % = — im0 | 15= [0 li | [ o lll4dt‘ aQ|,
where ¢; = [—sinf cos ¢, —sinf sin¢$, —cos 6]

@ Angular mom.: %z =

—limy o { f5Re [ (96 ' Wadll) (1 ' Vaditdt) de]}
see e.g. Ruiz et al, GRG 40 (2008) 2467
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The AdS/CFT dictionary: Fefferman-Graham coords.

@ AdS/CFT correspondence
= Vacuum expectation values (Tj) of the field theory given by
quasi-local Brown-York stress-energy tensor
Brown & York, PRD 47 (1993) 1407

@ Consider asymptotically AdS metric in Fefferman-Graham
coordinates

ds? = gy, dxtdx” = L (dr? + ydx’dx)),

where
i(Fs XT) = 0y + PPy + - - + rPvoy + AepyrP log r?2 + O(rP+1),

@ Note: This asymptotes to Poincaré coordinates as r — 0
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The AdS/CFT dictionary: Fefferman-Graham coords.

@ Here, the v(z)j, h(p); are functions of x’,
logarithmic terms only appear for even D,
powers of r are exclusively even up to order D — 1

@ Vacuum expectation values of CFT momentum tensor for D = 4 is
3
(Tiy) = vemg {7(4)/'/ — 570l — @) ek @)mn)

- Piei™@m + Heine |

where (5) = Tr(y(n)j) = Yoy V()i
de Haro et al, Commun.Math.Phys. 217 (2001) 595; also for other D

@ Note: v(p); is determined by v(); = CFT freedom given by v(a);
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AdS/CFT: Renormalized stress-tensor

@ Again: Brown-York stress-tensor — as the VEVs of the field theory
_ 0Su

T ap

Regularize by adding boundary curvature invariants to Seg
Balasubramanian & Kraus, Commun.Math.Phys. 208 (1999) 413

@ Divergencies in (T20)

@ Foliate D dimensional spacetime into timelike hypersurfaces ¥,
homoemorphic to the boundary
= ds? = a2dr? + yap(dx? 4 B2dr)(dx? + BPdr) (like ADM)

@ N = outward pointing normal vector to the boundary
o = —J(VHRY + Vi)  Extrinsic curvature
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AdS/CFT: Renormalized stress-tensor

@ Including counter terms, for ADSs:
T = gl [0~ @y — i - o]
where G,,,, is the Einstein tensor of the induced metric v,

@ Note: Applying this to the global ADSs metric gives TH # 0
= Casimir energy of quantum field theory on S® x R

@ Other D: cf. Balasubramanian & Kraus, Commun.Math.Phys. 208 (1999) 413

@ AdS/CFT Dictionary for additional fields, see e.g.

Skenderis, CQG 19 (2002) 5849
de Haro et al, Commun.Math.Phys. 217 (2001) 595
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Further reading

@ Isolated and dynamical horizons
Ashtekar & Krishnan, Liv. Rev. Rel. 7 (2004) 10
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A.5 BHs in Astrophysics
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Evidence for astrophysical black holes

@ X-ray binaries
e. g. Cygnus X-1 (1964)
MS star + compact star

= Stellar Mass BHs
~5...50 M,

@ Stellar dynamics
near galactic centers,
iron emission line profiles
= Supermassive BHs
~108...10% M, : -
AGN engines I e
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Correlation of BH and host galaxy properties

@ Galaxies ubiquitously harbor BHs
@ BH properties correlated with bulge properties

€. g. J.Magorrian et al., AJ 115, 2285 (1998)

Star Formation Shuts Down

-
’ 4
.‘_'
"‘
P
P b »
'1’ -

‘-“‘

|
0
:
]
2

GALAXY MASS
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SMBH formation

@ Most widely accepted scenario for galaxy formation:
hierarchical growth; “bottom-up”

@ Galaxies undergo frequent mergers = BH merger
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Gravitational recoil

@ Anisotropic GW emission = recoil of remnant BH
Bonnor & Rotenburg '61, Peres '62, Bekenstein '73

@ Escape velocities: Globular clusters 30 km/s

dSph 20 — 100 km/s
dE 100 — 300 km/s
Giant galaxies ~ 1000 km/s

Ejection / displacement of BH =
@ Growth history of SMBHs

@ BH populations, IMBHs

@ Structure of galaxies
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Kicks from non-spinning BHs

@ Max. kick: ~ 180 km/s, harmless!

Gonzalez et al., PRL 98, 091101 (2009)

200

T I T
x num.data Paper 1
¢ num.datag=10
— Gonzalez et al.
150H=-- Eq.(1) Baker et al.
-— Eq.(1) Schnittman, Buonanno P

Vo k]
5

0.05 0.1 0.15 0.2 0.25
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Spinning BHs: Superkicks

@ Superkick configuration:

<-0!}_ A -@» B _@,_ ¢ <P .

@ Kicks up t0 Viax =~ 4000 km/s

Campanelli et al., PRL 98 (2007) 231102
Gonzélez et al. PRL 98 (2007) 231101

@ Suppression via spin alignment and Resonance effects in inspiral
Schnittman, PRD 70 (2004) 124020

Bogdanovicz et al, ApJd 661 (2007) L147
Kesden et al, PRD 81 (2010) 084054, ApJ 715 (2010) 1006
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Even larger kicks: superkick and hang-up

Lousto & Zlochower, arXiv:1108.2009 [gr-qc]

Superkicks Hangup
@ Moderate GW generation @ Strong GW generation
@ Large kicks @ No kicks
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Superkicks and orbital hang-up

5000

«=0.91 (New)
=0.707 (New)
—— =1 (New)
-—-- «=0.707 (old)

4000 -

3000

2000 -

1000 [

Ll

@ Maximum kick about 25 % larger: v, ~ 5000 km/s
@ Distribution asymmetric in 8; vmax for partial alignment

@ Supression through resonances still works
Berti et al, PRD 85 (2012) 124049
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Spin precession and flip

@ X-shaped radio sources

Merrit & Ekers, Science 297
(2002) 1310

3c223.1

o SRt

@ Jet along spin axis

@ Spin re-alignment

3c403 NGC326

= new + old jet T S T gy e st
@ Spin precession 98° » g

Spin flip 71° "

Campanelli et al, PRD 75 (2006) o

064030
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Jets generated by binary BHs

Palenzuela et al, PRL 103 (2009) 081101, Science 329 (2010) 927
@ Non-spinning BH binary
@ Einstein-Maxwell equtions with “force free” plasma
@ Electromagnetic field extracts energy from L = jets

@ Optical signature: double jets

(a) —8.2 Mg hrs (b) 4.6 Mg hrs
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A.6. BH Holography
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Large N and holography

@ Holography

e BH entropy oc Axor

e For a Local Field Theory
entropy o« V

e Gravity in D dims

&AdS an Einstein

& local FTin D — 1 dims o stsogadi
@ Large N limit
e Perturbative expansion of gauge theory in g°N

~ loop expansion in string theory

o N: # of “colors”
g?>N: t'Hooft coupling

o [ =
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The AdS/CFT conjecture

Maldacena, Adv.Theor.Math.Phys. 2 (1998) 231

@ “strong form”: Type lIb string theory on AdSs x S°
< N = 4 super Yang-Mills in D = 4
Hard to prove; non-perturbative Type llb String Theory?
@ “weak form”: low-energy limit of string-theory side
= Type lIb Supergravity on AdSs x S°
@ Some assumptions, factor out S°
= General Relativity on AdSs
@ Corresponds to limit of large N, g?N in the field theory
@ E. g. Stationary AdS BH < Thermal Equil. with Ty, in dual FT
Witten, Adv.Theor.Math.Phys. 2 (1998) 253
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The boundary in AdS

@ Dictionary between metric properties and

vacuum expectation values of CFT operators.

E. g. T, operator of CFT « transverse metric on AdS boundary.
@ The boundary plays an active role in AdS! Metric singular!

Conformal diagram of:

0

P
NOT
Globally by globally
hyperbolic hyperbolic

Minkowski space-time
Anti-de-Sitter space-time
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Collision of planar shockwaves in N' = 4 SYM

@ Dual to colliding gravitational shock waves in AADS
@ Characteristic study with translational invariance

Chesler & Yaffe PRL 102 (2009) 211601, PRD 82 (2010) 026006, PRL 106
(2011) 021601

@ Initial data: 2 superposed shockwaves
ds? = r?[—dx;dx_ + dx ] + H[dr? + h(x+)dxZ]
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Collision of planar shockwaves in N’ = 4 SYM

@ Initially system far from equilibrium
@ |sotropization after Av ~4/u ~ 0.35 fm/c

@ Confirms hydro sims. of QGP ~ 1 fm/c  Heinz, nucl-th/0407067

puz =10 uz =3
—_7P/pt
0.15|—Pu/n’ /\\
===hydro
0.1
0.05 J T
— L= -"/
e
2 0 2 4 6 01 2 3 4 5 6
uo Hv

@ Non-linear vs. linear Einstein Egs. agree within ~ 20 %
Heller et al, PRL 108 (2012) 191601

@ Thermalization in ADM formulation Heller et al, PRD 85 (2012) 126002
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Cauchy (“4+1”) evolutions in asymptotically AdS

@ Characteristic coordinates successful numerical tool in AAS/CFT
@ But: restricted to symmetries, caustics problem...
@ Cauchy evolution needed for general scenarios? Cf. BBH inspiral!!

@ Cauchy scheme based on generalized harmonic formulation
Bantilan & Pretorius, PRD 85 (2012) 084038

SO(3) symmetry

Compactify “bulk radius”

Asymptotic symmetry of AdSs: SO(4,2)

e Decompose metric into AdSs piece and deviation

Gauge must preserve asymptotic fall-off
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Cauchy (“4+1”) evolutions in asymptotically AdS

@ Scalar field collapse
@ BH formation and ringdown

@ Low order QNMs ~
perturbative studies, 004

but mode coupling %l

@ CFT stress-energy tensor

consistent with thermalized - B
N =4 SYM fluid

@ Difference of CFT Tyy
and hydrO (—|—1St, 2nd CorrS_) 00 05 10 15 20 25
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