The impact of spin-orbit resonances on astrophysical black-hole populations

U. Sperhake

DAMTP, University of Cambridge

・ロッ ・ 一 ・ ・ ー ・ ・ ー ・

Southampton Gravity Seminar 16th May 2013

U. Spectrake (DAMTR, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations in B

Overview

- Introduction
- Spin orbit resonances
- Final BH spins
- Suppression of superkicks
- Stellar-mass BH binary formation
- Kesden, Sperhake & Berti, PRD 81 (2010) 084054
- Kesden, Sperhake & Berti, ApJ 715 (2010) 1006-1011
- Berti, Kesden & Sperhake, PRD 85 (2012) 124049
- Gerosa, Kesden, Berti, O'Shaughnessy & Sperhake, arXiv:1302.4442 [gr-qc]
- Schnittman, PRD 70 (2004) 124020

・ロッ ・行 ・ ・ ヨッ ・ コッ

-

1. Introduction

U. Speritake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 3159

Introduction: Kicks

- Galaxies ubiquitously harbor BHs
- BH properties correlated with bulge properties
 - e. g. J.Magorrian et al., AJ 115, 2285 (1998)

Introduction

- Most widely accepted scenario for galaxy formation: hierarchical growth; "bottom-up"
- Galaxies undergo frequent mergers, especially elliptic ones

U. Sperhake (DAMTP, University of Cambo The impact of spin-orbit resonances on astrophysical black-hole perpedations Si

Superkicks

- Numerical relativity breakthroughs in 2005
 Pretorius '05, Goddard, RIT '06
- NR now able to accurately calculate kicks
- Superkicks: up to several 1000 km/s González et al. '07, Campanelli et al. '07
- > escape velocities from giant galaxies!

▲□▶▲□▶▲≡▶▲≡▶ ≡ めのの

U. Sperhake (DAMTP, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations 6.15

Introduction: BH binary formation

Evolution of single stars

U. Sperhake (DAMTP, University of Cambri<mark>The impact of spin-orbit resonances on astrophysical black-hole populations</mark> 775

Introduction: BH binary formation

Stellar binaries

- Tides
- Roche lobe \Rightarrow mass transfer

U. Spentake (DAMTP, University of Cambri<mark>The impact of spin-orbit resonances on astrophysical black-hole populations</mark> 8159

Gravitational wave detectors

LIGO, VIRGO upgraded; ET design studies

Comparison (DAMTR University of Cambridge The impact of spin-orbit resonances on astrophysical black-hole populations of 50

Gravitational wave detectors

GW sources

What can we learn from GW observations about BH binary formation?

U Spendake (DAMTP, University of Cambo The impact of spin-orbit resonances on astrophysical black-hole populations 0159

2. Spin orbit resonances

Despendence (DAMTR, University of Candol The impact of spin-orbit resonances on astrophysical black-hole populations

(ロ) (同) (E) (E) (E)

Parameters of a black-hole binary

10 intrinsic parameters for quasi-circular orbits

- 2 masses m₁, m₂
- 6 for two spins S₁, S₂
- 2 for the direction of the orbital ang. mom. L.
 Elimination of parameters in PN inspiral
 - 1 mass; scale invariance
 - 2 for L; fix z axis
 - 2 spin magnitudes, 1 mass ratio q; conserved
 - 1 spin direction; fix x axis

< ロ > < 同 > < 三 > < 三 > -

Evolution variables

 \Rightarrow Three variables: θ_1 , θ_2 , $\Delta \phi$

U. Sperhake (DAMTP, University of Cambrist The impact of spin-orbit resonances on astrophysical black-hole populations 3, 59

(ロ) (部) (目) (目)

Evolution equations

$$\begin{split} \frac{d\mathbf{S}_1}{dt} &= \Omega_1 \times \mathbf{S}_1, \qquad M\Omega_1 = \eta v^5 \left(2 + \frac{3q}{2} \right) \hat{\mathbf{L}} + \frac{v^6}{2M^2} \left[\mathbf{S}_2 - 3 \left(\hat{\mathbf{L}} \cdot \mathbf{S}_2 \right) \hat{\mathbf{L}} - 3q \left(\hat{\mathbf{L}} \cdot \mathbf{S}_1 \right) \hat{\mathbf{L}} \right]; \\ \frac{d\mathbf{S}_2}{dt} &= \Omega_2 \times \mathbf{S}_2, \qquad M\Omega_2 = \eta v^5 \left(2 + \frac{3}{2q} \right) \hat{\mathbf{L}} + \frac{v^6}{2M^2} \left[\mathbf{S}_1 - 3 \left(\hat{\mathbf{L}} \cdot \mathbf{S}_1 \right) \hat{\mathbf{L}} - \frac{3}{q} \left(\hat{\mathbf{L}} \cdot \mathbf{S}_2 \right) \hat{\mathbf{L}} \right]; \\ \frac{d\hat{\mathbf{L}}}{dt} &= -\frac{v}{\eta M^2} \frac{d}{dt} (\mathbf{S}_1 + \mathbf{S}_2); \\ \\ \frac{dv}{dt} &= \frac{32}{5} \frac{\eta}{M} v^9 \left\{ 1 - v^2 \frac{743 + 924\eta}{336} + v^3 \left[4\pi - \sum_{i=1,2} \chi_i (\hat{\mathbf{S}}_i \cdot \hat{\mathbf{L}}) \left(\frac{113}{12} \frac{m_i^2}{M^2} + \frac{25}{4} \eta \right) \right] \\ &+ v^4 \left[\frac{34103}{18144} + \frac{13661}{2016} \eta + \frac{59}{18} \eta^2 + \frac{\eta \chi_1 \chi_2}{48} \left(721 (\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{L}}) (\hat{\mathbf{S}}_2 \cdot \hat{\mathbf{L}}) - 247 (\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2) \right) \\ &+ \frac{1}{96} \sum_{i=1,2} \left(\frac{m_i \chi_i}{M} \right)^2 \left(719 (\hat{\mathbf{S}}_i \cdot \hat{\mathbf{L}})^2 - 233 \right) \right] - v^5 \pi \frac{4159 + 15876\eta}{672} \\ &+ v^6 \left[\frac{16447322263}{139708800} + \frac{16}{3} \pi^2 - \frac{1712}{105} \left(\gamma_E + \ln 4v \right) + \left(\frac{451}{48} \pi^2 - \frac{56198689}{217728} \right) \eta + \frac{541}{896} \eta^2 - \frac{5605}{2592} \eta^3 \right] \\ &+ v^7 \pi \left[-\frac{4415}{4032} + \frac{358675}{6048} \eta + \frac{91495}{1512} \eta^2 \right] + O(v^8) \right\}; \end{split}$$

- 2.5 PN: precessional motion about L
- 3 PN: spin-orbit coupling

(DAMTP, University of Cambrithe impact of spin-orbit resonances on astrophysical black-hole populations 4759

イロト イポト イヨト イヨト

Schnittman '04

For a given separation r of the binary, resonances are

- S_1 , S_2 , \hat{L}_N lie in a plane $\Rightarrow \Delta \phi = 0^\circ, \pm 180^\circ$
- Resonance condition: $\ddot{\theta}_{12} = \dot{\theta}_{12} = 0$ Apostolatos '96, Schnittman '04

•
$$\Delta \phi = 0^{\circ}$$
 resonances: always $\theta_1 < \theta_2$

 $\Delta \phi = \pm 180^{\circ}$ resonances: always $\theta_1 > \theta_2$

- The resonance θ_1 , θ_2 vary with *r* or L_N
 - ⇒ Resonances sweep through parameter plane
- Time scales: $t_{\rm orb} \ll t_{\rm pr} \ll t_{\rm GW}$

 \Rightarrow "Free" binaries can get caught by resonance

Evolution in θ_1 , θ_2 plane for q = 9/11

 $\theta_i := \angle (\vec{S}_i, \vec{L}_N)$ $\theta_1 = \theta_2$ $\mathbf{S} \cdot \mathbf{L}_N = \text{const}$ $\mathbf{S}_0 \cdot \mathbf{L}_N = \text{const}$ evolution \Rightarrow BHs approach $\theta_1 = \theta_2$ \Rightarrow **S**₁, **S**₂ align

if θ_1 small

Kesden, Berti & US '10

0. Sperihake (DAMTP, University of Cambrithe impact of spin-orbit resonances on astrophysical black-hole populations 6

Resonance capture: $\Delta \phi = 0^{\circ}$

 $q = 9/11, \chi_i = 1, \theta(t_0) = 10^\circ$, rest random

Schnittman '04

U. Sperhake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 7/59

< ロ > < 同 > < 三 > < 三 > .

Resonance capture: $\Delta \phi = 180^{\circ}$

Schnittman '04

U. Sperhake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 8/59/

イロト イポト イヨト イヨト

Consequences of resonances

EOB spin

$$S_0 = \frac{M}{m_1}S_1 + \frac{M}{m_2}S_2$$

$$S_0 \cdot L_N = \text{const}$$
evolution

0. Specialke (DAMTP, University of Camor The impact of spin-orbit resonances on astrophysical black-hole populations

Consequences of resonances

Total spin $S = S_1 + S_2$ $\vec{S} \cdot \vec{L}_N = \text{const}$ evolution blue steeper red \Rightarrow **S**, **L**_N become antialigned; $\Delta \phi = 0^{\circ}$ aligned; $\Delta \phi = 180^{\circ}$

U. Spanhake (DAMTP, University of Cambrinthe impact of spin-orbit resonances on astrophysical black-hole populations O

Consequences of resonances

r decreases $\Rightarrow \theta_1, \theta_2 \rightarrow \text{diagonal}$ i.e. $\theta_1 = \theta_2$ $\Rightarrow \mathbf{S}_1, \mathbf{S}_2 \text{ become}$ aligned; $\Delta \phi = 0^\circ$ $\theta_{12} = \theta_1 + \theta_2; \Delta \phi = 180^\circ$

0. Specifiake (DAMTE: University of Cambridge The impact of spin-orbit resonances on astrophysical black-hole populations of

Summary: Resonances

- S₁, S₂, L_N precess in plane
- 2 types: I) $\Delta \phi = 0^{\circ}$, II) $\Delta \phi = 180^{\circ}$
- Free binaries can get caught by symmetries
- Consequences for $\Delta \phi = 0^{\circ}$
 - S₁, S₂ aligned
 - S, L_N antialigned
- Consequences for $\Delta \phi = 180^{\circ}$
 - S_1 , S_2 approach $\theta_{12} = \theta_1 + \theta_2$
 - S, L_N aligned

3. Final spins

U. Spaniaka (DAMTP, University of Cambri<mark>The impact of spin-orbit resonances on astrophysical black-hole populations</mark> 3159

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Resonance capturing in practice: q = 9/11

- Isotropic $10 \times 10 \times 10$ grid of configurations
- At $R = 1000 M + \epsilon$, 1000 M, 100 M, 10 M

U. Spendake (DAMTP, University of Cambrin The impact of spin-orbit resonances on astrophysical black-hole populations 4, 55

Resonance capturing in practice: q = 1/3

- Isotropic $10 \times 10 \times 10$ grid of configurations
- At $R = 1000 M + \epsilon$, 1000 M, 100 M, 10 M

U. Sperhake (DAMTP, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations 5755

Resonance capturing in practice: q = 9/11

- Isotropic 10 × 10 × 10 grid of configurations
- At $R = 1000 M + \epsilon$, 1000 M, 100 M, 10 M

Dependence on astrophysical black-hole populations of spin-orbit resonances on astrophysical black-hole populations

Final spin of merged BBH

Numerical relativity \Rightarrow fitting formula $(q, S_1, S_2) \rightarrow S_f$

Here: Barausse & Rezzolla '09, but similar results for others

- $\theta_1(t_0), \theta_2(t_0), \Delta \phi(t_0)$ isotropic $10 \times 10 \times 10$
- large θ_1 , all 1000 binaries, small θ_1
- Initially isotropic stays isotropic
 - Cf. Bogdanović, Reynolds & Miller '07

Despendence (DAMTP, University of Cambo The impact of spin-orbit resonances on astrophysical black-hole populations (2006)

Final spin of merged BBH

Numerical relativity \Rightarrow fitting formula $(q, S_1, S_2) \rightarrow S_f$

Here: Barausse & Rezzolla '09, but similar results for others

- $\theta_1(t_0) = 170^\circ, 160^\circ, 150^\circ, 30^\circ, 20^\circ, 10^\circ$
- $\theta_2(t_0), \Delta \phi(t_0)$: 30 × 30 isotropic
- dotted: switching off precession solid: with precession

U Sperhake (DAMTP, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations and

- Resonances act as attractor for random binaries
- This is a statistical effect!
- Initially isotropic ensembles stay isotropic; cancelation
- Δφ = 0° resonances increase final spin (alignment of S₁, S₂)
- $\Delta \phi = 180^{\circ}$ resonances mildly decrease final spin

U. Spectrake (DAMTP, University of Cambridge The impact of spin-orbit resonances on astrophysical black-hole populations 30-53

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

4. Suppression of superkicks

Dependence on astrophysical black-hole populations of spin-orbit resonances on astrophysical black-hole populations

(日)

Superkicks

- Superkicks: up to several 1000 km/s González, Hannam, Sperhake, Brügmann & Husa, PRL 98, 231101 (2007) Campanelli, Lousto, Zlochower & Merritt, ApJ 659, L5 (2007)
- escape velocities from giant galaxies!

U. Sperhake (DAMTP, University of Cambridhe impact of spin-orbit resonances on astrophysical black-hole populations of a

Setup

- BBHs inspiral from 1000 M to 10 M
- Ensemble 1: $10 \times 10 \times 10$ isotropic
- Ensemble 2: 30 × 30 isotropic in θ₂, Δφ
 fix θ₁(t₀) = 170°, 160°, 150°, 30°, 20°, 10°
- Map S₁, S₂, q to v_{kick} $\vec{v}(q, \chi_1, \chi_2) = v_m \hat{\mathbf{e}}_1 + v_{\perp} (\cos \xi \hat{\mathbf{e}}_1 + \sin \xi \hat{\mathbf{e}}_2) + v_{||} \hat{\mathbf{e}}_z$ $v_{||} \sim |\mathbf{\Delta}^{\perp}|, \quad \mathbf{\Delta} = \frac{q\chi_2 - \chi_1}{1+q}$ Campanelli, Lousto, Zlochower & Merritt '07

Kick distributions with and without PN inspiral $q = \frac{9}{11}$

U. Sperhake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 30-5

Kick distributions with and without PN inspiral $q = \frac{1}{3}$

U. Sperhake (DAMTP, University of Cambrillhe impact of spin-orbit resonances on astrophysical black-hole populations) 4 (5)

Even larger kicks: superkick and hang-up

Lousto & Zlochower, arXiv:1108.2009 [gr-qc]

- Moderate GW generation
- Large kicks

Strong GW generationNo kicks

U. Sperhake (DAMTP, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations STA

Superkicks and orbital hang-up

- Maximum kick about 25 % larger: $v_{max} \approx 5\,000 \text{ km/s}$
- Distribution asymmetric in θ
- Largest recoil for partial alignment

Descentions (DAM P. University of Comb. The impact of spin-orbit resonances on astrophysical black-hole populations

• • • • • • • • • • • • • •

Kick distributions with and without PN inspiral $q = \frac{9}{11}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

U. Specialise (DAMTE) University of Cambridge The impact of spin-orbit resonances on astrophysical black-hole populations of the

Summary: Kick suppression

- Resonances attract aligned (anti aligned) configurations towards $\Delta \phi = 0^{\circ} (180^{\circ})$
- Superkicks suppressed (enhanced) for $\Delta \phi = 0^{\circ} \ (\Delta \phi = 180^{\circ})$ resonances
- If accretion torque partially aligns \vec{S}_1 with \vec{L}_N

 $\Rightarrow \Delta \phi = \mathbf{0}^{\circ}$ resonances dominate and suppress kicks

- Kick suppression still effective for hang-up kicks
- Why? Because the key angle is $\Delta \phi$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5. Stellar-mass BH binary formation

U. Sperhake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 39, 59

A simplified scenario for stellar-mass BBH formation

- Stellar binary: $M_{Si}^{\prime},~M_{Si}^{\prime\prime}=$ 35, 16.75 M_{\odot} or 30, 24 M_{\odot}
- Primary expands to fill Roche lobe
- 50% *M* transfer to Secondary until core remant $M'_C = 8.5$ or $8M_{\odot}$
- Primary explodes as SN ightarrow BH with $M_{BH}^{'}=7.5$ or $6M_{\odot}$
- SN kick tilts L
- $\bullet\,\, {\sf Tides}$ may align ${\boldsymbol S}^{''}$ and circularize orbit
- Secondary expands to fill Roche lobe \Rightarrow Common envelope
- Secondary becomes helium core with $M_C'' = 8$ or $8.5 M_{\odot}$
- Secondary explodes as SN ightarrow BH with $M_{BH}^{\prime}=$ 6 or 7.5 M_{\odot}
- SN kick again tilts orbital plane

U Spechake (DAMTR University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations 0.18

Comments: Initial separation

- a₀ drawn from logarithmic distribution [a_{min}, a_{max}]
 a_{max}: Primary fills Roche lobe
 a_{min}: Secondary does not fill Roche lobe at transfer
 a₀ > a_{max} ⇒ binary unbound by SN kick
 - $a_0 < a_{\min} \Rightarrow$ merger in CE phase

U. Sperhake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 11:59

< ロ > < 同 > < 回 > < 回 > = 回 > = 回

Comments: Mass transfer

- Star fills Roche lobe ⇒ stable transfer or CE
- Our $q \Rightarrow SN1 \rightarrow stable transfer, SN2 \rightarrow CE$ Clausen, Wade, Kopparapu & O'Shaughnessy '12
- Accretion by secondary: $M_{Sf}^{''} = M_{Si}^{''} + f_a(M_{Si}^{'} M_C^{'})$ We choose semi-conservative: $f_a = 0.5$
- *f_a* tied to fraction of RMR vs. SMR
 ⇒ potentially measurable via GWs

U. Spentake (DAMTR University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations 200

- Calibrate kick using observed motion of young pulsars $v_{\rm pNS} \in$ Maxwellian with $\sigma =$ 265 km/s
- Fallback $\Rightarrow v_{BH} = (1 f_{fb})v_{pNS}$ For our *q*, simulations suggest $f_{fb} = 0.8$ Fryer '99, Fryer & Kalogera '01
- Kicks ∈ cone with θ_b about *S* We consider: isotropic θ_b = 90°, polar θ_b = 10°

U. Sperhake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 30-59

Comments: Kick effect on orbit

- SN \Rightarrow mass reduction, tilt of orbit
- SN equally likely anywhere in orbit ⇒ true anomaly
- At SN1: assume S_{1,2} aligned with L
- a_f , e_f from conservation of energy, ang. mom.
- $e_f > 1 \Rightarrow$ Binary unbound
- Overall: isotropic kicks less likely to unbind binary
 ⇒ wider ranges of tilt angles

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

- Tidal dissipation \Rightarrow circularize orbit; align S_2 with L
- We consider two extremes: i) fully efficient tides, ii) no tidal effects
- Tidal effects on BH can be safely ignored
- Tidal effects operate when secondary fills Roche lobe
- Change in separation due to tides negligible compared with CE phase

U. Sperhake (DAMTP, University of Cambrin The impact of spin-orbit resonances on astrophysical black-hole populations 19/59

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

Comments: Common envelope phase

- If a_1 after SN1 too large \Rightarrow no CE phase; game over
- Otherwise: CE has $E_b = -\frac{GM_{Sf}^{''}(M_{Sf}^{''}-M_{C}^{''})}{\lambda R_L}$ We use λ from analytic fit of Dominik et al. '12
- Energy, momentum conservation $\Rightarrow a_{1CE}$
- a_{1CE} too small
 - \Rightarrow helium core fills Roche lobe, prompt merger; game over
- We neglect accretion onto BH

U. Spentake (DAMTP, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations 6.6

Summary: Evolution sequence

U. Sperhake (DAMTP, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations 1714

Spin evolution θ_1 , θ_2 , tides, iso-kick: SMR, RMR

U. Spaniaka (DAMTP, University of Cambri<mark>The impact of spin-orbit resonances on astrophysical black-hole populations 18759)</mark>

Spin evolution $\Delta \phi$, θ_{12} , tides, iso-kick: SMR, RMR

0. Spentake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations 1976

Spin evolution θ_1 , θ_2 , tides, pol-kick: SMR, RMR

U. Sperhake (DAMTP, University of Cambrin The impact of spin-orbit resonances on astrophysical black-hole populations 10, 59

Spin evolution $\Delta \phi$, θ_{12} , tides, pol-kick: SMR, RMR

U. Sperhake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations in 6

Spin evolution θ_1 , θ_2 , no tides, iso-kick: SMR, RMR

0. Spaniaka (DAMTP, University of Cambri<mark>The impact of spin-orbit resonances on astrophysical black-hole populations</mark> (2009)

Spin evolution $\Delta \phi$, θ_{12} , no tides, iso-kick: SMR, RMR

Spin evolution θ_1 , θ_2 , no tides, pol-kick: SMR, RMR

U. Sperhake (DAMTP, University of Cambrin The impact of spin-orbit resonances on astrophysical black-hole populations 4, 59

Spin evolution $\Delta \phi$, θ_{12} , no tides, pol-kick: SMR, RMR

D Specials (DAMTR, University of Cambin The impact of spin-orbit resonances on astrophysical black-hole populations in 58

Spin distribution at GW frequencies: $\Delta \phi$

U. Sperhake (DAMTP, University of Cambr The impact of spin-orbit resonances on astrophysical black-hole populations 6 150

Spin distribution at GW frequencies: θ_{12}

0. Spentake (DAMTP, University of Cambri The impact of spin-orbit resonances on astrophysical black-hole populations of 65

Summary: BH binary formation

- Simplified model for stellar mass BHB formation
- Key ingredients: mass reversal, tides

U. Sperhake (DAMTP, University of Cambridge impact of spin-orbit resonances on astrophysical black-hole populations in

- Spin orbit resonances attract inspiraling binaries
- 2 classes of resonances: $\Delta \phi = 0^{\circ}$, 180°
- Isotropic ensembles remain isotropic
- Non-isotropic ensembles can be drastically affected
- Superkicks suppressed if heavy BH's S more aligned with L
- Stellar-mass BH binary formation affected by resonances depending on mass transfer, tides