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1. Introduction

U. Sperhake (DAMTP, University of Cambridge)Collisions of black holes and gravitational wave emission in four and higher dimensional spacetimes05/16/2013 3 / 62



The Schwarzschild solution

Einstein 1915

General relativity: geometric theory of gravity

Schwarzschild 1916

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2)

Singularities:

r = 0: physical

r = 2M: coordinate

Newtonian escape velocity

v =
√

2M
r
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Evidence for astrophysical black holes

X-ray binaries

e. g. Cygnus X-1 (1964)

MS star + compact star

⇒ Stellar Mass BHs
∼ 5 . . . 50 M�

Stellar dynamics

near galactic centers,

iron emission line profiles

⇒ Supermassive BHs

∼ 106 . . . 109 M�

AGN engines
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Conjectured BHs

Intermediate mass BHs

∼ 102 . . . 105 M�

Primordial BHs

≤ MEarth

Mini BHs, LHC

∼ TeV

Note: BH solution is scale invariant!
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Research areas: Black holes have come a long way!

Astrophysics

GW physics

Gauge-gravity duality

High-energy physics

Fundamental studies

Fluid analogies
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General Relativity: Curvature

Curvature generates
acceleration

“geodesic deviation”

No “force”!!

Description of geometry

Metric gαβ

Connection Γαβγ

Riemann Tensor Rα
βγδ
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How to get the metric?

Train cemetery
Uyuni, Bolivia

Solve for the metric gαβ
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How to get the metric?

The metric must obey the Einstein Equations

Ricci-Tensor, Einstein Tensor, Matter Tensor

Rαβ ≡ Rµ
αµβ

Gαβ ≡ Rαβ − 1
2gαβRµ

µ “Trace reversed” Ricci

Tαβ “Matter”

Einstein Equations Gαβ = 8πTαβ

Solutions: Easy! Take metric

⇒ Calculate Gαβ

⇒ Use that as matter tensor

Physically meaningful solutions: Difficult!
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Solving Einstein’s equations: Different methods

Analytic solutions
Symmetry assumptions

Schwarzschild, Kerr, FLRW, Myers-Perry, Emparan-Reall,...

Perturbation theory
Assume solution is close to known solution gαβ

Expand ĝαβ = gαβ + εh(1)
αβ + ε2h(2)

αβ + . . . ⇒ linear system

Regge-Wheeler-Zerilli-Moncrief, Teukolsky, QNMs, EOB,...

Post-Newtonian Theory
Assume small velocities⇒ expansion in v

c

N th order expressions for GWs, momenta, orbits,...

Blanchet, Buonanno, Damour, Kidder, Will,...

Numerical Relativity
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2. Numerical modeling of BHs
in GR
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A list of tasks

Target: Predict time evolution of BBH in GR

Einstein equations: 1) Cast as evolution system

2) Choose specific formulation

3) Discretize for computer

Choose coordinate conditions: Gauge

Fix technical aspects: 1) Mesh refinement / spectral domains

2) Singularity handling / excision

3) Parallelization

Construct realistic initial data

Start evolution and waaaaiiiiit...

Extract physics from the data
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3+1 Decomposition

GR: “Space and time exist as a unity: Spacetime”

NR: ADM 3+1 split Arnowitt, Deser & Misner ’62
York ’79, Choquet-Bruhat & York ’80

gαβ =

(
−α2 + βmβ

m βj
βi γij

)
3-Metric γij
Lapse α
Shift β i

lapse, shift⇒ Gauge
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ADM Equations

The Einstein equations Rαβ = 0 become
6 Evolution equations

(∂t − Lβ)γij = −2αKij

(∂t − Lβ)Kij = −DiDjα + α[Rij − 2KimK m
j + KijK ]

4 Constraints

R + K 2 − KijK ij = 0

−DjK ij + DiK = 0

preserved under evolution!

Evolution

1) Solve constraints

2) Evolve data
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Formulations I: BSSN

One can easily change variables. E. g. wave equation

∂ttu − c∂xxu = 0 ⇔ ∂tF − c∂xG = 0

∂xF − ∂tG = 0

BSSN: rearrange degrees of freedom

χ = (det γ)−1/3 γ̃ij = χγij

K = γijK ij Ãij = χ
(
Kij − 1

3γijK
)

Γ̃i = γ̃mnΓ̃i
mn = −∂mγ̃

im

Shibata & Nakamura ’95, Baumgarte & Shapiro ’98

BSSN strongly hyperbolic, but depends on details...

Sarbach et al.’02, Gundlach & Martín-García ’06

U. Sperhake (DAMTP, University of Cambridge)Collisions of black holes and gravitational wave emission in four and higher dimensional spacetimes05/16/2013 16 / 62



Formulations I: BSSN
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Formulations II: Generalized harmonic (GHG)

Harmonic gauge: choose coordinates such that

∇µ∇µxα = 0

4-dim. version of Einstein equations

Rαβ = −1
2gµν∂µ∂νgαβ + . . .

Principal part of wave equation

Generalized harmonic gauge: Hα ≡ gαν∇µ∇µxν

⇒ Rαβ = −1
2gµν∂µ∂νgαβ + . . .− 1

2 (∂αHβ + ∂βHα)

Still principal part of wave equation !!! Manifestly hyperbolic

Friedrich ’85, Garfinkle ’02, Pretorius ’05

Constraint preservation; constraint satisfying BCs

Gundlach et al. ’05, Lindblom et al. ’06
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Discretization of the time evolution

Finite differencing (FD)

Pretorius, RIT, Goddard, Georgia Tech, LEAN, BAM, UIUC,...

Spectral Caltech-Cornell-CITA

Parallelization with MPI, ∼ 128 cores, ∼ 256 Gb RAM

Example: advection equation ∂t f = ∂x f , FD

Array f n
k for fixed n

f n+1
k = f n

k + ∆t
f n
k+1−f n

k−1
2∆x
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Initial data

Two problems: Constraints, realistic data

Rearrange degrees of freedom

York-Lichnerowicz split: γij = ψ4γ̃ij

Kij = Aij + 1
3γijK

York & Lichnerozwicz, O’Murchadha & York,

Wilson & Mathews, York

Make simplifying assumptions

Conformal flatness: γ̃ij = δij , and K = 0

Find good elliptic solvers, e. g. Ansorg et al. ’04
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Mesh refinement

3 Length scales : BH ∼ 1 M

Wavelength ∼ 10...100 M

Wave zone ∼ 100...1000 M

Critical phenomena

Choptuik ’93

First used for BBHs

Brügmann ’96

Available Packages:

Paramesh MacNeice et al. ’00

Carpet Schnetter et al. ’03

SAMRAI MacNeice et al. ’00
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The gauge freedom

Remember: Einstein equations say nothing about α, β i

Any choice of lapse and shift gives a solution

This represents the coordinate freedom of GR

Physics do not depend on α, β i

So why bother?

The performance of the numerics DO depend strongly on the
gauge!

How do we get good gauge?

Singularity avoidance, avoid coordinate stretching, well posedness
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What goes wrong with bad gauge?
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What goes wrong with bad gauge?
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What goes wrong with bad gauge?
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What goes wrong with bad gauge?
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A brief history of BH simulations

Pioneers: Hahn & Lindquist ’60s, Eppley, Smarr et al. ’70s

Grand Challenge: First 3D Code Anninos et al. ’90s

Further attempts: Bona & Massó, Pitt-PSU-Texas

AEI-Potsdam, Alcubierre et al.

PSU: first orbit Brügmann et al. ’04

Codes unstable!

Breakthrough: Pretorius ’05 GHG

UTB, Goddard’05 Moving Punctures

Currently about 10 codes world wide
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3. TeV Gravity and BH
formation
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The Hierarchy Problem of Physics

Gravity ≈ 10−39× other forces

Higgs field ≈ µobs ≈ 250 GeV =
√
µ2 − Λ2

where Λ ≈ 1016 GeV is the grand unification energy

Requires enormous finetuning!!!

Finetuning exist: 987654321
123456789 = 8.0000000729

Or EPlanck much lower? Gravity strong at small r?

⇒ BH formation in high-energy collisions at LHC

Gravity not measured below 0.16 mm! Diluted due to...

Large extra dimensions Arkani-Hamed, Dimopoulos & Dvali ’98

Extra dimension with warp factor Randall & Sundrum ’99
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The Hierarchy proble in physics: TeV Gravity
Large extra dimensions
Arkani-Hamed, Dimopoulos & Dvali ’98

SM confined to “3+1” brane

Gravity lives in bulk

⇒ Gravity diluted

Warped geometry
Randall & Sundrum ’99

5D AdS Universe with 2 branes:

“our” 3+1 world, gravity brane

5th dimension warped

⇒ Gravity weakened

Either way: Gravity strong at & TeV
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Motivation (High-energy physics)

Matter does not matter at energies well above the Planck scale

⇒ Model particle collisions by black-hole collisions

Banks & Fischler ’99; Giddings & Thomas ’01
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Does matter “matter”?

Perfect fluid “stars” model

γ = 8 . . . 12; BH formation below Hoop prediction

East & Pretorius ’12

Gravitational focussing⇒ Formation of individual horizons

Type-I critical behaviour

Extrapolation by 60 orders would imply no BH formation at LHC

Rezzolla & Tanaki ’12
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Experimental signature at the LHC

Black hole formation at the LHC could be detected by the properties of
the jets resulting from Hawking radiation. BlackMax, Charybdis

Multiplicity of partons: Number of
jets and leptons

Large transverse energy

Black-hole mass and spin are
important for this!

ToDo:
Exact cross section for BH formation

Determine loss of energy in gravitational waves

Determine spin of merged black hole
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4. High-energy collisions in
D = 4
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Initial setup: 1) Aligned spins

Orbital hang-up Campanelli et al. ’06

2 BHs: Total rest mass: M0 = MA, 0 + MB, 0

Boost: γ = 1/
√

1− v2, M = γM0

Impact parameter: b ≡ L
P
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Initial setup: 2) No spins

Orbital hang-up Campanelli et al. ’06

2 BHs: Total rest mass: M0 = MA, 0 + MB, 0

Boost: γ = 1/
√

1− v2, M = γM0

Impact parameter: b ≡ L
P
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Initial setup: 3) Anti-aligned spins

Orbital hang-up Campanelli et al. ’06

2 BHs: Total rest mass: M0 = MA, 0 + MB, 0

Boost: γ = 1/
√

1− v2, M = γM0

Impact parameter: b ≡ L
P
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Head-on: b = 0, ~S = 0

Total radiated energy: 14± 3 % for v → 1 US et al. ’08

About half of Penrose ’74

Agreement with approximative methods

Flat spectrum, multipolar GW structure Berti et al. ’10
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Grazing: b 6= 0, ~S = 0, γ = 1.52

Radiated energy up to at least 35 % M

Immediate vs. Delayed vs. No merger

US, Cardoso, Pretorius, Berti, Hinderer & Yunes ’09
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Scattering threshold bscat for D = 4, ~S = 0

b < bscat ⇒ Merger

b > bscat ⇒ Scattering

Numerical study: bscat = 2.5±0.05
v M

Shibata, Okawa & Yamamoto ’08

Independent study by US, Pretorius, Cardoso, Berti et al. ’09, ’12

γ = 1.23 . . . 2.93:

χ = −0.6, 0, +0.6 (anti-aligned, nonspinning, aligned)

Limit from Penrose construction: bcrit = 1.685 M

Yoshino & Rychkov ’05
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Radiated quantities b 6= 0, ~S = 0

b−sequence with γ = 1.52

Threshold of immediate merger Pretorius & Khurana ’07

Erad ∼ 35 % for γ = 2.93; about 10 % of Dyson luminosity

Sperhake et al. ’09
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Gravitational radiation: Delayed merger
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Scattering threshold and radiated energy ~S 6= 0

US, Berti, Cardoso & Pretorius ’12

At speeds v & 0.9 spin effects washed out

Erad always below . 50 % M
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Absorption

For large γ: Ekin ≈ M

If Ekin is not radiated, where does it go?

Answer: ∼ 50 % into Erad , ∼ 50 % is absorbed

US, Berti, Cardoso & Pretorius ’12

U. Sperhake (DAMTP, University of Cambridge)Collisions of black holes and gravitational wave emission in four and higher dimensional spacetimes05/16/2013 44 / 62



5. Collisions in D > 4
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Moving to D > 4

Symmetries allow dimensional reduction

Geroch ’70

Reduces to “3+1” plus quasi-matter terms: scalar field
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BSSN formulation with quasi matter

∂t γ̃ij = [BSSN],

∂tχ = [BSSN],

∂tK = [BSSN] + 4πα(E + S),

∂t Ãij = [BSSN]− 8πα
(
χSij − 1

3Sγ̃ij
)
,

∂t Γ̃
i = [BSSN]− 16παχ−1j i ,

∂tζ = −2αKζ + βm∂mζ − 2
3ζ∂mβ

m + 2ζ β
y

y ,

∂tKζ = ... ,

E , j i , Sij = f (BSSN, ζ, Kζ).

Zilhão et al. ’10
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Head-on in D = 5

Initial data: D = 5 analogue of Brill-Lindquist data
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GWs from head-on in D = 5

Wave extraction based on Kodama & Ishibashi ’03

Erad = 0.089 %M cf. 0.055 %M in D = 4

Witek et al. ’10a
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Unequal-mass head-on in D = 5

Kodama-Ishibashi multipoles

Witek et al. ’10b
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Unequal-mass head-on in D = 5

Radiated energy and momentum

Agreement within < 5 % with extrapolated point particle calculations
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First black-hole collisions in D = 6

Witek et al. ’10

Adjust shift parameters
Use LaSh system Witek, Hilditch & US ’10
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Scattering threshold in D = 5

Okawa, Nakao & Shibata ’11

Numerical stability still an issue...
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6. Non-asymptotically flat,
non-vacuum spacetimes
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Collisions of charged BHs in D = 4

Zilhão, Cardoso, Herdeiro, Lehner & US

Electro-vacuum Einstein-Maxwell Eqs.; Moesta et al. ’10

Brill-Lindquist construction for equal mass, charge BHs

Wave extraction Φ2 := Fµνm̄µkν
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GW superradiance model

Witek et al. ’10

BH binary inside lego sphere with reflective BC

Extract Ψ4, Ψ0
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Quadrupole mode

Gravitational radiation (out going and ingoing)
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Horizon area

Superradiance: high frequency absorbed, low frequency amplified
No conclusive evidence... More superradiance: Helvi’s talk
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Cosmic Censorship in D = 5

Pretorius & Lehner ’10

Axisymmetric code

Evolution of black string...

Gregory-Laflamme instability

cascades down

in finite time

until string has zero width

⇒ naked singularity
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Cosmic Censorship in D = 4 de Sitter

Zilhão et al. ’12

Two parameters: MH, d

Initial data: McVittie type binaries McVittie ’33

“Small BHs”: d < dcrit ⇒ merger

d > dcrit ⇒ no common AH

“Large” holes at small d : Cosmic Censorship holds
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7. Conclusions
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Conlcusions and outlook

High-energy collisions in D = 4

Scattering threshold ∼ 2.5 M/v

Maximal radiation ∼ 50 % M

Rest of Ekin absorbed

Spin effects washed out at large boosts

Collisions in higher D

Numerical stability still an issue

Head-on from rest: good agreement with PP calcs.

Collisions of charged BHs; equal Q/m

Collisions in de Sitter: Cosmic censorship holds

ToDo: higher dimensions, charged BHs, AdS
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