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Abstract

A numerical technique is presented which facilitates the evolution of non-linear neutron star
oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply
this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate
the superior performance of the new scheme compared with “conventional” techniques. The key
feature of our approach is to describe the evolution in terms of deviations from an equilibrium
configuration. In contrast to standard perturbation analysis we keep all higher order terms in the
evolution equations and thus obtain a fully non-linear description. The advantage of our scheme
lies in the elimination of background terms from the equations and the associated numerical errors.
The improvements thus achieved will be particularly significant in the study of mildly non-linear
effects where the amplitude of the dynamic signal is small compared with the equilibrium values
but large enough to warrant non-linear effects. We apply the new technique to the study of non-
linear coupling of eigenmodes and non-linear effects in the oscillations of marginally stable neutron
stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the
range of modes with vanishing frequency which typically mark the onset of instability.
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1 Introduction

The study of neutron star oscillations has long since been a topic of considerable scientific interest.
Perturbation techniques have been used as early as the 1960s for the investigation of radial oscillations
and the stability properties of neutron stars [3]. In more recent years the interest in neutron star simu-
lations has further intensified due to the discovery of the gravitational radiation driven instability of the
r-modes [1]. A great deal of work has been spent on the development of non-linear, 3-dimensional, rel-
ativistic hydrodynamic simulations to investigate such scenarios (see e.g. [4] and references therein).
One of the most important questions raised in connection with the r-mode instability concerns the
efficiency with which energy is dissipated due to viscosity or non-linear effects. The numerical inves-
tigation of non-linear effects in this respect appears to be relying on codes which are not specifically
designed to capture mildly non-linear effects in the low-amplitude regime. Results thus obtained have
indicated a large saturation amplitude of order unity of the r-modes (see e.g. [5]) but have been called
into question by studies which analytically take into account the non-linear mode-coupling and find
significant non-linear interaction which prevents a further growth of the r-mode at amplitudes at least
4 orders of magnitude smaller [2]. In the context of simulating non-linear neutron star oscillations at
rather small amplitudes it is interesting to note that the signature of the numerical truncation error
caused by the intrinsic presence of background terms in the evolution equations has been observed in
3D non-linear evolutions [10]. While these authors find this error to decrease at second order with the
grid-resolution and not to seriously affect their results, one has to bear in mind that the impact of
the resulting spurious source terms will strongly depend on the amplitude of the dynamic signal. The
smaller the deviations from the equilibrium configuration the more significant we expect the numerical



contamination to affect the simulations. It appears desirable therefore to have a numerical scheme
where the error is determined solely by the amplitude of the dynamic signal as opposed to the equilib-
rium background. In section 2 and 3 we will elaborate on the numerical scheme presented in [9] and
show how such an amplitude independent accuracy can be obtained by decomposing the numerical
evolution into a static background and time dependent deviations from that background. After testing
the resulting code we demonstrate the improvements by comparing numerical evolutions obtained with
the new and a “conventional” scheme. In section 6 we use the code to investigate radial neutron star
oscillations in an amplitude regime where the elimination of the above mentioned numerical errors is
crucial and yet significant non-linear effects are present.

2 The “conventional” formulation

2.1 The equations for a dynamic spherically symmetric neutron star

In this paper we extend the work of [9] who have applied the idea of numerically evolving non-linear
deviations from an equilibrium state to a truncated neutron star model with fixed outer boundary. The
main reason for using such a simplified model were difficulties encountered at the surface of the star
(see [8] for details). Here we use a Lagrangian approach which straightforwardly facilitates an exact
treatment of the moving stellar surface. The derivation of the equations for a dynamic spherically
symmetric neutron star was inspired by the work of [7]. We thus describe the spacetime in terms of
the line element in polar slicing and Lagrangian gauge
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Here 5\, I' and 7 are functions of the spatial coordinate z and coordinate time ¢ and we have defined
the velocity of the fluid elements w = #,/X. In this formulation the circumferential radius 7 is a time
dependent variable whereas the “co-moving” spatial coordinate z labels the fluid elements. We model
the matter as a perfect fluid at zero temperature with a polytropic equation of state P=K p7, where
P and p are the pressure and total energy density and the polytropic exponent v and K are constant
parameters. The Lagrangian nature of our coordinate system is reflected in the 4-velocity u® which
has a non-vanishing time component only
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Finally the energy momentum tensor for a perfect fluid is given by
Ta,B = (ﬁ + p)UQUg + pga,@- (3)

In order to write the Einstein field equations G.3 = 8nT,3 and the equations of conservation of
energy-momentum V,73% = 0 it is convenient to introduce the function N by

[=1-2N#, (4)

which is related to the more commonly used mass function by i = 72N and thus behaves like O(x)
at the origin as opposed to the O(z®) behavior of /m which we find to cause a larger error in the
Oppenheimer-Snyder dust-collapse of section 4. The equations can then be written in the form
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2.2 Boundary conditions and initial data

For the numerical evolution of the system (4)-(9) we need to prescribe boundary conditions. At the
origin x = 0 we require 7 = 0, w = 0, N = 0 which follows from spherical symmetry and demanding
that there be no conical singularity at the origin. At the surface of the star we have P = 0 and
XA =1V/1—2N#. The first condition is the definition of the stellar surface and translates into p =0 for
the polytropic equation of state while the second condition matches the line element (1) to an exterior
Schwarzschild metric.

For the prescription of initial data and the development of our new numerical formulation in section
3 it is essential to discuss the static and the linearized limit of the evolution system (5)-(9). The
static limit describes spherically symmetric neutron stars in equilibrium and is obtained by setting all
time derivatives to zero in Egs. (5)-(9). We thus obtain the well known Tolman-Oppenheimer-Volkoff
(TOV) equations
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where I' = 1 —2Nr. We note that we have omitted the “hat” from these time independent equilibrium
variables in order to distinguish them from the total quantities. The boundary conditions for the TOV
equations are N = 0, r = 0 at the origin and P = 0 at the surface. We also use the background
configuration to fix the Lagrangian coordinate = by the requirement r , = C, where the sound speed
of the background model is defined by C? = dP/dp. This definition provides a high density of grid
points in regions of small characteristic speeds (see [8] for details).

The linearized version of the evolution system around the TOV background is best formulated in terms
of the rescaled displacement vector ¢ = r2£/), where £ = Ar is the displacement of the fluid elements
in terms of the circumferential radius. The linearized equations then lead to a self adjoint eigenvalue
problem
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and the eigenvalue w? is the square of the frequency of the associated eigenmode. From mathematical
theorems it is known that this eigenvalue problem has an infinite number of solutions (i, (z,... with
ordered eigenvalues (w;)? < (w2)? < .... After appropriate rescaling the eigenfunctions form a complete
orthonormal set, i.e.
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and any function f(z) with appropriate boundary conditions can be expanded in a series

fz) = ZAiCi(v’U); (18)

where A; = (f,(;). The boundary conditions for the eigenvalue problem are given by the requirement
that ¢ vanishes at the origin and remains finite at the surface. From a numerical point of view both
the TOV equations (10)-(12) and the eigenvalue problem (13) are two point boundary value problems
which we solve with a second order relaxation method. The resulting eigenmode profiles serve us as
initial data for the non-linear evolutions.



3 A “non-linear perturbative” formulation

In this section we will demonstrate how a fully non-linear formulation of the dynamic problem in terms
of deviations from the TOV-background eliminates the numerical truncation error of the background
intrinsic to the “conventional formulation” of the previous section. It is convenient, however, to first
illustrate in the case of a simple toy equation the motivation of our approach.

3.1 The non-linear “perturbative scheme”: a toy equation

Let us assume for this purpose that a physical system is described in terms of variables f , g and
h which all depend on spatial position z and time t. We further assume that one of the equations
governing the system is

ﬁ,t = il,.t + f‘g, (19)

and that there exist a non-trivial equilibrium of the system described by f(z), g(z) and h(z) which
obey the time independent version of Eq. (19)

he+ fg=0. (20)

We note again the omission of the “hat” for the equilibrium functions. We can now decompose the time
dependent functions into static background contributions and time dependent deviations according to
ft,x) = f(x)+ Af(t,z) and likewise for g and h. Inserting this into Eq. (19) we obtain the equivalent
equation

Ahy = Ah, + fAg+gAf+ AfAg+ (he + fg). (21)

It is the term in brackets on the right hand side which motivates our reformulation of the problem.
From Eq.(20) we know that this term vanishes identically. Numerically, however, this will only be
satisfied up to a finite error which represents a spurious source term in the evolution of Ah. The
severeness of this effect depends on the magnitude of the numerical error i.e.the grid resolution and
the relative size of the deviations Af, Ag, Ah with respect to the background values. This effect is
intrinsic to any numerical scheme based on a “conventional formulation” such as that of section 2.
By virtue of our decomposition, however, we can use Eq.(20) to eliminate the problematic terms prior
to the numerical evolution and instead of Eq. (21) use

Aht=Ah, + fAg+ gAf+ AfAg (22)
= Ah, + fAg+ gAf. (23)
It is important to note that in contrast to standard perturbation techniques we keep all terms of higher

order in the deviations, such as A fAg, so that our formulation is equivalent to the original non-linear
problem.

3.2 The “non-linear perturbative” equations for the dynamic neutron star

We will now reformulate the system of evolution equations (4)-(9) in terms of deviations from the
TOV equilibrium background. For this purpose we decompose the variables according to X(t,x) =
M) + AX(t,z) and likewise for N and T'. In the case of the circumferential radius we depart from
this notational convention and instead write 7#(¢,z) = r(z) + (¢, ) since the radial displacement is
commonly denoted by £ in the literature. After eliminating all zero order terms by using the TOV
equations (10)-(12) the evolution equations can be written as
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We solve this system of evolution equations with an implicit, second order in space and time numerical
scheme similar to the Crank-Nicholson scheme (see [8] for details).

4 Testing the code

We have tested the resulting numerical code in three independent ways which cover a large range of
amplitudes of the deviations. First we consider the linear regime. For this purpose we calculate a
background neutron star model with polytropic parameters v = 2, K = 150km?*, mass M = 1.48 M
and radius R = 11.3km. This model is located well on the stable branch. We choose initial data
in the form of the third eigenmode with an initial amplitude of 10 cm. This amplitude is sufficiently
small that we expect the evolution to be very well approximated by the solution of the linearized
problem (13). For such evolutions we find that the numerical solution reproduces the analytic solution
with a relative point wise error of about 10™3 for 200 grid points. Secondly we have performed
a convergence analysis for evolving the second eigenmode with an initial amplitude of 50m. This
corresponds to the mildly non-linear regime, where we observe non-linear effects (cf. section 6), but no
shock formation is observed for initial data with sufficiently weak spatial variation. We have calculated
numerical solutions using 400, 800 and 1600 grid points and find the resulting convergence factors for
the dependent variables &, w, AN, Ap and AAX to be in good agreement with the expected second order
convergence. For the third test we have simulated the collapse of a spherically symmetric, initially
homogeneous dust cloud, i.e.a fluid with zero pressure. The analytic solution for this scenario has
been derived by [6] and the expressions in terms of our variables as well as more details on all three
tests can be found in [8]. We find our code to reproduce the analytic solution with a relative accuracy
better than 103 for 800 grid points up to a time when the dust sphere has collapsed very close to its
Schwarzschild radius. At this stage the “collapse of the lapse” freezes the evolution. It is only at these
late, dynamically irrelevant stages that the steep gradients commonly observed in singularity avoiding
slicing cause a deterioration of the accuracy of our code. With the exception of shock formation, the
numerical treatment of which we postpone to a future publication, we thus find the code to perform
equally well for arbitrary amplitudes.

5 Comparison with “conventional methods”

In order to compare the numerical schemes outlined in sections 2 and 3 we consider the evolution of the
third eigenmode of the above model with an amplitude of 1 m using 200 grid points. For this amplitude
the evolution should still be close to that predicted by the linearized equations, so that we expect the
initial eigenmode profile to oscillate harmonically. In the analysis of non-linear coupling of eigenmodes,
we will see that amplitudes of this order of magnitude will already give rise to measurable albeit very
small non-linear effects. In Fig. 1 we show snapshots of the evolutions of the displacement £ (left panel)
and the energy density deviation Ap (right panel). The dotted lines represent the initial data, the
dashed lines the results obtained with our non-linear perturbative scheme of section 3 and the solid
lines those obtained with the conventional scheme of section 2. The results demonstrate that the new
scheme produces the expected oscillations while the “conventional” scheme leads to severely distorted
profiles. The numerical noise visible in the solid curve of Ap arises from the spurious formation of
shocks near the stellar surface. It is important to note in this context that we have used the same
code for both these numerical runs. In the first case we have used the TOV-background whereas in
the second case we use a flat vacuum background, i.e. A =1, N =0, p = 0. One straightforwardly
shows that Eqgs. (24)-(29) indeed reduce to the system (4)-(9) with the total variables f replaced by
the deviations Af or 1 + Af in the case of A. The only numerically significant difference between the
two runs is therefore the presence or absence of the background error terms analogous to the term in
brackets on the right hand side of Eq. (21). We conclude that the presence of these terms significantly
contaminates the numerical evolution and gives rise to spurious numerical effects such as mode coupling
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Figure 1: Snap shots of the evolution of ¢ (right panel) and Ap (left panel) obtained with a non-linear
perturbative and a conventional scheme.

and shock formation. We find the significance of this effect to decrease with higher grid resolution
and larger amplitude of the initial data. Our new scheme will therefore be particularly suitable for
studying mildly non-linear effects at amplitudes notably smaller than the background values.

6 Applications

6.1 Non-linear coupling of eigenmodes

In section 1 we have already noted the importance of a detailed understanding of non-linear coupling
of eigenmodes for addressing questions such as the saturation amplitudes of neutron star oscillations.
Analytic studies of mode-coupling effects normally view the eigenmode coeflicients A; (cf. Eq. 18) as
harmonic oscillators and the non-linear interaction between different modes is represented in the form
of a series of driving terms with increasing order in the amplitudes which is truncated at second or third
order (seee.g. [11]). While the investigation of neutron star oscillations in 3-dimensions such as r-modes
is beyond the scope of our work, we will demonstrate in the case of radial oscillations that our scheme
presents a numerical alternative to study non-linear coupling of eigenmodes without any restrictions due
to the emission of higher order terms. For this purpose we consider the neutron star model of section 4
and provide initial data in the form of one isolated eigenmode. The index j of this mode and the initial
amplitude given by the initial displacement of the stellar surface & in m from the equilibrium radius are
the two free parameters. During the fully non-linear evolution we make use of Eq. (18) which enables
us to expand the time dependent displacement function according to £(t,z) = >, A;(t)&(x). The time
dependent eigenmode coeflicients are then given by A;(t) = (£(t,x),&(z)) and can be calculated at
each time step. In the amplitude range considered here we typically find these coefficients to oscillate
with a frequency close to the value predicted by linear theory. We therefore measure the degree to
which a mode is present in an evolution by taking the maximum of |4;(¢)| which we denote by A4;. The
integration time for these runs is 7' &~ 4ms which corresponds to about 10 oscillation periods of the
fundamental mode. In Fig.(2) we show the eigenmode coefficients A; of the first 5 eigenmodes thus
obtained for j = 2 as a function of the initial surface displacement. The only mode initially present in
these evolutions is the second mode and we find the corresponding eigenmode coefficient Ay (“+” in the
figure) to depend linearly on the initial surface displacement &. Other eigenmodes while not present
in the initial data, are excited in the course of the non-linear evolution, so that we find non-zero values
for the other A;. We clearly see that the degree of excitation increases with the initial amplitude.
A more detailed analysis reveals that the dependence of the A; on & can be well approximated by
power laws with integer index as shown in the figure. While A;, A3 and A4 are well approximated by
a quadratic power law, we find that A5 grows like the cube of &. We have frequently observed that
the excitation of higher order modes is modeled by larger integer power law indices, although we also
find exceptions to this rule. A more systematic analysis of this dependency requires larger data sets
and is postponed to future work. We stress the importance of the amplitude independent accuracy
provided by our scheme for being able to measure these effects. The deviations of As from the power
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Figure 2: The eigenmode coefficients A; are shown for initial data in the form the second eigenmode
as a function of the initial amplitude &.

law behavior observed at small amplitudes are most likely caused by the accuracy limits encountered
even when using our scheme with the large resolution of 3200 grid points.

6.2 Oscillations of marginally stable neutron stars

We have already seen that the benefits of our numerical scheme are most important when studying
non-linear effects associated with rather small deviations from the equilibrium configuration. It is
clear that such non-linear effects will be particularly pronounced if the linear first order terms in the
evolution equations (25)-(29) largely cancel each other. In that case the higher order terms and the
associated non-linear effects will dominate the evolution even for very small amplitudes of the dynamic
signal. It has been known for a long time that the onset of dynamic instability of neutron stars to
radial perturbations occurs at a point where the frequency of the fundamental eigenmode becomes
zero (see e.g. [3]). Radial oscillations of neutron stars very close to the maximum of the mass-radius
curve should therefore provide a fertile area of application for our numerical scheme. We consider a
neutron star background model with the same equation of state as before, but a higher central density,
so that the star has a mass only a fraction 6 - 107 below the maximum mass My = 1.655 M. In
Fig. (3) we show the surface displacement obtained for evolving the fundamental eigenmode with an
initial amplitude of +10 (dashed curve) and —10m (solid curve). We note several deviations from the
harmonic oscillations predicted by the linearized theory. First the oscillation amplitude as well as the
frequency depend on the sign of the initial perturbation. Secondly the star does not oscillate around
its equilibrium position (dotted curve) but around a larger radial position. Furthermore the oscillation
of the solid curve (initial contraction) appears to be distorted relative to a purely harmonic shape.
For larger amplitudes this feature becomes more prominent and distinct for both signs of the initial
perturbation. Finally a quantitative analysis yields that both oscillation frequencies are significantly
larger than the value predicted by linear theory. We have investigated this frequency shift in more
detail by determining the frequencies of the non-linear evolutions via Fourier analysis over a wide
range of amplitudes. The results are shown in the right panel of Fig.(3) and demonstrate that the
frequencies of the non-linear evolutions (“x”) differ from the linearized value (dashed line) by up to
one order of magnitude over the amplitude range considered here. As the amplitude goes to zero,
we recover the value predicted by perturbation theory, but even for initial perturbations as small as
1m we observe differences of several percent and a notable distortion of the oscillation profiles similar
to Fig.(3). In contrast we have found excellent agreement between the frequencies for “ordinary”
neutron stars located much further away from the stability limit. In such cases linear theory predicts
frequencies which agree with our non-linear evolutions to less than 1% for amplitudes well above 10 m.
We conclude that the discrepancies observed for neutron stars near their stability limit are due to
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Figure 3: Left panel: The surface displacement of a marginally stable neutron star is shown as a
function of time for an initial amplitude of +10 and —10m. Right panel: The frequencies obtained
from the non-linear evolutions of the fundamental eigenmode with initial amplitude &. The dashed
curve marks the frequency predicted by linearized perturbation theory.

non-linear effects. We finally note that non-linear effects appear to increase the oscillation frequency
away from the zero limit which represents the onset of instability. This indicates that non-linear effects
may stabilize the neutron star. First runs obtained for neutron stars close to the stability limit but
located on the unstable branch confirm this result. While small initial amplitude lead to a collapse of
the star, the same initial data with larger amplitude give rise to stable oscillations.
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