
Non-linear neutron star os
illations viewed as deviations froman equilibrium stateUlri
h SperhakeDepartment of Physi
s, Se
tion of Astrophysi
s,Aristotle University of Thessaloniki, 54124 Thessaloniki, Gree
eFa
ulty of Mathemati
al Studies,University of Southampton, Southampton SO17 1BJ, UK,email: sperhake�astro.auth.grAbstra
tA numeri
al te
hnique is presented whi
h fa
ilitates the evolution of non-linear neutron staros
illations with a high a

ura
y essentially independent of the os
illation amplitude. We applythis te
hnique to radial neutron star os
illations in a Lagrangian formulation and demonstratethe superior performan
e of the new s
heme 
ompared with \
onventional" te
hniques. The keyfeature of our approa
h is to des
ribe the evolution in terms of deviations from an equilibrium
on�guration. In 
ontrast to standard perturbation analysis we keep all higher order terms in theevolution equations and thus obtain a fully non-linear des
ription. The advantage of our s
hemelies in the elimination of ba
kground terms from the equations and the asso
iated numeri
al errors.The improvements thus a
hieved will be parti
ularly signi�
ant in the study of mildly non-lineare�e
ts where the amplitude of the dynami
 signal is small 
ompared with the equilibrium valuesbut large enough to warrant non-linear e�e
ts. We apply the new te
hnique to the study of non-linear 
oupling of eigenmodes and non-linear e�e
ts in the os
illations of marginally stable neutronstars. We �nd non-linear e�e
ts in low amplitude os
illations to be parti
ularly pronoun
ed in therange of modes with vanishing frequen
y whi
h typi
ally mark the onset of instability.Keywords: neutron star os
illations, non-linearity, numeri
al te
hniques.1 Introdu
tionThe study of neutron star os
illations has long sin
e been a topi
 of 
onsiderable s
ienti�
 interest.Perturbation te
hniques have been used as early as the 1960s for the investigation of radial os
illationsand the stability properties of neutron stars [3℄. In more re
ent years the interest in neutron star simu-lations has further intensi�ed due to the dis
overy of the gravitational radiation driven instability of ther-modes [1℄. A great deal of work has been spent on the development of non-linear, 3-dimensional, rel-ativisti
 hydrodynami
 simulations to investigate su
h s
enarios (see e.g. [4℄ and referen
es therein).One of the most important questions raised in 
onne
tion with the r-mode instability 
on
erns theeÆ
ien
y with whi
h energy is dissipated due to vis
osity or non-linear e�e
ts. The numeri
al inves-tigation of non-linear e�e
ts in this respe
t appears to be relying on 
odes whi
h are not spe
i�
allydesigned to 
apture mildly non-linear e�e
ts in the low-amplitude regime. Results thus obtained haveindi
ated a large saturation amplitude of order unity of the r-modes (see e.g. [5℄) but have been 
alledinto question by studies whi
h analyti
ally take into a

ount the non-linear mode-
oupling and �ndsigni�
ant non-linear intera
tion whi
h prevents a further growth of the r-mode at amplitudes at least4 orders of magnitude smaller [2℄. In the 
ontext of simulating non-linear neutron star os
illations atrather small amplitudes it is interesting to note that the signature of the numeri
al trun
ation error
aused by the intrinsi
 presen
e of ba
kground terms in the evolution equations has been observed in3D non-linear evolutions [10℄. While these authors �nd this error to de
rease at se
ond order with thegrid-resolution and not to seriously a�e
t their results, one has to bear in mind that the impa
t ofthe resulting spurious sour
e terms will strongly depend on the amplitude of the dynami
 signal. Thesmaller the deviations from the equilibrium 
on�guration the more signi�
ant we expe
t the numeri
al1




ontamination to a�e
t the simulations. It appears desirable therefore to have a numeri
al s
hemewhere the error is determined solely by the amplitude of the dynami
 signal as opposed to the equilib-rium ba
kground. In se
tion 2 and 3 we will elaborate on the numeri
al s
heme presented in [9℄ andshow how su
h an amplitude independent a

ura
y 
an be obtained by de
omposing the numeri
alevolution into a stati
 ba
kground and time dependent deviations from that ba
kground. After testingthe resulting 
ode we demonstrate the improvements by 
omparing numeri
al evolutions obtained withthe new and a \
onventional" s
heme. In se
tion 6 we use the 
ode to investigate radial neutron staros
illations in an amplitude regime where the elimination of the above mentioned numeri
al errors is
ru
ial and yet signi�
ant non-linear e�e
ts are present.2 The \
onventional" formulation2.1 The equations for a dynami
 spheri
ally symmetri
 neutron starIn this paper we extend the work of [9℄ who have applied the idea of numeri
ally evolving non-lineardeviations from an equilibrium state to a trun
ated neutron star model with �xed outer boundary. Themain reason for using su
h a simpli�ed model were diÆ
ulties en
ountered at the surfa
e of the star(see [8℄ for details). Here we use a Lagrangian approa
h whi
h straightforwardly fa
ilitates an exa
ttreatment of the moving stellar surfa
e. The derivation of the equations for a dynami
 spheri
allysymmetri
 neutron star was inspired by the work of [7℄. We thus des
ribe the spa
etime in terms ofthe line element in polar sli
ing and Lagrangian gaugeds2 = �̂2��1 + w2̂� � dt2 + 2 r̂;x�̂w�̂ dt dx+ r̂2;x̂� dx2 + r̂2(d�2 + sin2 � d�2): (1)Here �̂, �̂ and r̂ are fun
tions of the spatial 
oordinate x and 
oordinate time t and we have de�nedthe velo
ity of the 
uid elements w = r̂;t=�̂. In this formulation the 
ir
umferential radius r̂ is a timedependent variable whereas the \
o-moving" spatial 
oordinate x labels the 
uid elements. We modelthe matter as a perfe
t 
uid at zero temperature with a polytropi
 equation of state P̂ = K�̂
 , whereP̂ and �̂ are the pressure and total energy density and the polytropi
 exponent 
 and K are 
onstantparameters. The Lagrangian nature of our 
oordinate system is re
e
ted in the 4-velo
ity u� whi
hhas a non-vanishing time 
omponent onlyu� = 0� 1�̂q1� w2̂� ; 0; 0; 01A : (2)Finally the energy momentum tensor for a perfe
t 
uid is given byT�� = (�̂+ P̂ )u�u� + P̂ g��: (3)In order to write the Einstein �eld equations G�� = 8�T�� and the equations of 
onservation ofenergy-momentum r�T�� = 0 it is 
onvenient to introdu
e the fun
tion N̂ by�̂ = 1� 2N̂ r̂; (4)whi
h is related to the more 
ommonly used mass fun
tion by m̂ = r̂2N̂ and thus behaves like O(x)at the origin as opposed to the O(x3) behavior of m̂ whi
h we �nd to 
ause a larger error in theOppenheimer-Snyder dust-
ollapse of se
tion 4. The equations 
an then be written in the form�̂;x̂� = r̂;x̂�  N̂ + 4�r̂w2�̂+ �̂P̂�̂� w2 ! ; (5)N̂;x = �2 r̂;x̂r N̂ + 4�r̂;x �̂�̂+ w2P̂�̂� w2 ; (6)r̂N̂;t = �2�̂wN̂ � 4�r̂�̂wP̂ ; (7)r̂;t = �̂w; (8)0 = (�̂� w2)2 P̂;xr̂;x + P̂;t ŵ� (�̂� w2) + (�̂+ P̂ ) ��̂w;t�̂ + (�̂� 2w2)�N̂ + 4�r̂P̂�� : (9)2



2.2 Boundary 
onditions and initial dataFor the numeri
al evolution of the system (4)-(9) we need to pres
ribe boundary 
onditions. At theorigin x = 0 we require r̂ = 0, w = 0; N̂ = 0 whi
h follows from spheri
al symmetry and demandingthat there be no 
oni
al singularity at the origin. At the surfa
e of the star we have P̂ = 0 and�̂ =p1� 2N̂ r̂. The �rst 
ondition is the de�nition of the stellar surfa
e and translates into �̂ = 0 forthe polytropi
 equation of state while the se
ond 
ondition mat
hes the line element (1) to an exteriorS
hwarzs
hild metri
.For the pres
ription of initial data and the development of our new numeri
al formulation in se
tion3 it is essential to dis
uss the stati
 and the linearized limit of the evolution system (5)-(9). Thestati
 limit des
ribes spheri
ally symmetri
 neutron stars in equilibrium and is obtained by setting alltime derivatives to zero in Eqs. (5)-(9). We thus obtain the well known Tolman-Oppenheimer-Volko�(TOV) equations �;x� = r;x� (N + 4�rP ) ; (10)N;x = �2r;xr N + 4�r;x�; (11)0 = �P;x + r;x(�+ P ) (N + 4�rP ) ; (12)where � = 1�2Nr. We note that we have omitted the \hat" from these time independent equilibriumvariables in order to distinguish them from the total quantities. The boundary 
onditions for the TOVequations are N = 0, r = 0 at the origin and P = 0 at the surfa
e. We also use the ba
kground
on�guration to �x the Lagrangian 
oordinate x by the requirement r;x = C, where the sound speedof the ba
kground model is de�ned by C2 = �P=��. This de�nition provides a high density of gridpoints in regions of small 
hara
teristi
 speeds (see [8℄ for details).The linearized version of the evolution system around the TOV ba
kground is best formulated in termsof the res
aled displa
ement ve
tor � = r2�=�, where � = �r is the displa
ement of the 
uid elementsin terms of the 
ir
umferential radius. The linearized equations then lead to a self adjoint eigenvalueproblem 1r;x � �r;x �;x�;x + (!2W +Q)� = 0; (13)where � = C2(�+ P ) �3p�r2 ; (14)W = (�+ P ) �p�3r2 ; (15)Q = �3p�r2 (�+ P )"� �;xr;x��2 + 4 �;xrr;x� � 8�P� # ; (16)and the eigenvalue !2 is the square of the frequen
y of the asso
iated eigenmode. From mathemati
altheorems it is known that this eigenvalue problem has an in�nite number of solutions �1, �2,... withordered eigenvalues (!1)2 < (!2)2 < :::. After appropriate res
aling the eigenfun
tions form a 
ompleteorthonormal set, i.e. h�i; �ji := Z xs0 W�i�jdx = Æi;j ; (17)and any fun
tion f(x) with appropriate boundary 
onditions 
an be expanded in a seriesf(x) =Xi Ai�i(x); (18)where Ai = hf; �ii. The boundary 
onditions for the eigenvalue problem are given by the requirementthat � vanishes at the origin and remains �nite at the surfa
e. From a numeri
al point of view boththe TOV equations (10)-(12) and the eigenvalue problem (13) are two point boundary value problemswhi
h we solve with a se
ond order relaxation method. The resulting eigenmode pro�les serve us asinitial data for the non-linear evolutions. 3



3 A \non-linear perturbative" formulationIn this se
tion we will demonstrate how a fully non-linear formulation of the dynami
 problem in termsof deviations from the TOV-ba
kground eliminates the numeri
al trun
ation error of the ba
kgroundintrinsi
 to the \
onventional formulation" of the previous se
tion. It is 
onvenient, however, to �rstillustrate in the 
ase of a simple toy equation the motivation of our approa
h.3.1 The non-linear \perturbative s
heme": a toy equationLet us assume for this purpose that a physi
al system is des
ribed in terms of variables f̂ , ĝ andĥ whi
h all depend on spatial position x and time t. We further assume that one of the equationsgoverning the system is ĥ;t = ĥ;x + f̂ ĝ; (19)and that there exist a non-trivial equilibrium of the system des
ribed by f(x), g(x) and h(x) whi
hobey the time independent version of Eq. (19)h;x + fg = 0: (20)We note again the omission of the \hat" for the equilibrium fun
tions. We 
an now de
ompose the timedependent fun
tions into stati
 ba
kground 
ontributions and time dependent deviations a

ording tof̂(t; x) = f(x)+�f(t; x) and likewise for ĝ and ĥ. Inserting this into Eq. (19) we obtain the equivalentequation �h;t = �h;x + f�g + g�f +�f�g + (h;x + fg): (21)It is the term in bra
kets on the right hand side whi
h motivates our reformulation of the problem.From Eq. (20) we know that this term vanishes identi
ally. Numeri
ally, however, this will only besatis�ed up to a �nite error whi
h represents a spurious sour
e term in the evolution of �h. Thesevereness of this e�e
t depends on the magnitude of the numeri
al error i.e. the grid resolution andthe relative size of the deviations �f , �g, �h with respe
t to the ba
kground values. This e�e
t isintrinsi
 to any numeri
al s
heme based on a \
onventional formulation" su
h as that of se
tion 2.By virtue of our de
omposition, however, we 
an use Eq.(20) to eliminate the problemati
 terms priorto the numeri
al evolution and instead of Eq. (21) use�h;t = �h;x + f�g + g�f +�f�g (22)= �h;x + f�g + ĝ�f: (23)It is important to note that in 
ontrast to standard perturbation te
hniques we keep all terms of higherorder in the deviations, su
h as �f�g, so that our formulation is equivalent to the original non-linearproblem.3.2 The \non-linear perturbative" equations for the dynami
 neutron starWe will now reformulate the system of evolution equations (4)-(9) in terms of deviations from theTOV equilibrium ba
kground. For this purpose we de
ompose the variables a

ording to �̂(t; x) =�(x) + ��(t; x) and likewise for N̂ and �̂. In the 
ase of the 
ir
umferential radius we depart fromthis notational 
onvention and instead write r̂(t; x) = r(x) + �(t; x) sin
e the radial displa
ement is
ommonly denoted by � in the literature. After eliminating all zero order terms by using the TOVequations (10)-(12) the evolution equations 
an be written as��� 1 + 2N̂� + 2�Nr = 0; (24)�̂2��;x +��(2� +��)�;x � (�;x�� + r̂;x��� + r̂;x�̂��)(N + 4�rP )+ w2 h��̂�̂;x + r̂;x�̂(N̂ � 4�r̂�̂)i� r̂;x�̂�̂ [�N + 4�(�P + r̂�P )℄ = 0; (25)� w2(r̂N̂;x + 2r̂;xN̂ + 4�r̂r̂;xP̂ ) + ��(r̂N̂;x + 2r̂;xN̂ � 4�r̂r̂;x�̂)+ � [�N;x + r̂�N;x + 2�;xN + 2r̂;x�N � 4�(��r;x + r̂�;x�+ r̂r̂;x��)℄ = 0; (26)r̂�N;t + 2�̂w(N̂ + 2�r̂P̂ ) = 0; (27)�;t � �̂w = 0; (28)4



�̂(�2�̂w2 + w4)P̂;x + r̂;xw
2P̂;t + (�̂+ P̂ )r̂;x h�̂w;t � 2�̂w2(N̂ + 4�r̂P̂ )i+ (��� + �̂��) h�̂P̂;x + (�̂+ P̂ )r̂;x(N̂ + 4�r̂P̂ )i+ ��n��P;x + �̂�P;x+ h(��+�P )r;x + (�̂+ P̂ )�;xi (N + 4�rP ) + (�̂+ P̂ )r̂;x(�N + 4��P + 4�r̂�P )o = 0: (29)We solve this system of evolution equations with an impli
it, se
ond order in spa
e and time numeri
als
heme similar to the Crank-Ni
holson s
heme (see [8℄ for details).4 Testing the 
odeWe have tested the resulting numeri
al 
ode in three independent ways whi
h 
over a large range ofamplitudes of the deviations. First we 
onsider the linear regime. For this purpose we 
al
ulate aba
kground neutron star model with polytropi
 parameters 
 = 2, K = 150 km2, mass M = 1:48M�and radius R = 11:3 km. This model is lo
ated well on the stable bran
h. We 
hoose initial datain the form of the third eigenmode with an initial amplitude of 10 
m. This amplitude is suÆ
ientlysmall that we expe
t the evolution to be very well approximated by the solution of the linearizedproblem (13). For su
h evolutions we �nd that the numeri
al solution reprodu
es the analyti
 solutionwith a relative point wise error of about 10�3 for 200 grid points. Se
ondly we have performeda 
onvergen
e analysis for evolving the se
ond eigenmode with an initial amplitude of 50m. This
orresponds to the mildly non-linear regime, where we observe non-linear e�e
ts (
f. se
tion 6), but nosho
k formation is observed for initial data with suÆ
iently weak spatial variation. We have 
al
ulatednumeri
al solutions using 400, 800 and 1600 grid points and �nd the resulting 
onvergen
e fa
tors forthe dependent variables �, w, �N , �� and �� to be in good agreement with the expe
ted se
ond order
onvergen
e. For the third test we have simulated the 
ollapse of a spheri
ally symmetri
, initiallyhomogeneous dust 
loud, i.e. a 
uid with zero pressure. The analyti
 solution for this s
enario hasbeen derived by [6℄ and the expressions in terms of our variables as well as more details on all threetests 
an be found in [8℄. We �nd our 
ode to reprodu
e the analyti
 solution with a relative a

ura
ybetter than 10�3 for 800 grid points up to a time when the dust sphere has 
ollapsed very 
lose to itsS
hwarzs
hild radius. At this stage the \
ollapse of the lapse" freezes the evolution. It is only at theselate, dynami
ally irrelevant stages that the steep gradients 
ommonly observed in singularity avoidingsli
ing 
ause a deterioration of the a

ura
y of our 
ode. With the ex
eption of sho
k formation, thenumeri
al treatment of whi
h we postpone to a future publi
ation, we thus �nd the 
ode to performequally well for arbitrary amplitudes.5 Comparison with \
onventional methods"In order to 
ompare the numeri
al s
hemes outlined in se
tions 2 and 3 we 
onsider the evolution of thethird eigenmode of the above model with an amplitude of 1m using 200 grid points. For this amplitudethe evolution should still be 
lose to that predi
ted by the linearized equations, so that we expe
t theinitial eigenmode pro�le to os
illate harmoni
ally. In the analysis of non-linear 
oupling of eigenmodes,we will see that amplitudes of this order of magnitude will already give rise to measurable albeit verysmall non-linear e�e
ts. In Fig. 1 we show snapshots of the evolutions of the displa
ement � (left panel)and the energy density deviation �� (right panel). The dotted lines represent the initial data, thedashed lines the results obtained with our non-linear perturbative s
heme of se
tion 3 and the solidlines those obtained with the 
onventional s
heme of se
tion 2. The results demonstrate that the news
heme produ
es the expe
ted os
illations while the \
onventional" s
heme leads to severely distortedpro�les. The numeri
al noise visible in the solid 
urve of �� arises from the spurious formation ofsho
ks near the stellar surfa
e. It is important to note in this 
ontext that we have used the same
ode for both these numeri
al runs. In the �rst 
ase we have used the TOV-ba
kground whereas inthe se
ond 
ase we use a 
at va
uum ba
kground, i.e.� = 1, N = 0, � = 0. One straightforwardlyshows that Eqs. (24)-(29) indeed redu
e to the system (4)-(9) with the total variables f̂ repla
ed bythe deviations �f or 1 +�f in the 
ase of �. The only numeri
ally signi�
ant di�eren
e between thetwo runs is therefore the presen
e or absen
e of the ba
kground error terms analogous to the term inbra
kets on the right hand side of Eq. (21). We 
on
lude that the presen
e of these terms signi�
antly
ontaminates the numeri
al evolution and gives rise to spurious numeri
al e�e
ts su
h as mode 
oupling5
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Figure 1: Snap shots of the evolution of � (right panel) and �� (left panel) obtained with a non-linearperturbative and a 
onventional s
heme.and sho
k formation. We �nd the signi�
an
e of this e�e
t to de
rease with higher grid resolutionand larger amplitude of the initial data. Our new s
heme will therefore be parti
ularly suitable forstudying mildly non-linear e�e
ts at amplitudes notably smaller than the ba
kground values.6 Appli
ations6.1 Non-linear 
oupling of eigenmodesIn se
tion 1 we have already noted the importan
e of a detailed understanding of non-linear 
ouplingof eigenmodes for addressing questions su
h as the saturation amplitudes of neutron star os
illations.Analyti
 studies of mode-
oupling e�e
ts normally view the eigenmode 
oeÆ
ients Ai (
f. Eq. 18) asharmoni
 os
illators and the non-linear intera
tion between di�erent modes is represented in the formof a series of driving terms with in
reasing order in the amplitudes whi
h is trun
ated at se
ond or thirdorder (see e.g. [11℄). While the investigation of neutron star os
illations in 3-dimensions su
h as r-modesis beyond the s
ope of our work, we will demonstrate in the 
ase of radial os
illations that our s
hemepresents a numeri
al alternative to study non-linear 
oupling of eigenmodes without any restri
tions dueto the emission of higher order terms. For this purpose we 
onsider the neutron star model of se
tion 4and provide initial data in the form of one isolated eigenmode. The index j of this mode and the initialamplitude given by the initial displa
ement of the stellar surfa
e �s in m from the equilibrium radius arethe two free parameters. During the fully non-linear evolution we make use of Eq. (18) whi
h enablesus to expand the time dependent displa
ement fun
tion a

ording to �(t; x) =Pi Ai(t)�i(x). The timedependent eigenmode 
oeÆ
ients are then given by Ai(t) = h�(t; x); �i(x)i and 
an be 
al
ulated atea
h time step. In the amplitude range 
onsidered here we typi
ally �nd these 
oeÆ
ients to os
illatewith a frequen
y 
lose to the value predi
ted by linear theory. We therefore measure the degree towhi
h a mode is present in an evolution by taking the maximum of jAi(t)j whi
h we denote by Ai. Theintegration time for these runs is T � 4ms whi
h 
orresponds to about 10 os
illation periods of thefundamental mode. In Fig. (2) we show the eigenmode 
oeÆ
ients Ai of the �rst 5 eigenmodes thusobtained for j = 2 as a fun
tion of the initial surfa
e displa
ement. The only mode initially present inthese evolutions is the se
ond mode and we �nd the 
orresponding eigenmode 
oeÆ
ient A2 (\+" in the�gure) to depend linearly on the initial surfa
e displa
ement �s. Other eigenmodes while not presentin the initial data, are ex
ited in the 
ourse of the non-linear evolution, so that we �nd non-zero valuesfor the other Ai. We 
learly see that the degree of ex
itation in
reases with the initial amplitude.A more detailed analysis reveals that the dependen
e of the Ai on �s 
an be well approximated bypower laws with integer index as shown in the �gure. While A1, A3 and A4 are well approximated bya quadrati
 power law, we �nd that A5 grows like the 
ube of �s. We have frequently observed thatthe ex
itation of higher order modes is modeled by larger integer power law indi
es, although we also�nd ex
eptions to this rule. A more systemati
 analysis of this dependen
y requires larger data setsand is postponed to future work. We stress the importan
e of the amplitude independent a

ura
yprovided by our s
heme for being able to measure these e�e
ts. The deviations of A5 from the power6
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Figure 2: The eigenmode 
oeÆ
ients Ai are shown for initial data in the form the se
ond eigenmodeas a fun
tion of the initial amplitude �s.law behavior observed at small amplitudes are most likely 
aused by the a

ura
y limits en
ounteredeven when using our s
heme with the large resolution of 3200 grid points.6.2 Os
illations of marginally stable neutron starsWe have already seen that the bene�ts of our numeri
al s
heme are most important when studyingnon-linear e�e
ts asso
iated with rather small deviations from the equilibrium 
on�guration. It is
lear that su
h non-linear e�e
ts will be parti
ularly pronoun
ed if the linear �rst order terms in theevolution equations (25)-(29) largely 
an
el ea
h other. In that 
ase the higher order terms and theasso
iated non-linear e�e
ts will dominate the evolution even for very small amplitudes of the dynami
signal. It has been known for a long time that the onset of dynami
 instability of neutron stars toradial perturbations o

urs at a point where the frequen
y of the fundamental eigenmode be
omeszero (see e.g. [3℄). Radial os
illations of neutron stars very 
lose to the maximum of the mass-radius
urve should therefore provide a fertile area of appli
ation for our numeri
al s
heme. We 
onsider aneutron star ba
kground model with the same equation of state as before, but a higher 
entral density,so that the star has a mass only a fra
tion 6 � 10�7 below the maximum mass Mmax = 1:655M�. InFig. (3) we show the surfa
e displa
ement obtained for evolving the fundamental eigenmode with aninitial amplitude of +10 (dashed 
urve) and �10m (solid 
urve). We note several deviations from theharmoni
 os
illations predi
ted by the linearized theory. First the os
illation amplitude as well as thefrequen
y depend on the sign of the initial perturbation. Se
ondly the star does not os
illate aroundits equilibrium position (dotted 
urve) but around a larger radial position. Furthermore the os
illationof the solid 
urve (initial 
ontra
tion) appears to be distorted relative to a purely harmoni
 shape.For larger amplitudes this feature be
omes more prominent and distin
t for both signs of the initialperturbation. Finally a quantitative analysis yields that both os
illation frequen
ies are signi�
antlylarger than the value predi
ted by linear theory. We have investigated this frequen
y shift in moredetail by determining the frequen
ies of the non-linear evolutions via Fourier analysis over a widerange of amplitudes. The results are shown in the right panel of Fig. (3) and demonstrate that thefrequen
ies of the non-linear evolutions (\�") di�er from the linearized value (dashed line) by up toone order of magnitude over the amplitude range 
onsidered here. As the amplitude goes to zero,we re
over the value predi
ted by perturbation theory, but even for initial perturbations as small as1m we observe di�eren
es of several per
ent and a notable distortion of the os
illation pro�les similarto Fig. (3). In 
ontrast we have found ex
ellent agreement between the frequen
ies for \ordinary"neutron stars lo
ated mu
h further away from the stability limit. In su
h 
ases linear theory predi
tsfrequen
ies whi
h agree with our non-linear evolutions to less than 1% for amplitudes well above 10m.We 
on
lude that the dis
repan
ies observed for neutron stars near their stability limit are due to7
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Figure 3: Left panel: The surfa
e displa
ement of a marginally stable neutron star is shown as afun
tion of time for an initial amplitude of +10 and �10m. Right panel: The frequen
ies obtainedfrom the non-linear evolutions of the fundamental eigenmode with initial amplitude �s. The dashed
urve marks the frequen
y predi
ted by linearized perturbation theory.non-linear e�e
ts. We �nally note that non-linear e�e
ts appear to in
rease the os
illation frequen
yaway from the zero limit whi
h represents the onset of instability. This indi
ates that non-linear e�e
tsmay stabilize the neutron star. First runs obtained for neutron stars 
lose to the stability limit butlo
ated on the unstable bran
h 
on�rm this result. While small initial amplitude lead to a 
ollapse ofthe star, the same initial data with larger amplitude give rise to stable os
illations.A
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