
Non-linear neutron star osillations viewed as deviations froman equilibrium stateUlrih SperhakeDepartment of Physis, Setion of Astrophysis,Aristotle University of Thessaloniki, 54124 Thessaloniki, GreeeFaulty of Mathematial Studies,University of Southampton, Southampton SO17 1BJ, UK,email: sperhake�astro.auth.grAbstratA numerial tehnique is presented whih failitates the evolution of non-linear neutron starosillations with a high auray essentially independent of the osillation amplitude. We applythis tehnique to radial neutron star osillations in a Lagrangian formulation and demonstratethe superior performane of the new sheme ompared with \onventional" tehniques. The keyfeature of our approah is to desribe the evolution in terms of deviations from an equilibriumon�guration. In ontrast to standard perturbation analysis we keep all higher order terms in theevolution equations and thus obtain a fully non-linear desription. The advantage of our shemelies in the elimination of bakground terms from the equations and the assoiated numerial errors.The improvements thus ahieved will be partiularly signi�ant in the study of mildly non-lineare�ets where the amplitude of the dynami signal is small ompared with the equilibrium valuesbut large enough to warrant non-linear e�ets. We apply the new tehnique to the study of non-linear oupling of eigenmodes and non-linear e�ets in the osillations of marginally stable neutronstars. We �nd non-linear e�ets in low amplitude osillations to be partiularly pronouned in therange of modes with vanishing frequeny whih typially mark the onset of instability.Keywords: neutron star osillations, non-linearity, numerial tehniques.1 IntrodutionThe study of neutron star osillations has long sine been a topi of onsiderable sienti� interest.Perturbation tehniques have been used as early as the 1960s for the investigation of radial osillationsand the stability properties of neutron stars [3℄. In more reent years the interest in neutron star simu-lations has further intensi�ed due to the disovery of the gravitational radiation driven instability of ther-modes [1℄. A great deal of work has been spent on the development of non-linear, 3-dimensional, rel-ativisti hydrodynami simulations to investigate suh senarios (see e.g. [4℄ and referenes therein).One of the most important questions raised in onnetion with the r-mode instability onerns theeÆieny with whih energy is dissipated due to visosity or non-linear e�ets. The numerial inves-tigation of non-linear e�ets in this respet appears to be relying on odes whih are not spei�allydesigned to apture mildly non-linear e�ets in the low-amplitude regime. Results thus obtained haveindiated a large saturation amplitude of order unity of the r-modes (see e.g. [5℄) but have been alledinto question by studies whih analytially take into aount the non-linear mode-oupling and �ndsigni�ant non-linear interation whih prevents a further growth of the r-mode at amplitudes at least4 orders of magnitude smaller [2℄. In the ontext of simulating non-linear neutron star osillations atrather small amplitudes it is interesting to note that the signature of the numerial trunation erroraused by the intrinsi presene of bakground terms in the evolution equations has been observed in3D non-linear evolutions [10℄. While these authors �nd this error to derease at seond order with thegrid-resolution and not to seriously a�et their results, one has to bear in mind that the impat ofthe resulting spurious soure terms will strongly depend on the amplitude of the dynami signal. Thesmaller the deviations from the equilibrium on�guration the more signi�ant we expet the numerial1



ontamination to a�et the simulations. It appears desirable therefore to have a numerial shemewhere the error is determined solely by the amplitude of the dynami signal as opposed to the equilib-rium bakground. In setion 2 and 3 we will elaborate on the numerial sheme presented in [9℄ andshow how suh an amplitude independent auray an be obtained by deomposing the numerialevolution into a stati bakground and time dependent deviations from that bakground. After testingthe resulting ode we demonstrate the improvements by omparing numerial evolutions obtained withthe new and a \onventional" sheme. In setion 6 we use the ode to investigate radial neutron starosillations in an amplitude regime where the elimination of the above mentioned numerial errors isruial and yet signi�ant non-linear e�ets are present.2 The \onventional" formulation2.1 The equations for a dynami spherially symmetri neutron starIn this paper we extend the work of [9℄ who have applied the idea of numerially evolving non-lineardeviations from an equilibrium state to a trunated neutron star model with �xed outer boundary. Themain reason for using suh a simpli�ed model were diÆulties enountered at the surfae of the star(see [8℄ for details). Here we use a Lagrangian approah whih straightforwardly failitates an exattreatment of the moving stellar surfae. The derivation of the equations for a dynami spheriallysymmetri neutron star was inspired by the work of [7℄. We thus desribe the spaetime in terms ofthe line element in polar sliing and Lagrangian gaugeds2 = �̂2��1 + w2̂� � dt2 + 2 r̂;x�̂w�̂ dt dx+ r̂2;x̂� dx2 + r̂2(d�2 + sin2 � d�2): (1)Here �̂, �̂ and r̂ are funtions of the spatial oordinate x and oordinate time t and we have de�nedthe veloity of the uid elements w = r̂;t=�̂. In this formulation the irumferential radius r̂ is a timedependent variable whereas the \o-moving" spatial oordinate x labels the uid elements. We modelthe matter as a perfet uid at zero temperature with a polytropi equation of state P̂ = K�̂ , whereP̂ and �̂ are the pressure and total energy density and the polytropi exponent  and K are onstantparameters. The Lagrangian nature of our oordinate system is reeted in the 4-veloity u� whihhas a non-vanishing time omponent onlyu� = 0� 1�̂q1� w2̂� ; 0; 0; 01A : (2)Finally the energy momentum tensor for a perfet uid is given byT�� = (�̂+ P̂ )u�u� + P̂ g��: (3)In order to write the Einstein �eld equations G�� = 8�T�� and the equations of onservation ofenergy-momentum r�T�� = 0 it is onvenient to introdue the funtion N̂ by�̂ = 1� 2N̂ r̂; (4)whih is related to the more ommonly used mass funtion by m̂ = r̂2N̂ and thus behaves like O(x)at the origin as opposed to the O(x3) behavior of m̂ whih we �nd to ause a larger error in theOppenheimer-Snyder dust-ollapse of setion 4. The equations an then be written in the form�̂;x̂� = r̂;x̂�  N̂ + 4�r̂w2�̂+ �̂P̂�̂� w2 ! ; (5)N̂;x = �2 r̂;x̂r N̂ + 4�r̂;x �̂�̂+ w2P̂�̂� w2 ; (6)r̂N̂;t = �2�̂wN̂ � 4�r̂�̂wP̂ ; (7)r̂;t = �̂w; (8)0 = (�̂� w2)2 P̂;xr̂;x + P̂;t ŵ� (�̂� w2) + (�̂+ P̂ ) ��̂w;t�̂ + (�̂� 2w2)�N̂ + 4�r̂P̂�� : (9)2



2.2 Boundary onditions and initial dataFor the numerial evolution of the system (4)-(9) we need to presribe boundary onditions. At theorigin x = 0 we require r̂ = 0, w = 0; N̂ = 0 whih follows from spherial symmetry and demandingthat there be no onial singularity at the origin. At the surfae of the star we have P̂ = 0 and�̂ =p1� 2N̂ r̂. The �rst ondition is the de�nition of the stellar surfae and translates into �̂ = 0 forthe polytropi equation of state while the seond ondition mathes the line element (1) to an exteriorShwarzshild metri.For the presription of initial data and the development of our new numerial formulation in setion3 it is essential to disuss the stati and the linearized limit of the evolution system (5)-(9). Thestati limit desribes spherially symmetri neutron stars in equilibrium and is obtained by setting alltime derivatives to zero in Eqs. (5)-(9). We thus obtain the well known Tolman-Oppenheimer-Volko�(TOV) equations �;x� = r;x� (N + 4�rP ) ; (10)N;x = �2r;xr N + 4�r;x�; (11)0 = �P;x + r;x(�+ P ) (N + 4�rP ) ; (12)where � = 1�2Nr. We note that we have omitted the \hat" from these time independent equilibriumvariables in order to distinguish them from the total quantities. The boundary onditions for the TOVequations are N = 0, r = 0 at the origin and P = 0 at the surfae. We also use the bakgroundon�guration to �x the Lagrangian oordinate x by the requirement r;x = C, where the sound speedof the bakground model is de�ned by C2 = �P=��. This de�nition provides a high density of gridpoints in regions of small harateristi speeds (see [8℄ for details).The linearized version of the evolution system around the TOV bakground is best formulated in termsof the resaled displaement vetor � = r2�=�, where � = �r is the displaement of the uid elementsin terms of the irumferential radius. The linearized equations then lead to a self adjoint eigenvalueproblem 1r;x � �r;x �;x�;x + (!2W +Q)� = 0; (13)where � = C2(�+ P ) �3p�r2 ; (14)W = (�+ P ) �p�3r2 ; (15)Q = �3p�r2 (�+ P )"� �;xr;x��2 + 4 �;xrr;x� � 8�P� # ; (16)and the eigenvalue !2 is the square of the frequeny of the assoiated eigenmode. From mathematialtheorems it is known that this eigenvalue problem has an in�nite number of solutions �1, �2,... withordered eigenvalues (!1)2 < (!2)2 < :::. After appropriate resaling the eigenfuntions form a ompleteorthonormal set, i.e. h�i; �ji := Z xs0 W�i�jdx = Æi;j ; (17)and any funtion f(x) with appropriate boundary onditions an be expanded in a seriesf(x) =Xi Ai�i(x); (18)where Ai = hf; �ii. The boundary onditions for the eigenvalue problem are given by the requirementthat � vanishes at the origin and remains �nite at the surfae. From a numerial point of view boththe TOV equations (10)-(12) and the eigenvalue problem (13) are two point boundary value problemswhih we solve with a seond order relaxation method. The resulting eigenmode pro�les serve us asinitial data for the non-linear evolutions. 3



3 A \non-linear perturbative" formulationIn this setion we will demonstrate how a fully non-linear formulation of the dynami problem in termsof deviations from the TOV-bakground eliminates the numerial trunation error of the bakgroundintrinsi to the \onventional formulation" of the previous setion. It is onvenient, however, to �rstillustrate in the ase of a simple toy equation the motivation of our approah.3.1 The non-linear \perturbative sheme": a toy equationLet us assume for this purpose that a physial system is desribed in terms of variables f̂ , ĝ andĥ whih all depend on spatial position x and time t. We further assume that one of the equationsgoverning the system is ĥ;t = ĥ;x + f̂ ĝ; (19)and that there exist a non-trivial equilibrium of the system desribed by f(x), g(x) and h(x) whihobey the time independent version of Eq. (19)h;x + fg = 0: (20)We note again the omission of the \hat" for the equilibrium funtions. We an now deompose the timedependent funtions into stati bakground ontributions and time dependent deviations aording tof̂(t; x) = f(x)+�f(t; x) and likewise for ĝ and ĥ. Inserting this into Eq. (19) we obtain the equivalentequation �h;t = �h;x + f�g + g�f +�f�g + (h;x + fg): (21)It is the term in brakets on the right hand side whih motivates our reformulation of the problem.From Eq. (20) we know that this term vanishes identially. Numerially, however, this will only besatis�ed up to a �nite error whih represents a spurious soure term in the evolution of �h. Thesevereness of this e�et depends on the magnitude of the numerial error i.e. the grid resolution andthe relative size of the deviations �f , �g, �h with respet to the bakground values. This e�et isintrinsi to any numerial sheme based on a \onventional formulation" suh as that of setion 2.By virtue of our deomposition, however, we an use Eq.(20) to eliminate the problemati terms priorto the numerial evolution and instead of Eq. (21) use�h;t = �h;x + f�g + g�f +�f�g (22)= �h;x + f�g + ĝ�f: (23)It is important to note that in ontrast to standard perturbation tehniques we keep all terms of higherorder in the deviations, suh as �f�g, so that our formulation is equivalent to the original non-linearproblem.3.2 The \non-linear perturbative" equations for the dynami neutron starWe will now reformulate the system of evolution equations (4)-(9) in terms of deviations from theTOV equilibrium bakground. For this purpose we deompose the variables aording to �̂(t; x) =�(x) + ��(t; x) and likewise for N̂ and �̂. In the ase of the irumferential radius we depart fromthis notational onvention and instead write r̂(t; x) = r(x) + �(t; x) sine the radial displaement isommonly denoted by � in the literature. After eliminating all zero order terms by using the TOVequations (10)-(12) the evolution equations an be written as��� 1 + 2N̂� + 2�Nr = 0; (24)�̂2��;x +��(2� +��)�;x � (�;x�� + r̂;x��� + r̂;x�̂��)(N + 4�rP )+ w2 h��̂�̂;x + r̂;x�̂(N̂ � 4�r̂�̂)i� r̂;x�̂�̂ [�N + 4�(�P + r̂�P )℄ = 0; (25)� w2(r̂N̂;x + 2r̂;xN̂ + 4�r̂r̂;xP̂ ) + ��(r̂N̂;x + 2r̂;xN̂ � 4�r̂r̂;x�̂)+ � [�N;x + r̂�N;x + 2�;xN + 2r̂;x�N � 4�(��r;x + r̂�;x�+ r̂r̂;x��)℄ = 0; (26)r̂�N;t + 2�̂w(N̂ + 2�r̂P̂ ) = 0; (27)�;t � �̂w = 0; (28)4



�̂(�2�̂w2 + w4)P̂;x + r̂;xw
2P̂;t + (�̂+ P̂ )r̂;x h�̂w;t � 2�̂w2(N̂ + 4�r̂P̂ )i+ (��� + �̂��) h�̂P̂;x + (�̂+ P̂ )r̂;x(N̂ + 4�r̂P̂ )i+ ��n��P;x + �̂�P;x+ h(��+�P )r;x + (�̂+ P̂ )�;xi (N + 4�rP ) + (�̂+ P̂ )r̂;x(�N + 4��P + 4�r̂�P )o = 0: (29)We solve this system of evolution equations with an impliit, seond order in spae and time numerialsheme similar to the Crank-Niholson sheme (see [8℄ for details).4 Testing the odeWe have tested the resulting numerial ode in three independent ways whih over a large range ofamplitudes of the deviations. First we onsider the linear regime. For this purpose we alulate abakground neutron star model with polytropi parameters  = 2, K = 150 km2, mass M = 1:48M�and radius R = 11:3 km. This model is loated well on the stable branh. We hoose initial datain the form of the third eigenmode with an initial amplitude of 10 m. This amplitude is suÆientlysmall that we expet the evolution to be very well approximated by the solution of the linearizedproblem (13). For suh evolutions we �nd that the numerial solution reprodues the analyti solutionwith a relative point wise error of about 10�3 for 200 grid points. Seondly we have performeda onvergene analysis for evolving the seond eigenmode with an initial amplitude of 50m. Thisorresponds to the mildly non-linear regime, where we observe non-linear e�ets (f. setion 6), but noshok formation is observed for initial data with suÆiently weak spatial variation. We have alulatednumerial solutions using 400, 800 and 1600 grid points and �nd the resulting onvergene fators forthe dependent variables �, w, �N , �� and �� to be in good agreement with the expeted seond orderonvergene. For the third test we have simulated the ollapse of a spherially symmetri, initiallyhomogeneous dust loud, i.e. a uid with zero pressure. The analyti solution for this senario hasbeen derived by [6℄ and the expressions in terms of our variables as well as more details on all threetests an be found in [8℄. We �nd our ode to reprodue the analyti solution with a relative auraybetter than 10�3 for 800 grid points up to a time when the dust sphere has ollapsed very lose to itsShwarzshild radius. At this stage the \ollapse of the lapse" freezes the evolution. It is only at theselate, dynamially irrelevant stages that the steep gradients ommonly observed in singularity avoidingsliing ause a deterioration of the auray of our ode. With the exeption of shok formation, thenumerial treatment of whih we postpone to a future publiation, we thus �nd the ode to performequally well for arbitrary amplitudes.5 Comparison with \onventional methods"In order to ompare the numerial shemes outlined in setions 2 and 3 we onsider the evolution of thethird eigenmode of the above model with an amplitude of 1m using 200 grid points. For this amplitudethe evolution should still be lose to that predited by the linearized equations, so that we expet theinitial eigenmode pro�le to osillate harmonially. In the analysis of non-linear oupling of eigenmodes,we will see that amplitudes of this order of magnitude will already give rise to measurable albeit verysmall non-linear e�ets. In Fig. 1 we show snapshots of the evolutions of the displaement � (left panel)and the energy density deviation �� (right panel). The dotted lines represent the initial data, thedashed lines the results obtained with our non-linear perturbative sheme of setion 3 and the solidlines those obtained with the onventional sheme of setion 2. The results demonstrate that the newsheme produes the expeted osillations while the \onventional" sheme leads to severely distortedpro�les. The numerial noise visible in the solid urve of �� arises from the spurious formation ofshoks near the stellar surfae. It is important to note in this ontext that we have used the sameode for both these numerial runs. In the �rst ase we have used the TOV-bakground whereas inthe seond ase we use a at vauum bakground, i.e.� = 1, N = 0, � = 0. One straightforwardlyshows that Eqs. (24)-(29) indeed redue to the system (4)-(9) with the total variables f̂ replaed bythe deviations �f or 1 +�f in the ase of �. The only numerially signi�ant di�erene between thetwo runs is therefore the presene or absene of the bakground error terms analogous to the term inbrakets on the right hand side of Eq. (21). We onlude that the presene of these terms signi�antlyontaminates the numerial evolution and gives rise to spurious numerial e�ets suh as mode oupling5



0 5 10
r [km]

-3

-2

-1

0

1
ξ(t,r) [m]

ξ  at t=0
ξ  at t=57.3 km (new scheme)
ξ  at t=57.3 km (conv. scheme)

0 5 10
r [km]

-5e-07

0

5e-07

1e-06

1.5e-06

∆ρ(t,r) [km
-2

]

∆ρ  at t=0
∆ρ  at t=57.3 km (new scheme)
∆ρ  at t=57.3 km (conv. scheme)

Figure 1: Snap shots of the evolution of � (right panel) and �� (left panel) obtained with a non-linearperturbative and a onventional sheme.and shok formation. We �nd the signi�ane of this e�et to derease with higher grid resolutionand larger amplitude of the initial data. Our new sheme will therefore be partiularly suitable forstudying mildly non-linear e�ets at amplitudes notably smaller than the bakground values.6 Appliations6.1 Non-linear oupling of eigenmodesIn setion 1 we have already noted the importane of a detailed understanding of non-linear ouplingof eigenmodes for addressing questions suh as the saturation amplitudes of neutron star osillations.Analyti studies of mode-oupling e�ets normally view the eigenmode oeÆients Ai (f. Eq. 18) asharmoni osillators and the non-linear interation between di�erent modes is represented in the formof a series of driving terms with inreasing order in the amplitudes whih is trunated at seond or thirdorder (see e.g. [11℄). While the investigation of neutron star osillations in 3-dimensions suh as r-modesis beyond the sope of our work, we will demonstrate in the ase of radial osillations that our shemepresents a numerial alternative to study non-linear oupling of eigenmodes without any restritions dueto the emission of higher order terms. For this purpose we onsider the neutron star model of setion 4and provide initial data in the form of one isolated eigenmode. The index j of this mode and the initialamplitude given by the initial displaement of the stellar surfae �s in m from the equilibrium radius arethe two free parameters. During the fully non-linear evolution we make use of Eq. (18) whih enablesus to expand the time dependent displaement funtion aording to �(t; x) =Pi Ai(t)�i(x). The timedependent eigenmode oeÆients are then given by Ai(t) = h�(t; x); �i(x)i and an be alulated ateah time step. In the amplitude range onsidered here we typially �nd these oeÆients to osillatewith a frequeny lose to the value predited by linear theory. We therefore measure the degree towhih a mode is present in an evolution by taking the maximum of jAi(t)j whih we denote by Ai. Theintegration time for these runs is T � 4ms whih orresponds to about 10 osillation periods of thefundamental mode. In Fig. (2) we show the eigenmode oeÆients Ai of the �rst 5 eigenmodes thusobtained for j = 2 as a funtion of the initial surfae displaement. The only mode initially present inthese evolutions is the seond mode and we �nd the orresponding eigenmode oeÆient A2 (\+" in the�gure) to depend linearly on the initial surfae displaement �s. Other eigenmodes while not presentin the initial data, are exited in the ourse of the non-linear evolution, so that we �nd non-zero valuesfor the other Ai. We learly see that the degree of exitation inreases with the initial amplitude.A more detailed analysis reveals that the dependene of the Ai on �s an be well approximated bypower laws with integer index as shown in the �gure. While A1, A3 and A4 are well approximated bya quadrati power law, we �nd that A5 grows like the ube of �s. We have frequently observed thatthe exitation of higher order modes is modeled by larger integer power law indies, although we also�nd exeptions to this rule. A more systemati analysis of this dependeny requires larger data setsand is postponed to future work. We stress the importane of the amplitude independent aurayprovided by our sheme for being able to measure these e�ets. The deviations of A5 from the power6
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Figure 2: The eigenmode oeÆients Ai are shown for initial data in the form the seond eigenmodeas a funtion of the initial amplitude �s.law behavior observed at small amplitudes are most likely aused by the auray limits enounteredeven when using our sheme with the large resolution of 3200 grid points.6.2 Osillations of marginally stable neutron starsWe have already seen that the bene�ts of our numerial sheme are most important when studyingnon-linear e�ets assoiated with rather small deviations from the equilibrium on�guration. It islear that suh non-linear e�ets will be partiularly pronouned if the linear �rst order terms in theevolution equations (25)-(29) largely anel eah other. In that ase the higher order terms and theassoiated non-linear e�ets will dominate the evolution even for very small amplitudes of the dynamisignal. It has been known for a long time that the onset of dynami instability of neutron stars toradial perturbations ours at a point where the frequeny of the fundamental eigenmode beomeszero (see e.g. [3℄). Radial osillations of neutron stars very lose to the maximum of the mass-radiusurve should therefore provide a fertile area of appliation for our numerial sheme. We onsider aneutron star bakground model with the same equation of state as before, but a higher entral density,so that the star has a mass only a fration 6 � 10�7 below the maximum mass Mmax = 1:655M�. InFig. (3) we show the surfae displaement obtained for evolving the fundamental eigenmode with aninitial amplitude of +10 (dashed urve) and �10m (solid urve). We note several deviations from theharmoni osillations predited by the linearized theory. First the osillation amplitude as well as thefrequeny depend on the sign of the initial perturbation. Seondly the star does not osillate aroundits equilibrium position (dotted urve) but around a larger radial position. Furthermore the osillationof the solid urve (initial ontration) appears to be distorted relative to a purely harmoni shape.For larger amplitudes this feature beomes more prominent and distint for both signs of the initialperturbation. Finally a quantitative analysis yields that both osillation frequenies are signi�antlylarger than the value predited by linear theory. We have investigated this frequeny shift in moredetail by determining the frequenies of the non-linear evolutions via Fourier analysis over a widerange of amplitudes. The results are shown in the right panel of Fig. (3) and demonstrate that thefrequenies of the non-linear evolutions (\�") di�er from the linearized value (dashed line) by up toone order of magnitude over the amplitude range onsidered here. As the amplitude goes to zero,we reover the value predited by perturbation theory, but even for initial perturbations as small as1m we observe di�erenes of several perent and a notable distortion of the osillation pro�les similarto Fig. (3). In ontrast we have found exellent agreement between the frequenies for \ordinary"neutron stars loated muh further away from the stability limit. In suh ases linear theory preditsfrequenies whih agree with our non-linear evolutions to less than 1% for amplitudes well above 10m.We onlude that the disrepanies observed for neutron stars near their stability limit are due to7
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