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Abstract

A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations
with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial
neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new
scheme compared with “conventional” techniques. The key feature of our approach is to describe the evolu-
tion in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis
we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The
advantage of our scheme lies in the elimination of background terms from the equations and the associated
numerical errors. The improvements thus achieved will be particularly significant in the study of mildly
non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values
but large enough to warrant non-linear effects. We apply the new technique to study the coupling of radial
neutron star oscillations due to non-linear effects.
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1 Introduction

The study of neutron star oscillations has long since been a topic of considerable scientific interest. In recent years
the interest in neutron star simulations has further intensified due to the discovery of the gravitational radiation
driven instability of the r-modes [1]. A great deal of work has been spent on the development of non-linear,
3-dimensional, relativistic hydrodynamic simulations to investigate such scenarios (see e.g. [3] and references
therein). One of the most important questions raised in connection with the r-mode instability concerns the
efficiency with which energy is dissipated due to viscosity or non-linear effects. The numerical investigation of
non-linear effects in this respect appears to be relying on codes which are not specifically designed to capture
mildly non-linear effects in the low-amplitude regime. Results thus obtained have indicated a large saturation
amplitude of order unity of the r-modes (see e.g. [4]) but have been called into question by studies which
analytically take into account the non-linear mode-coupling and find significant non-linear interaction which
prevents a further growth of the r-mode at amplitudes at least 4 orders of magnitude smaller [2]. In the context
of simulating non-linear neutron star oscillations at rather small amplitudes it is interesting to note that the
signature of the numerical truncation error caused by the intrinsic presence of background terms in the evolution
equations has been observed in 3D non-linear evolutions [6]. While these authors find this error to decrease
at second order with the grid-resolution and not to seriously affect their results, one has to bear in mind that
the impact of the resulting spurious source terms will strongly depend on the amplitude of the dynamic signal.
The smaller the deviations from the equilibrium configuration the more significant we expect the numerical
contamination to affect the simulations. It appears desirable therefore to have a numerical scheme where the
error is determined solely by the amplitude of the dynamic signal as opposed to the equilibrium background.
In section 2 and 3 we will show how such an amplitude independent accuracy can be obtained by decomposing
the numerical evolution into a static background and time dependent deviations from that background. After
testing the resulting code we demonstrate the improvements by comparing numerical evolutions obtained with



the new and a “conventional” scheme. The improvements thus achieved enable us in section 5 to investigate
non-linear mode-coupling of radial neutron star oscillations in an amplitude regime comparable to that found
relevant for r-mode saturation.

2 The “conventional” formulation

In order to describe a dynamic, spherically symmetric neutron star we use a Lagrangian approach which straight-
forwardly facilitates an exact treatment of the moving stellar surface. We thus describe the spacetime in terms
of the line element
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where ;\, I" and 7 are functions of the spatial coordinate z and coordinate time ¢ and we have defined the velocity
of the fluid elements w = 7,/A. In this formulation the circumferential radius 7 is a time dependent variable
whereas the “co-moving” spatial coordinate x labels the fluid elements. We model the matter as a perfect fluid
at zero temperature with a polytropic equation of state P=K p7, where P and p are the pressure and total
energy density and the polytropic exponent v and K are constant parameters. The Lagrangian nature of our
coordinate system is reflected in the 4-velocity u® which has a non-vanishing time component u’ =1//=gu
only. The energy momentum tensor for a perfect fluid then follows directly from T,,5 = (5+ P)uauB + Pgag In
order to write the Einstein field equations G5 = 871,53 and the equations of conservation of energy-momentum
Vo1I3% =0 it is convenient to introduce the function m by
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The equations can then be written in the form
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The boundary conditions for this evolution system are given by 7 = 0, w = 0, m = 0 at the origin and
P =0, A =+/1— 2/ at the surface which matches the line element (1) to an exterior Schwarzschild metric.
For the prescription of initial data and the development of our new numerical formulation in section 3 it is
essential to discuss the static and the linearized limit of the evolution system (3)-(7). The static limit describes

spherically symmetric neutron stars in equilibrium and leads to the well known Tolman-Oppenheimer-Volkoff
(TOV) equations
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where I' = 1 — 2m/r. Here we have omitted the “hat” from the time independent equilibrium variables in order
to distinguish them from the total quantities. In order to achieve a higher grid resolution near the surface we
fix the Lagrangian coordinate = by relating it to the speed of sound via r , = \/OP/0p.

The linearized version of the evolution system around the TOV background is best formulated in terms of the
rescaled displacement ¢ = r2£/\, where ¢ is the displacement of the fluid elements in terms of the circumferential
radius. The linearized equations then lead to a self adjoint eigenvalue problem for the functions ((x) which
has an infinite number of solutions (i, (s,... with ordered eigenvalues (w;)? < (w2)? < .... Here the w; are the
frequencies of the eigenmodes. After appropriate rescaling the eigenfunctions form a complete orthonormal set
so that any function f(z) with appropriate boundary conditions can be expanded in a series according to

= ZAiCi(x) = Z(f: Gi)Gi(x), (11)

where the scalar product is defined in terms of the TOV-background functions (see [5] for details).



3 A “non-linear perturbative” formulation

Before we reformulate the evolution system of section 2 in terms of non-linear deviations from the TOV back-
ground we motivate our new approach in the case of a simple toy equation. Let us assume for this purpose that
a physical system is described in terms of variables f , g and h which all depend on spatial position z and time
t. We further assume that one of the equations governing the system is iL7t = iLw + fg and that there exist a
non-trivial equilibrium of the system described by f(z), g(x) and h(x) which obey the time independent version
of this equation h, + fg = 0. We can now decompose the time dependent functions into static background
contributions and time dependent deviations according to f(¢,z) = f(z) + Af(t,z) and likewise for § and h.
Inserting this into the evolution equation we obtain

Ahy=Ah,+ fAg+gAf+ AfAg+ (he + f9). (12)

It is the term in brackets on the right hand side which motivates our reformulation of the problem. From
the background equation we know that this term vanishes identically. Numerically, however, this will only
be satisfied up to a finite error which represents a spurious source term in the evolution of Ah. This effect is
intrinsic to any numerical scheme based on a “conventional formulation” such as that of section 2. Its severeness
will depend on the relative size of the dynamic signal compared with the background values. By virtue of our
decomposition we eliminate the problematic terms prior to the numerical evolution and instead of Eq. (12) use

Ahy=Ah, + fAg+gAf+ AfAg. (13)

By keeping all higher order terms such as A fAg we ensure that our reformulation is equivalent to the original
non-linear problem.

We now reformulate the system of evolution equations (2)-(7) in terms of deviations from the TOV equilibrium
background. For this purpose we decompose the variables according to 7(t,z) = r(z) + £(¢,2), Mt z) =
Az) + AX(t,z) and likewise for m, I, p and P. After eliminating all zero order terms by using the TOV
equations (8)-(10) the evolution equations can be written as

€0 + AT — €+ 2Am =0, (14)
EQ2r + O, + P2 AT(20 + AD)A, + P2T2AN , — (€MD + 7, AXD + 7, AAD) (1 + 47r° P)

+w? [—F2TA, + 7 A — 47rf3/3)] — 7 AL {Am + 47[(3r2€ + 3re? + )P + P AP]} =0, (15)
ATm , +DAm , — w? (i, + 47727 , P) — 4rr [5(27“ +6r Tp+ i (r ATp +r T Ap + fwﬁf)] =0, (16)
Am; + 4ni? dwP =0, (17)
€4 —Aw =0, (18)

Aw? — 20w?)i2 Py + wi®f o (D — w?) APy + (5 + P)i [f2fw,t — 23w (i + 4ﬂf3l5)]
+ (AXT + AATD) |20 P, + (p + P)7 o (10 + 47 )] +AT { [(Ap +AP)r, + (5 + P)g,w] (m + 47r°P)  (19)
+i2DAP, + £(2r + TP, + P2ATP, + (p+ P)i , [Am + 47(3r%¢ + 3r€% + €%)P + 47i® AP] } =0.

We solve this system with an implicit, second order in space and time numerical scheme similar to the Crank-
Nicholson scheme.

We have tested the resulting numerical code in three independent ways which cover a large range of amplitudes
of the deviations. First we evolve an isolated eigenmode of a background neutron star model with polytropic
parameters v = 2, K = 150 km?, mass M = 1.48 Mg and radius R = 11.3km. For a small amplitude of
the eigenmode (we choose 10cm) the exact solution will be well approximated by the harmonic oscillations
predicted by the linearized equations. We find our code to reproduce this analytic solution with a relative
point-wise error of about 10~2 for 200 grid points. Secondly we confirmed second order convergence of the code
both for eigenmode evolutions with various amplitudes and the collapse of unstable neutron stars. Finally we
have simulated the collapse of a spherically symmetric, initially homogeneous dust cloud, i.e.a fluid with zero
pressure (“Oppenheimer-Snyder dust collapse”). We find our code to reproduce the analytic solution with a
relative accuracy better than 1073 for 800 grid points throughout the whole collapse.
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Figure 1: Snap shots of the evolution of £ (right panel) and Ap (left panel) obtained with a non-linear pertur-
bative and a conventional scheme.

4 Comparing the numerical performance of the two schemes

In order to compare the numerical schemes outlined in sections 2 and 3 we consider the evolution of the third
eigenmode of the above model with an amplitude of 1 m using 200 grid points. For this amplitude the non-linear
effects are rather small (albeit measurable as we will see below) so that we expect the evolution to be close to
the harmonic oscillations predicted by the linearized equations. In Fig.1 we show snapshots of the evolution of
the displacement & (left panel) and the energy density deviation Ap (right panel). The dotted lines represent
the initial data, the dashed lines the results obtained with our non-linear perturbative scheme of section 3 and
the solid lines those obtained with the conventional scheme of section 2. The results demonstrate that the new
scheme produces the expected oscillations while the “conventional” scheme leads to severely distorted profiles.
The numerical noise visible in the solid curve of Ap arises from the spurious formation of shocks near the stellar
surface. We emphasize that these results have been obtained with a single numerical code. For our new scheme
we use a TOV-background while the conventional formulation is emulated by using a trivial flat space vacuum
background (A = 1, m = 0, p = 0) for which the two systems of equations (14)-(19) and (2)-(7) become identical.
The only significant difference between the two runs is therefore the presence or absence of the background error
terms analogous to the term in brackets on the right hand side of Eq.(12). We conclude that the presence of
these terms gives rise to spurious numerical effects such as mode coupling and shock formation. We find the
significance of this effect to decrease with higher grid resolution and larger amplitude of the initial data. Our
new scheme will therefore be particularly suitable for studying mildly non-linear effects at amplitudes notably
smaller than the background values.

5 Non-linear coupling of eigenmodes

In section 1 we have already noted the importance of a detailed understanding of non-linear coupling of eigen-
modes for addressing questions such as the saturation amplitudes of neutron star oscillations. Analytic studies
of mode-coupling effects normally view the eigenmode coefficients A; (cf. Eq.11) as harmonic oscillators and
the non-linear interaction between different modes is represented in the form of a series of driving terms with
increasing order in the amplitudes which is truncated at second or third order (see e.g. [7]). While the in-
vestigation of neutron star oscillations in 3-dimensions such as r-modes is beyond the scope of our work, we
will demonstrate in the case of radial oscillations that our scheme presents a numerical alternative to study
non-linear coupling of eigenmodes without any restrictions due to the emission of higher order terms. For this
purpose we consider the neutron star model of section 3 and provide initial data in the form of one isolated
eigenmode. The index j of this mode and the initial amplitude given by the initial displacement of the stellar
surface & in m from the equilibrium radius are the two free parameters. During the fully non-linear evolution
we make use of Eq.(11) which enables us to expand the time dependent displacement function according to
C(t,z) = >, Ai(t)¢i(x). The time dependent eigenmode coefficients are then given by A4;(t) = ((¢, ), (;(x)) and
can be calculated at each time step. In the amplitude range considered here we typically find these coefficients
to oscillate with a frequency close to the value predicted by linear theory. We therefore measure the degree
to which a mode is present in an evolution by taking the maximum of |A4;(¢)| which we denote by A;. The
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Figure 2: The eigenmode coefficients A; are shown for initial data in the form the second eigenmode as a
function of the initial amplitude &.

integration time for these runs is T' &~ 4 ms which corresponds to about 10 oscillation periods of the fundamental
mode. In Fig. (2) we show the eigenmode coefficients A; of the first 5 eigenmodes thus obtained for j = 2 as a
function of the initial surface displacement. The only mode initially present in these evolutions is the second
mode and we find the corresponding eigenmode coefficient A, (“+” in the figure) to depend linearly on the
initial surface displacement &;. Other eigenmodes while not present in the initial data, are excited in the course
of the non-linear evolution, so that we find non-zero values for the other A;. We clearly see that the degree of
excitation increases with the initial amplitude. A more detailed analysis reveals that the dependence of the A;
on & can be well approximated by power laws with integer index as shown in the figure. While A;, A3 and Ay
are well approximated by a quadratic power law, we find that A5 grows like the cube of &. We have frequently
observed that the excitation of higher order modes is modeled by larger integer power law indices, although we
find exceptions to this rule. We emphasize the importance of the amplitude independent accuracy provided by
our scheme for being able to measure these effects. The deviations of As from the power law behavior observed
at small amplitudes are most likely caused by the accuracy limits encountered even when using our scheme with
the large resolution of 3200 grid points.
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