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tA numeri
al te
hnique is presented whi
h fa
ilitates the evolution of non-linear neutron star os
illationswith a high a

ura
y essentially independent of the os
illation amplitude. We apply this te
hnique to radialneutron star os
illations in a Lagrangian formulation and demonstrate the superior performan
e of the news
heme 
ompared with \
onventional" te
hniques. The key feature of our approa
h is to des
ribe the evolu-tion in terms of deviations from an equilibrium 
on�guration. In 
ontrast to standard perturbation analysiswe keep all higher order terms in the evolution equations and thus obtain a fully non-linear des
ription. Theadvantage of our s
heme lies in the elimination of ba
kground terms from the equations and the asso
iatednumeri
al errors. The improvements thus a
hieved will be parti
ularly signi�
ant in the study of mildlynon-linear e�e
ts where the amplitude of the dynami
 signal is small 
ompared with the equilibrium valuesbut large enough to warrant non-linear e�e
ts. We apply the new te
hnique to study the 
oupling of radialneutron star os
illations due to non-linear e�e
ts.Keywords: neutron star os
illations, non-linearity, numeri
al te
hniques.1 Introdu
tionThe study of neutron star os
illations has long sin
e been a topi
 of 
onsiderable s
ienti�
 interest. In re
ent yearsthe interest in neutron star simulations has further intensi�ed due to the dis
overy of the gravitational radiationdriven instability of the r-modes [1℄. A great deal of work has been spent on the development of non-linear,3-dimensional, relativisti
 hydrodynami
 simulations to investigate su
h s
enarios (see e.g. [3℄ and referen
estherein). One of the most important questions raised in 
onne
tion with the r-mode instability 
on
erns theeÆ
ien
y with whi
h energy is dissipated due to vis
osity or non-linear e�e
ts. The numeri
al investigation ofnon-linear e�e
ts in this respe
t appears to be relying on 
odes whi
h are not spe
i�
ally designed to 
apturemildly non-linear e�e
ts in the low-amplitude regime. Results thus obtained have indi
ated a large saturationamplitude of order unity of the r-modes (see e.g. [4℄) but have been 
alled into question by studies whi
hanalyti
ally take into a

ount the non-linear mode-
oupling and �nd signi�
ant non-linear intera
tion whi
hprevents a further growth of the r-mode at amplitudes at least 4 orders of magnitude smaller [2℄. In the 
ontextof simulating non-linear neutron star os
illations at rather small amplitudes it is interesting to note that thesignature of the numeri
al trun
ation error 
aused by the intrinsi
 presen
e of ba
kground terms in the evolutionequations has been observed in 3D non-linear evolutions [6℄. While these authors �nd this error to de
reaseat se
ond order with the grid-resolution and not to seriously a�e
t their results, one has to bear in mind thatthe impa
t of the resulting spurious sour
e terms will strongly depend on the amplitude of the dynami
 signal.The smaller the deviations from the equilibrium 
on�guration the more signi�
ant we expe
t the numeri
al
ontamination to a�e
t the simulations. It appears desirable therefore to have a numeri
al s
heme where theerror is determined solely by the amplitude of the dynami
 signal as opposed to the equilibrium ba
kground.In se
tion 2 and 3 we will show how su
h an amplitude independent a

ura
y 
an be obtained by de
omposingthe numeri
al evolution into a stati
 ba
kground and time dependent deviations from that ba
kground. Aftertesting the resulting 
ode we demonstrate the improvements by 
omparing numeri
al evolutions obtained with1



the new and a \
onventional" s
heme. The improvements thus a
hieved enable us in se
tion 5 to investigatenon-linear mode-
oupling of radial neutron star os
illations in an amplitude regime 
omparable to that foundrelevant for r-mode saturation.2 The \
onventional" formulationIn order to des
ribe a dynami
, spheri
ally symmetri
 neutron star we use a Lagrangian approa
h whi
h straight-forwardly fa
ilitates an exa
t treatment of the moving stellar surfa
e. We thus des
ribe the spa
etime in termsof the line element ds2 = �̂2 ��1 + w2̂� � dt2 + 2 r̂;x�̂w�̂ dt dx + r̂2;x̂� dx2 + r̂2(d�2 + sin2 � d�2): (1)where �̂, �̂ and r̂ are fun
tions of the spatial 
oordinate x and 
oordinate time t and we have de�ned the velo
ityof the 
uid elements w = r̂;t=�̂. In this formulation the 
ir
umferential radius r̂ is a time dependent variablewhereas the \
o-moving" spatial 
oordinate x labels the 
uid elements. We model the matter as a perfe
t 
uidat zero temperature with a polytropi
 equation of state P̂ = K�̂
 , where P̂ and �̂ are the pressure and totalenergy density and the polytropi
 exponent 
 and K are 
onstant parameters. The Lagrangian nature of our
oordinate system is re
e
ted in the 4-velo
ity u� whi
h has a non-vanishing time 
omponent u0 = 1=p�gttonly. The energy momentum tensor for a perfe
t 
uid then follows dire
tly from T�� = (�̂+ P̂ )u�u�+ P̂ g�� . Inorder to write the Einstein �eld equations G�� = 8�T�� and the equations of 
onservation of energy-momentumr�T�� = 0 it is 
onvenient to introdu
e the fun
tion m̂ by�̂ = 1� 2 m̂̂r : (2)The equations 
an then be written in the form0 = �̂(�̂� w2)r̂2�̂;x � �̂r̂;x h(�̂� w2)m̂+ 4�r̂3(w2�̂+ �̂P̂ )i ; (3)0 = (�̂� w2)m̂;x � 4�r̂2r̂;x(�̂�̂+ w2P̂ ); (4)0 = m̂;t + 4�r̂2�̂wP̂ ; (5)0 = r̂;t � �̂w; (6)0 = (�̂� w2)2r̂2�̂P̂;x + (�̂� w2)wr̂2 r̂;xP̂;t + (�̂+ P̂ )r̂;x h�̂w;tr̂2 + (�̂� 2w2)�̂�m̂+ 4�r̂3P̂�i : (7)The boundary 
onditions for this evolution system are given by r̂ = 0, w = 0, m̂ = 0 at the origin andP̂ = 0, �̂ =p1� 2m̂=r̂ at the surfa
e whi
h mat
hes the line element (1) to an exterior S
hwarzs
hild metri
.For the pres
ription of initial data and the development of our new numeri
al formulation in se
tion 3 it isessential to dis
uss the stati
 and the linearized limit of the evolution system (3)-(7). The stati
 limit des
ribesspheri
ally symmetri
 neutron stars in equilibrium and leads to the well known Tolman-Oppenheimer-Volko�(TOV) equations 0 = r2��;x � �r;x(m+ 4�r3P ); (8)0 = m;x � 4�r2r;x�; (9)0 = r2�P;x + r;x(�+ P )(m+ 4�r3P ); (10)where � = 1� 2m=r. Here we have omitted the \hat" from the time independent equilibrium variables in orderto distinguish them from the total quantities. In order to a
hieve a higher grid resolution near the surfa
e we�x the Lagrangian 
oordinate x by relating it to the speed of sound via r;x =p�P=��.The linearized version of the evolution system around the TOV ba
kground is best formulated in terms of theres
aled displa
ement � = r2�=�, where � is the displa
ement of the 
uid elements in terms of the 
ir
umferentialradius. The linearized equations then lead to a self adjoint eigenvalue problem for the fun
tions �(x) whi
hhas an in�nite number of solutions �1, �2,... with ordered eigenvalues (!1)2 < (!2)2 < :::. Here the !i are thefrequen
ies of the eigenmodes. After appropriate res
aling the eigenfun
tions form a 
omplete orthonormal setso that any fun
tion f(x) with appropriate boundary 
onditions 
an be expanded in a series a

ording tof(x) =Xi Ai�i(x) =Xi hf; �ii�i(x); (11)where the s
alar produ
t is de�ned in terms of the TOV-ba
kground fun
tions (see [5℄ for details).2



3 A \non-linear perturbative" formulationBefore we reformulate the evolution system of se
tion 2 in terms of non-linear deviations from the TOV ba
k-ground we motivate our new approa
h in the 
ase of a simple toy equation. Let us assume for this purpose thata physi
al system is des
ribed in terms of variables f̂ , ĝ and ĥ whi
h all depend on spatial position x and timet. We further assume that one of the equations governing the system is ĥ;t = ĥ;x + f̂ ĝ and that there exist anon-trivial equilibrium of the system des
ribed by f(x), g(x) and h(x) whi
h obey the time independent versionof this equation h;x + fg = 0. We 
an now de
ompose the time dependent fun
tions into stati
 ba
kground
ontributions and time dependent deviations a

ording to f̂(t; x) = f(x) + �f(t; x) and likewise for ĝ and ĥ.Inserting this into the evolution equation we obtain�h;t = �h;x + f�g + g�f +�f�g + (h;x + fg): (12)It is the term in bra
kets on the right hand side whi
h motivates our reformulation of the problem. Fromthe ba
kground equation we know that this term vanishes identi
ally. Numeri
ally, however, this will onlybe satis�ed up to a �nite error whi
h represents a spurious sour
e term in the evolution of �h. This e�e
t isintrinsi
 to any numeri
al s
heme based on a \
onventional formulation" su
h as that of se
tion 2. Its severenesswill depend on the relative size of the dynami
 signal 
ompared with the ba
kground values. By virtue of ourde
omposition we eliminate the problemati
 terms prior to the numeri
al evolution and instead of Eq. (12) use�h;t = �h;x + f�g + g�f +�f�g: (13)By keeping all higher order terms su
h as �f�g we ensure that our reformulation is equivalent to the originalnon-linear problem.We now reformulate the system of evolution equations (2)-(7) in terms of deviations from the TOV equilibriumba
kground. For this purpose we de
ompose the variables a

ording to r̂(t; x) = r(x) + �(t; x), �̂(t; x) =�(x) + ��(t; x) and likewise for m̂, �̂, �̂ and P̂ . After eliminating all zero order terms by using the TOVequations (8)-(10) the evolution equations 
an be written as��̂ + r��� � + 2�m = 0; (14)�(2r + �)�2�;x + r̂2��(2� +��)�;x + r̂2�̂2��;x � (�;x�� + r̂;x��� + r̂;x�̂��)(m+ 4�r3P )+ w2 h�r̂2�̂�̂;x + r̂;x�̂(m̂� 4�r̂3�̂)i� r̂;x�̂�̂��m+ 4�[(3r2� + 3r�2 + �3)P + r̂3�P ℄	 = 0; (15)��m;x + �̂�m;x � w2(m̂;x + 4�r̂2r̂;xP̂ )� 4� h�(2r + �)r;x��+ r̂2(r;x���+ r;x�̂��+ �;x�̂�̂)i = 0; (16)�m;t + 4�r̂2�̂wP̂ = 0; (17)�;t � �̂w = 0; (18)�̂(w4 � 2�̂w2)r̂2P̂;x + wr̂2 r̂;x(�̂� w2)�P;t + (�̂+ P̂ )r̂;x hr̂2�̂w;t � 2�̂w2(m̂+ 4�r̂3P̂ )i+ (��� + �̂��) hr̂2�̂P̂;x + (�̂+ P̂ )r̂;x(m̂+ 4�r̂3P̂ )i+ ��nh(��+�P )r;x + (�̂+ P̂ )�;xi (m+ 4�r3P )+r̂2�̂�P;x + �(2r + �)�P;x + r̂2��P;x + (�̂+ P̂ )r̂;x ��m+ 4�(3r2� + 3r�2 + �3)P + 4�r̂3�P �o = 0: (19)We solve this system with an impli
it, se
ond order in spa
e and time numeri
al s
heme similar to the Crank-Ni
holson s
heme.We have tested the resulting numeri
al 
ode in three independent ways whi
h 
over a large range of amplitudesof the deviations. First we evolve an isolated eigenmode of a ba
kground neutron star model with polytropi
parameters 
 = 2, K = 150 km2, mass M = 1:48M� and radius R = 11:3 km. For a small amplitude ofthe eigenmode (we 
hoose 10 
m) the exa
t solution will be well approximated by the harmoni
 os
illationspredi
ted by the linearized equations. We �nd our 
ode to reprodu
e this analyti
 solution with a relativepoint-wise error of about 10�3 for 200 grid points. Se
ondly we 
on�rmed se
ond order 
onvergen
e of the 
odeboth for eigenmode evolutions with various amplitudes and the 
ollapse of unstable neutron stars. Finally wehave simulated the 
ollapse of a spheri
ally symmetri
, initially homogeneous dust 
loud, i.e. a 
uid with zeropressure (\Oppenheimer-Snyder dust 
ollapse"). We �nd our 
ode to reprodu
e the analyti
 solution with arelative a

ura
y better than 10�3 for 800 grid points throughout the whole 
ollapse.3
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Figure 1: Snap shots of the evolution of � (right panel) and �� (left panel) obtained with a non-linear pertur-bative and a 
onventional s
heme.4 Comparing the numeri
al performan
e of the two s
hemesIn order to 
ompare the numeri
al s
hemes outlined in se
tions 2 and 3 we 
onsider the evolution of the thirdeigenmode of the above model with an amplitude of 1m using 200 grid points. For this amplitude the non-lineare�e
ts are rather small (albeit measurable as we will see below) so that we expe
t the evolution to be 
lose tothe harmoni
 os
illations predi
ted by the linearized equations. In Fig. 1 we show snapshots of the evolution ofthe displa
ement � (left panel) and the energy density deviation �� (right panel). The dotted lines representthe initial data, the dashed lines the results obtained with our non-linear perturbative s
heme of se
tion 3 andthe solid lines those obtained with the 
onventional s
heme of se
tion 2. The results demonstrate that the news
heme produ
es the expe
ted os
illations while the \
onventional" s
heme leads to severely distorted pro�les.The numeri
al noise visible in the solid 
urve of �� arises from the spurious formation of sho
ks near the stellarsurfa
e. We emphasize that these results have been obtained with a single numeri
al 
ode. For our new s
hemewe use a TOV-ba
kground while the 
onventional formulation is emulated by using a trivial 
at spa
e va
uumba
kground (� = 1, m = 0, � = 0) for whi
h the two systems of equations (14)-(19) and (2)-(7) be
ome identi
al.The only signi�
ant di�eren
e between the two runs is therefore the presen
e or absen
e of the ba
kground errorterms analogous to the term in bra
kets on the right hand side of Eq. (12). We 
on
lude that the presen
e ofthese terms gives rise to spurious numeri
al e�e
ts su
h as mode 
oupling and sho
k formation. We �nd thesigni�
an
e of this e�e
t to de
rease with higher grid resolution and larger amplitude of the initial data. Ournew s
heme will therefore be parti
ularly suitable for studying mildly non-linear e�e
ts at amplitudes notablysmaller than the ba
kground values.5 Non-linear 
oupling of eigenmodesIn se
tion 1 we have already noted the importan
e of a detailed understanding of non-linear 
oupling of eigen-modes for addressing questions su
h as the saturation amplitudes of neutron star os
illations. Analyti
 studiesof mode-
oupling e�e
ts normally view the eigenmode 
oeÆ
ients Ai (
f. Eq. 11) as harmoni
 os
illators andthe non-linear intera
tion between di�erent modes is represented in the form of a series of driving terms within
reasing order in the amplitudes whi
h is trun
ated at se
ond or third order (see e.g. [7℄). While the in-vestigation of neutron star os
illations in 3-dimensions su
h as r-modes is beyond the s
ope of our work, wewill demonstrate in the 
ase of radial os
illations that our s
heme presents a numeri
al alternative to studynon-linear 
oupling of eigenmodes without any restri
tions due to the emission of higher order terms. For thispurpose we 
onsider the neutron star model of se
tion 3 and provide initial data in the form of one isolatedeigenmode. The index j of this mode and the initial amplitude given by the initial displa
ement of the stellarsurfa
e �s in m from the equilibrium radius are the two free parameters. During the fully non-linear evolutionwe make use of Eq. (11) whi
h enables us to expand the time dependent displa
ement fun
tion a

ording to�(t; x) =PiAi(t)�i(x). The time dependent eigenmode 
oeÆ
ients are then given by Ai(t) = h�(t; x); �i(x)i and
an be 
al
ulated at ea
h time step. In the amplitude range 
onsidered here we typi
ally �nd these 
oeÆ
ientsto os
illate with a frequen
y 
lose to the value predi
ted by linear theory. We therefore measure the degreeto whi
h a mode is present in an evolution by taking the maximum of jAi(t)j whi
h we denote by Ai. The4
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Figure 2: The eigenmode 
oeÆ
ients Ai are shown for initial data in the form the se
ond eigenmode as afun
tion of the initial amplitude �s.integration time for these runs is T � 4ms whi
h 
orresponds to about 10 os
illation periods of the fundamentalmode. In Fig. (2) we show the eigenmode 
oeÆ
ients Ai of the �rst 5 eigenmodes thus obtained for j = 2 as afun
tion of the initial surfa
e displa
ement. The only mode initially present in these evolutions is the se
ondmode and we �nd the 
orresponding eigenmode 
oeÆ
ient A2 (\+" in the �gure) to depend linearly on theinitial surfa
e displa
ement �s. Other eigenmodes while not present in the initial data, are ex
ited in the 
ourseof the non-linear evolution, so that we �nd non-zero values for the other Ai. We 
learly see that the degree ofex
itation in
reases with the initial amplitude. A more detailed analysis reveals that the dependen
e of the Aion �s 
an be well approximated by power laws with integer index as shown in the �gure. While A1, A3 and A4are well approximated by a quadrati
 power law, we �nd that A5 grows like the 
ube of �s. We have frequentlyobserved that the ex
itation of higher order modes is modeled by larger integer power law indi
es, although we�nd ex
eptions to this rule. We emphasize the importan
e of the amplitude independent a

ura
y provided byour s
heme for being able to measure these e�e
ts. The deviations of A5 from the power law behavior observedat small amplitudes are most likely 
aused by the a

ura
y limits en
ountered even when using our s
heme withthe large resolution of 3200 grid points.A
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