
Non-linear neutron star osillations viewed as deviations from anequilibrium stateUlrih SperhakeDepartment of Physis, Setion of Astrophysis,Aristotle University of Thessaloniki, 54124 Thessaloniki, GreeeFaulty of Mathematial Studies,University of Southampton, Southampton SO17 1BJ, UK,email: sperhake�astro.auth.grAbstratA numerial tehnique is presented whih failitates the evolution of non-linear neutron star osillationswith a high auray essentially independent of the osillation amplitude. We apply this tehnique to radialneutron star osillations in a Lagrangian formulation and demonstrate the superior performane of the newsheme ompared with \onventional" tehniques. The key feature of our approah is to desribe the evolu-tion in terms of deviations from an equilibrium on�guration. In ontrast to standard perturbation analysiswe keep all higher order terms in the evolution equations and thus obtain a fully non-linear desription. Theadvantage of our sheme lies in the elimination of bakground terms from the equations and the assoiatednumerial errors. The improvements thus ahieved will be partiularly signi�ant in the study of mildlynon-linear e�ets where the amplitude of the dynami signal is small ompared with the equilibrium valuesbut large enough to warrant non-linear e�ets. We apply the new tehnique to study the oupling of radialneutron star osillations due to non-linear e�ets.Keywords: neutron star osillations, non-linearity, numerial tehniques.1 IntrodutionThe study of neutron star osillations has long sine been a topi of onsiderable sienti� interest. In reent yearsthe interest in neutron star simulations has further intensi�ed due to the disovery of the gravitational radiationdriven instability of the r-modes [1℄. A great deal of work has been spent on the development of non-linear,3-dimensional, relativisti hydrodynami simulations to investigate suh senarios (see e.g. [3℄ and referenestherein). One of the most important questions raised in onnetion with the r-mode instability onerns theeÆieny with whih energy is dissipated due to visosity or non-linear e�ets. The numerial investigation ofnon-linear e�ets in this respet appears to be relying on odes whih are not spei�ally designed to apturemildly non-linear e�ets in the low-amplitude regime. Results thus obtained have indiated a large saturationamplitude of order unity of the r-modes (see e.g. [4℄) but have been alled into question by studies whihanalytially take into aount the non-linear mode-oupling and �nd signi�ant non-linear interation whihprevents a further growth of the r-mode at amplitudes at least 4 orders of magnitude smaller [2℄. In the ontextof simulating non-linear neutron star osillations at rather small amplitudes it is interesting to note that thesignature of the numerial trunation error aused by the intrinsi presene of bakground terms in the evolutionequations has been observed in 3D non-linear evolutions [6℄. While these authors �nd this error to dereaseat seond order with the grid-resolution and not to seriously a�et their results, one has to bear in mind thatthe impat of the resulting spurious soure terms will strongly depend on the amplitude of the dynami signal.The smaller the deviations from the equilibrium on�guration the more signi�ant we expet the numerialontamination to a�et the simulations. It appears desirable therefore to have a numerial sheme where theerror is determined solely by the amplitude of the dynami signal as opposed to the equilibrium bakground.In setion 2 and 3 we will show how suh an amplitude independent auray an be obtained by deomposingthe numerial evolution into a stati bakground and time dependent deviations from that bakground. Aftertesting the resulting ode we demonstrate the improvements by omparing numerial evolutions obtained with1



the new and a \onventional" sheme. The improvements thus ahieved enable us in setion 5 to investigatenon-linear mode-oupling of radial neutron star osillations in an amplitude regime omparable to that foundrelevant for r-mode saturation.2 The \onventional" formulationIn order to desribe a dynami, spherially symmetri neutron star we use a Lagrangian approah whih straight-forwardly failitates an exat treatment of the moving stellar surfae. We thus desribe the spaetime in termsof the line element ds2 = �̂2 ��1 + w2̂� � dt2 + 2 r̂;x�̂w�̂ dt dx + r̂2;x̂� dx2 + r̂2(d�2 + sin2 � d�2): (1)where �̂, �̂ and r̂ are funtions of the spatial oordinate x and oordinate time t and we have de�ned the veloityof the uid elements w = r̂;t=�̂. In this formulation the irumferential radius r̂ is a time dependent variablewhereas the \o-moving" spatial oordinate x labels the uid elements. We model the matter as a perfet uidat zero temperature with a polytropi equation of state P̂ = K�̂ , where P̂ and �̂ are the pressure and totalenergy density and the polytropi exponent  and K are onstant parameters. The Lagrangian nature of ouroordinate system is reeted in the 4-veloity u� whih has a non-vanishing time omponent u0 = 1=p�gttonly. The energy momentum tensor for a perfet uid then follows diretly from T�� = (�̂+ P̂ )u�u�+ P̂ g�� . Inorder to write the Einstein �eld equations G�� = 8�T�� and the equations of onservation of energy-momentumr�T�� = 0 it is onvenient to introdue the funtion m̂ by�̂ = 1� 2 m̂̂r : (2)The equations an then be written in the form0 = �̂(�̂� w2)r̂2�̂;x � �̂r̂;x h(�̂� w2)m̂+ 4�r̂3(w2�̂+ �̂P̂ )i ; (3)0 = (�̂� w2)m̂;x � 4�r̂2r̂;x(�̂�̂+ w2P̂ ); (4)0 = m̂;t + 4�r̂2�̂wP̂ ; (5)0 = r̂;t � �̂w; (6)0 = (�̂� w2)2r̂2�̂P̂;x + (�̂� w2)wr̂2 r̂;xP̂;t + (�̂+ P̂ )r̂;x h�̂w;tr̂2 + (�̂� 2w2)�̂�m̂+ 4�r̂3P̂�i : (7)The boundary onditions for this evolution system are given by r̂ = 0, w = 0, m̂ = 0 at the origin andP̂ = 0, �̂ =p1� 2m̂=r̂ at the surfae whih mathes the line element (1) to an exterior Shwarzshild metri.For the presription of initial data and the development of our new numerial formulation in setion 3 it isessential to disuss the stati and the linearized limit of the evolution system (3)-(7). The stati limit desribesspherially symmetri neutron stars in equilibrium and leads to the well known Tolman-Oppenheimer-Volko�(TOV) equations 0 = r2��;x � �r;x(m+ 4�r3P ); (8)0 = m;x � 4�r2r;x�; (9)0 = r2�P;x + r;x(�+ P )(m+ 4�r3P ); (10)where � = 1� 2m=r. Here we have omitted the \hat" from the time independent equilibrium variables in orderto distinguish them from the total quantities. In order to ahieve a higher grid resolution near the surfae we�x the Lagrangian oordinate x by relating it to the speed of sound via r;x =p�P=��.The linearized version of the evolution system around the TOV bakground is best formulated in terms of theresaled displaement � = r2�=�, where � is the displaement of the uid elements in terms of the irumferentialradius. The linearized equations then lead to a self adjoint eigenvalue problem for the funtions �(x) whihhas an in�nite number of solutions �1, �2,... with ordered eigenvalues (!1)2 < (!2)2 < :::. Here the !i are thefrequenies of the eigenmodes. After appropriate resaling the eigenfuntions form a omplete orthonormal setso that any funtion f(x) with appropriate boundary onditions an be expanded in a series aording tof(x) =Xi Ai�i(x) =Xi hf; �ii�i(x); (11)where the salar produt is de�ned in terms of the TOV-bakground funtions (see [5℄ for details).2



3 A \non-linear perturbative" formulationBefore we reformulate the evolution system of setion 2 in terms of non-linear deviations from the TOV bak-ground we motivate our new approah in the ase of a simple toy equation. Let us assume for this purpose thata physial system is desribed in terms of variables f̂ , ĝ and ĥ whih all depend on spatial position x and timet. We further assume that one of the equations governing the system is ĥ;t = ĥ;x + f̂ ĝ and that there exist anon-trivial equilibrium of the system desribed by f(x), g(x) and h(x) whih obey the time independent versionof this equation h;x + fg = 0. We an now deompose the time dependent funtions into stati bakgroundontributions and time dependent deviations aording to f̂(t; x) = f(x) + �f(t; x) and likewise for ĝ and ĥ.Inserting this into the evolution equation we obtain�h;t = �h;x + f�g + g�f +�f�g + (h;x + fg): (12)It is the term in brakets on the right hand side whih motivates our reformulation of the problem. Fromthe bakground equation we know that this term vanishes identially. Numerially, however, this will onlybe satis�ed up to a �nite error whih represents a spurious soure term in the evolution of �h. This e�et isintrinsi to any numerial sheme based on a \onventional formulation" suh as that of setion 2. Its severenesswill depend on the relative size of the dynami signal ompared with the bakground values. By virtue of ourdeomposition we eliminate the problemati terms prior to the numerial evolution and instead of Eq. (12) use�h;t = �h;x + f�g + g�f +�f�g: (13)By keeping all higher order terms suh as �f�g we ensure that our reformulation is equivalent to the originalnon-linear problem.We now reformulate the system of evolution equations (2)-(7) in terms of deviations from the TOV equilibriumbakground. For this purpose we deompose the variables aording to r̂(t; x) = r(x) + �(t; x), �̂(t; x) =�(x) + ��(t; x) and likewise for m̂, �̂, �̂ and P̂ . After eliminating all zero order terms by using the TOVequations (8)-(10) the evolution equations an be written as��̂ + r��� � + 2�m = 0; (14)�(2r + �)�2�;x + r̂2��(2� +��)�;x + r̂2�̂2��;x � (�;x�� + r̂;x��� + r̂;x�̂��)(m+ 4�r3P )+ w2 h�r̂2�̂�̂;x + r̂;x�̂(m̂� 4�r̂3�̂)i� r̂;x�̂�̂��m+ 4�[(3r2� + 3r�2 + �3)P + r̂3�P ℄	 = 0; (15)��m;x + �̂�m;x � w2(m̂;x + 4�r̂2r̂;xP̂ )� 4� h�(2r + �)r;x��+ r̂2(r;x���+ r;x�̂��+ �;x�̂�̂)i = 0; (16)�m;t + 4�r̂2�̂wP̂ = 0; (17)�;t � �̂w = 0; (18)�̂(w4 � 2�̂w2)r̂2P̂;x + wr̂2 r̂;x(�̂� w2)�P;t + (�̂+ P̂ )r̂;x hr̂2�̂w;t � 2�̂w2(m̂+ 4�r̂3P̂ )i+ (��� + �̂��) hr̂2�̂P̂;x + (�̂+ P̂ )r̂;x(m̂+ 4�r̂3P̂ )i+ ��nh(��+�P )r;x + (�̂+ P̂ )�;xi (m+ 4�r3P )+r̂2�̂�P;x + �(2r + �)�P;x + r̂2��P;x + (�̂+ P̂ )r̂;x ��m+ 4�(3r2� + 3r�2 + �3)P + 4�r̂3�P �o = 0: (19)We solve this system with an impliit, seond order in spae and time numerial sheme similar to the Crank-Niholson sheme.We have tested the resulting numerial ode in three independent ways whih over a large range of amplitudesof the deviations. First we evolve an isolated eigenmode of a bakground neutron star model with polytropiparameters  = 2, K = 150 km2, mass M = 1:48M� and radius R = 11:3 km. For a small amplitude ofthe eigenmode (we hoose 10 m) the exat solution will be well approximated by the harmoni osillationspredited by the linearized equations. We �nd our ode to reprodue this analyti solution with a relativepoint-wise error of about 10�3 for 200 grid points. Seondly we on�rmed seond order onvergene of the odeboth for eigenmode evolutions with various amplitudes and the ollapse of unstable neutron stars. Finally wehave simulated the ollapse of a spherially symmetri, initially homogeneous dust loud, i.e. a uid with zeropressure (\Oppenheimer-Snyder dust ollapse"). We �nd our ode to reprodue the analyti solution with arelative auray better than 10�3 for 800 grid points throughout the whole ollapse.3
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Figure 1: Snap shots of the evolution of � (right panel) and �� (left panel) obtained with a non-linear pertur-bative and a onventional sheme.4 Comparing the numerial performane of the two shemesIn order to ompare the numerial shemes outlined in setions 2 and 3 we onsider the evolution of the thirdeigenmode of the above model with an amplitude of 1m using 200 grid points. For this amplitude the non-lineare�ets are rather small (albeit measurable as we will see below) so that we expet the evolution to be lose tothe harmoni osillations predited by the linearized equations. In Fig. 1 we show snapshots of the evolution ofthe displaement � (left panel) and the energy density deviation �� (right panel). The dotted lines representthe initial data, the dashed lines the results obtained with our non-linear perturbative sheme of setion 3 andthe solid lines those obtained with the onventional sheme of setion 2. The results demonstrate that the newsheme produes the expeted osillations while the \onventional" sheme leads to severely distorted pro�les.The numerial noise visible in the solid urve of �� arises from the spurious formation of shoks near the stellarsurfae. We emphasize that these results have been obtained with a single numerial ode. For our new shemewe use a TOV-bakground while the onventional formulation is emulated by using a trivial at spae vauumbakground (� = 1, m = 0, � = 0) for whih the two systems of equations (14)-(19) and (2)-(7) beome idential.The only signi�ant di�erene between the two runs is therefore the presene or absene of the bakground errorterms analogous to the term in brakets on the right hand side of Eq. (12). We onlude that the presene ofthese terms gives rise to spurious numerial e�ets suh as mode oupling and shok formation. We �nd thesigni�ane of this e�et to derease with higher grid resolution and larger amplitude of the initial data. Ournew sheme will therefore be partiularly suitable for studying mildly non-linear e�ets at amplitudes notablysmaller than the bakground values.5 Non-linear oupling of eigenmodesIn setion 1 we have already noted the importane of a detailed understanding of non-linear oupling of eigen-modes for addressing questions suh as the saturation amplitudes of neutron star osillations. Analyti studiesof mode-oupling e�ets normally view the eigenmode oeÆients Ai (f. Eq. 11) as harmoni osillators andthe non-linear interation between di�erent modes is represented in the form of a series of driving terms withinreasing order in the amplitudes whih is trunated at seond or third order (see e.g. [7℄). While the in-vestigation of neutron star osillations in 3-dimensions suh as r-modes is beyond the sope of our work, wewill demonstrate in the ase of radial osillations that our sheme presents a numerial alternative to studynon-linear oupling of eigenmodes without any restritions due to the emission of higher order terms. For thispurpose we onsider the neutron star model of setion 3 and provide initial data in the form of one isolatedeigenmode. The index j of this mode and the initial amplitude given by the initial displaement of the stellarsurfae �s in m from the equilibrium radius are the two free parameters. During the fully non-linear evolutionwe make use of Eq. (11) whih enables us to expand the time dependent displaement funtion aording to�(t; x) =PiAi(t)�i(x). The time dependent eigenmode oeÆients are then given by Ai(t) = h�(t; x); �i(x)i andan be alulated at eah time step. In the amplitude range onsidered here we typially �nd these oeÆientsto osillate with a frequeny lose to the value predited by linear theory. We therefore measure the degreeto whih a mode is present in an evolution by taking the maximum of jAi(t)j whih we denote by Ai. The4
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Figure 2: The eigenmode oeÆients Ai are shown for initial data in the form the seond eigenmode as afuntion of the initial amplitude �s.integration time for these runs is T � 4ms whih orresponds to about 10 osillation periods of the fundamentalmode. In Fig. (2) we show the eigenmode oeÆients Ai of the �rst 5 eigenmodes thus obtained for j = 2 as afuntion of the initial surfae displaement. The only mode initially present in these evolutions is the seondmode and we �nd the orresponding eigenmode oeÆient A2 (\+" in the �gure) to depend linearly on theinitial surfae displaement �s. Other eigenmodes while not present in the initial data, are exited in the ourseof the non-linear evolution, so that we �nd non-zero values for the other Ai. We learly see that the degree ofexitation inreases with the initial amplitude. A more detailed analysis reveals that the dependene of the Aion �s an be well approximated by power laws with integer index as shown in the �gure. While A1, A3 and A4are well approximated by a quadrati power law, we �nd that A5 grows like the ube of �s. We have frequentlyobserved that the exitation of higher order modes is modeled by larger integer power law indies, although we�nd exeptions to this rule. We emphasize the importane of the amplitude independent auray provided byour sheme for being able to measure these e�ets. The deviations of A5 from the power law behavior observedat small amplitudes are most likely aused by the auray limits enountered even when using our sheme withthe large resolution of 3200 grid points.Aknowledgment. This work has been supported by the EU Programme 'Improving the Human ResearhPotential and the Soio-Eonomi Knowledge Base' (Researh Training Network Contrat HPRN-CT-2000-00137).Referenes[1℄ Andersson, N. (1998), ApJ 502 708{713, gr-q/9706075[2℄ Arras, P., Flanagan, E. E., Morsink, S. M., Shenk, A. K., Teukolsky, S. A., Wasserman, I. (2002), ApJ Submitted,astro-ph/0202345[3℄ Font, J., Goodale, T., Iyer, S., Miller, M., Rezzolla, L., Seidel E., Stergioulas, N., Suen, W., Tobias, M. (2002), Phys.Rev. D 65 084024[4℄ Lindblom, L., Tohline, J. E., Vallisneri, M. (2002), Phys. Rev. D 65 084039[5℄ Sperhake, U. (2001), PhD Thesis, University of Southampton, UK, gr-q/0201086[6℄ Stergioulas, N., Font, J. A., Kokkotas, K. (1999), Contribution to the 19th Texas Symposium, gr-q/9904009[7℄ Van Hoolst, T. (1996), A&A 308 66-76 5


