Statistical Physics: Example Sheet 4

Ulrich Sperhake, March 2016

1i. By examining variations in E, F, H and G, derive the four different Maxwell relations for the partial derivatives of S, P, T and V.
ii. Obtain the partial derivative identity

$$
\left.\frac{\partial S}{\partial T}\right|_{p}=\left.\frac{\partial S}{\partial T}\right|_{V}+\left.\left.\frac{\partial S}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{p}
$$

iii. Obtain the partial derivative identity

$$
\left.\left.\left.\frac{\partial p}{\partial T}\right|_{V} \frac{\partial T}{\partial V}\right|_{p} \frac{\partial V}{\partial p}\right|_{T}=-1
$$

2. Consider a gas with a fixed number of molecules. Two experimentally accessible quantities are C_{V}, the heat capacity at fixed volume and C_{p}, the heat capacity at fixed pressure, defined as

$$
C_{V}=\left.T \frac{\partial S}{\partial T}\right|_{V} \quad, \quad C_{p}=\left.T \frac{\partial S}{\partial T}\right|_{p}
$$

Using the results of the previous question, show that:
i.

$$
C_{p}-C_{V}=\left.\left.T \frac{\partial V}{\partial T}\right|_{p} \frac{\partial p}{\partial T}\right|_{V}=-\left.\left.T \frac{\partial V}{\partial T}\right|_{p} ^{2} \frac{\partial p}{\partial V}\right|_{T}
$$

ii.

$$
\left.\frac{\partial E}{\partial V}\right|_{T}=\left.T \frac{\partial p}{\partial T}\right|_{V}-p
$$

iii.

$$
\left.\frac{\partial E}{\partial p}\right|_{T}=-\left.T \frac{\partial V}{\partial T}\right|_{p}-\left.p \frac{\partial V}{\partial p}\right|_{T}
$$

iv. $\left.\quad \frac{\partial C_{V}}{\partial V}\right|_{T}=\left.T \frac{\partial^{2} p}{\partial T^{2}}\right|_{V}$
v.

$$
\left.\frac{\partial C_{p}}{\partial p}\right|_{T}=-\left.T \frac{\partial^{2} V}{\partial T^{2}}\right|_{p}
$$

3. Consider a classical ideal gas with equation of state $p V=N k_{B} T$ and constant heat capacity $C_{V}=N k_{B} \alpha$ for some α. Use the results above to show that $C_{p}=N k_{B}(\alpha+1)$, and that the entropy is

$$
S=N k_{B} \log \left(\frac{V}{N}\right)+N k_{B} \alpha \log T+\text { const }
$$

Deduce that, for an adiabatic process (with $d S=0$), $V T^{\alpha}$ is constant and, equivalently, $p V^{\gamma}$ is constant, where $\gamma=C_{p} / C_{V}$.
4. This question describes the Joule-Thomson process (also known as the Joule-Kelvin process). The figure shows a thermally insulated pipe which has a porous barrier separating two halves of the pipe. A gas of volume V_{1}, initially on the left-hand side of the pipe, is forced by a piston to go through the porous barrier using a constant pressure p_{1}. Assume the process can be treated quasistatically. As a result the gas flows to the right-hand side, resisted by another piston which applies a constant pressure p_{2} $\left(p_{2}<p_{1}\right)$. Eventually all of the gas occupies a volume V_{2} on the right-hand side.

i. Show that enthalpy, $H=E+P V$, is conserved.
ii. Find the Joule-Thomson coefficient $\mu_{\mathrm{JT}} \equiv\left(\frac{\partial T}{\partial p}\right)_{H}$ in terms of T, V, the heat capacity at constant pressure C_{p}, and the volume coefficient of expansion $\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}$. (Hint: You will need to use a Maxwell relation).
iii. What is μ_{JT} for an ideal gas?
iv. If we wish to use the Joule-Thomson process to cool a real (non-ideal) gas, what must the sign of μ_{JT} be?
v. Derive μ_{JT} for a gas obeying the van der Waals equation of state to leading order in the density N / V. For what values of temperature T can the gas be cooled?
5. A (non-ideal) gas has constant heat capacities C_{V} and C_{p}. Using the results of Question 2, show that its equation of state can be written as

$$
\left(C_{p}-C_{V}\right) T=(p+a)(V+b)
$$

where a and b are constants. Show also that E is of the form $E=C_{V} T+f(V)$, find $f(V)$ and calculate the entropy as a function of V and T.
6. The Dieterici equation of state for a gas is

$$
p=\frac{k_{B} T}{v-b} \exp \left(-\frac{a}{k_{B} T v}\right)
$$

Find the critical point and compute the ratio $p_{c} v_{c} / k_{B} T_{c}$. Calculate the critical exponents β, δ and γ.
7. The q-state Potts model is a generalisation of the Ising model. At each lattice site lives a variable $\sigma_{i} \in\{1,2, \ldots, q\}$. The Hamiltonian is given by the sum over nearest neighbours

$$
H_{\mathrm{Potts}}=-\frac{3 J}{2} \sum_{\langle i j\rangle} \delta_{\sigma_{i} \sigma_{j}}
$$

How many ground states does the system at at $T=0$?
Show that the 3 -state Potts model is equivalent to the Hamiltonian

$$
H=-J \sum_{\langle i j\rangle} \vec{s}_{i} \cdot \vec{s}_{i}
$$

where \vec{s}_{i} take values in the set

$$
\vec{s}_{i} \in\left\{\binom{1}{0},\binom{-1 / 2}{\sqrt{3} / 2},\binom{-1 / 2}{-\sqrt{3} / 2}\right\}
$$

By developing a mean field theory for H determine the self-consistency requirement for the magnetisation $\vec{m}=\left\langle\vec{s}_{i}\right\rangle$. Compute the mean field free energy and show that the system undergoes a first order phase transition even in the absence of an external field.
[Hint: This calculation will be simpler if you argue that you can focus on magnetisation vectors of the form $\vec{m}=(m, 0)$.]
8. Consider the free energy

$$
F=a(T) m^{2}+b(T) m^{4}+c(T) m^{6}
$$

where $b(T)<0$ and, for stability, $c(T)>0$ for all T. Sketch the possible behaviours of the free energy as $a(T)$ varies and, in each case, identify the ground state and metastable states. Show that the system undergoes a first order phase transition at some temperature T_{c}. Determine the value $a\left(T_{c}\right)$ and the discontinuity in m at the transition.

