1. Consider two stars, each of mass M, moving in a circular Newtonian orbit of radius R in the x, y plane centred on the origin. Show that their positions may be taken to be

$$
\mathbf{x}= \pm(R \cos \Omega t, R \sin \Omega t, 0)
$$

where $\Omega^{2}=M /\left(4 R^{3}\right)$. Treating the stars as non-relativistic point masses (in the sense of question 7 on sheet 3), compute the corresponding energy-momentum tensor, the second moment of the energy distribution $I_{i j}$, and the metric perturbation $\bar{h}_{i j}$. Determine the time average of the power radiated in gravitational waves.
2. Show that the second-order terms in the expansion of the Ricci tensor around Minkowski spacetime are

$$
\begin{aligned}
R_{\mu \nu}^{(2)}[h]= & \frac{1}{2} h^{\rho \sigma} \partial_{\mu} \partial_{\nu} h_{\rho \sigma}-h^{\rho \sigma} \partial_{\rho} \partial_{(\mu} h_{\nu) \sigma}+\frac{1}{4} \partial_{\mu} h_{\rho \sigma} \partial_{\nu} h^{\rho \sigma}+\partial^{\sigma} h^{\rho} \partial_{[\sigma} h_{\rho] \mu} \\
& +\frac{1}{2} \partial_{\sigma}\left(h^{\sigma \rho} \partial_{\rho} h_{\mu \nu}\right)-\frac{1}{4} \partial^{\rho} h \partial_{\rho} h_{\mu \nu}-\left(\partial_{\sigma} h^{\rho \sigma}-\frac{1}{2} \partial^{\rho} h\right) \partial_{(\mu} h_{\nu) \rho} .
\end{aligned}
$$

3. (a) Use the linearized Einstein equations to show that in vacuum

$$
\left\langle\eta^{\mu \nu} R_{\mu \nu}^{(2)}[h]\right\rangle=0 .
$$

(b) Show that

$$
\left\langle t_{\mu \nu}\right\rangle=\frac{1}{32 \pi}\left\langle\partial_{\mu} \bar{h}_{\rho \sigma} \partial_{\nu} \bar{h}^{\rho \sigma}-\frac{1}{2} \partial_{\mu} \bar{h} \partial_{\nu} \bar{h}-2 \partial_{\sigma} \bar{h}^{\rho \sigma} \partial_{(\mu} \bar{h}_{\nu) \rho}\right\rangle .
$$

(c) Show that $\left\langle t_{\mu \nu}\right\rangle$ is gauge invariant.
4. Let η be a p-form and ω a q-form on a manifold \mathcal{N}. Show that the exterior derivative satisfies the properties $d(d \eta)=0, d(\eta \wedge \omega)=(d \eta) \wedge \omega+(-1)^{p} \eta \wedge d \omega$ and $d\left(\phi^{*} \eta\right)=\phi^{*}(d \eta)$ where $\phi: \mathcal{M} \rightarrow \mathcal{N}$ for some manifold \mathcal{N}.
5. A three-sphere can be parametrized by Euler angles (θ, ϕ, ψ) where $0<\theta<\pi, 0<\phi<2 \pi$, $0<\psi<4 \pi$. Define the following 1 -forms

$$
\sigma_{1}=-\sin \psi d \theta+\cos \psi \sin \theta d \phi, \quad \sigma_{2}=\cos \psi d \theta+\sin \psi \sin \theta d \phi, \quad \sigma_{3}=d \psi+\cos \theta d \phi .
$$

Show that $d \sigma_{1}=\sigma_{2} \wedge \sigma_{3}$ with analogous results for $d \sigma_{2}$ and $d \sigma_{3}$.
6. For this question it may be helpful to recall questions 10 and 11 from example sheet 3 . Consider a metric of Lorentzian signature $g_{\alpha \beta}$ and its determinant $g \equiv \operatorname{det} g_{\alpha \beta}$. Show that

$$
\begin{gathered}
\frac{\partial g}{\partial g_{\alpha \beta}}=g g^{\alpha \beta} \\
\frac{\partial g}{\partial g^{\alpha \beta}}=-g g_{\alpha \beta}
\end{gathered}
$$

where $g^{\alpha \beta}$ denotes the inverse metric. Conclude that the variation of the determinant g can be expressed as

$$
\delta \sqrt{-g}=-\frac{1}{2} \sqrt{-g} g_{\alpha \beta} \delta g^{\alpha \beta}
$$

7. Let (\mathcal{N}, g) be a spacetime and the covariant derivative be given by the Levi-Civita connection. Let $t: \mathcal{N} \rightarrow \mathbb{R}$ be a foliation, Σ_{t} the spacelike hypersurfaces of this foliation and n be the unit normal field on the Σ_{t}. We define the acceleration as $a_{b}=n^{c} \nabla_{c} n_{b}$. Show that

$$
a_{b}=D_{b} \ln \alpha,
$$

where D_{b} is the covariant derivative associated with the induced metric $\gamma_{a b}$ and α denotes the lapse function.
8. Let (\mathcal{N}, g) be a spacetime and the covariant derivative be given by the Levi-Civita connection. Let $t: \mathcal{N} \rightarrow \mathbb{R}$ be a foliation, Σ_{t} the spacelike hypersurfaces of this foliation and n be the unit normal field on the Σ_{t}. Let $\gamma_{a b}$ be the induced metric on the hypersurfaces and $m=\alpha n$ the normal evolution vector. Show that

$$
\begin{aligned}
& \text { (b) } \mathcal{L}_{m} \gamma_{a b}=-2 \alpha K_{a b}, \\
& \text { (c) } \mathcal{L}_{n} \gamma_{a b}=-2 K_{a b}, \\
& \text { (d) } \mathcal{L}_{m} \gamma^{a}{ }_{b}=0,
\end{aligned}
$$

where \mathcal{L}_{m} and \mathcal{L}_{n} denote the Lie derivative along the vector fields m and n, respectively, and $K_{a b}$ is the extrinsic curvature.
9. The Lagrangian for the electromagnetic field is

$$
L=-\frac{1}{16 \pi} g^{a b} g^{c d} F_{a c} F_{b d}
$$

where $F_{a b}$ is written in terms of a potential A_{a} as $F=d A$. Show that this Lagrangian reproduces the energy-momentum tensor for the Maxwell field that was discussed in lectures.
10. A test particle of rest mass m has a (timelike) world line $x^{\mu}(\lambda), 0 \leq \lambda \leq 1$ and action

$$
S=-m \int d \tau \equiv-m \int_{0}^{1} \sqrt{-g_{\mu \nu}(x(\lambda)) \dot{x}^{\mu} \dot{x}^{\nu}} d \lambda,
$$

where τ is proper time and a dot denotes a derivative with respect to λ.
(a) Show that varying this action with respect to $x^{\mu}(\lambda)$ leads to the geodesic equation.
(b) Show that the energy-momentum tensor of the particle in any chart is

$$
T^{\mu \nu}(x)=\frac{m}{\sqrt{-g(x)}} \int u^{\mu}(\tau) u^{\nu}(\tau) \delta^{4}(x-x(\tau)) d \tau,
$$

where u^{μ} is the 4 -velocity of the particle.
(c) Conservation of the energy-momentum tensor is equivalent to the statement that

$$
\int_{R} \sqrt{-g} v_{\nu} \nabla_{\mu} T^{\mu \nu} d^{4} x=0
$$

for any vector field v^{μ} and region R. By choosing v^{μ} to be compactly supported in a region intersecting the particle world line, show that conservation of $T^{\mu \nu}$ implies that test particles move on geodesics. (This is an example of how the "geodesic postulate" of GR is a consequence of energy-momentum conservation.)
11. The action for Brans-Dicke theory of gravity is given by

$$
S=\frac{1}{16 \pi} \int\left[R \phi-\frac{\omega}{\phi} g^{a b} \phi_{, a} \phi_{, b}+16 \pi L_{\text {matter }}\right] \sqrt{-g} d^{4} x
$$

where ϕ is a scalar field and ω is a constant. Ordinary matter is included in the action $L_{\text {matter }}$. How is the Einstein equation modified, and what is the equation of motion for ϕ ? (See Misner, Thorne and Wheeler or Carroll for further discussion of this theory.)
12. Calculate the extrinsic curvature tensor for a surface of constant t in the Schwarzschild spacetime

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Do the same for a surface of constant r.

