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Problem 1

Part (a)

Recall that T 0y is the y-component of the momentum density. If the sphere is
rotating about the z-axis, the velocity of point (r, θ, φ) is

˜
v = (−rΩ sin θ sinφ, rΩ sin θ cosφ, 0). (1.1)

And so

T 0y = rΩρ sin θ cosφ, (1.2)

where ρ is the mass density. Since the total mass of the shell is M and the
radius is R, we find

ρ =
M

4πR2
δ(r −R), (1.3)

and thus

T 0y =
MrΩ

4πR2
sin θ cosφ δ(r −R), (1.4)

which is the desired result.

Part (b)

In linearized gravity with the Lorentz gauge we have

�h̄αβ = −16πTαβ . (1.5)

But note that the source term (right-hand side) is stationary (independent of
time), and so the field h̄ must also be stationary. Hence the above field equation
becomes a spatial Poisson equation. Thus

∇2h̄0y = −16πT0y = 16πT 0y. (1.6)

Using the hint, we write

T 0y =
MrΩ

2
√

3πR2
Y11(θ, φ)δ(r −R), (1.7)

where we have used the real spherical harmonic

Y11(θ, φ) =

√
3

4π
sin θ cosφ. (1.8)
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Since ∇2Y`m = −`(`+1)Y`m/r
2 and T 0y is a multiple of Y11, it follows that h̄0y

is also a multiple of Y11. Thus we write

h̄0y = F (r)Y11(θ, φ). (1.9)

Substituting this into (1.6) gives

Y11(θ, φ)∇2F (r)− F (r)
2Y11(θ, φ)

r2
=

√
π

3

8MrΩ

R2
Y11(θ, φ)δ(r −R)

⇔ 1

r2
d

dr

(
r2
dF

dr

)
− 2F

r2
= αrδ(r −R)

⇔ F ′′ +
2F ′

r
− 2F

r2
= αrδ(r −R), (1.10)

where

α =

√
π

3

8MΩ

R2
. (1.11)

Solving the above ODE with Mathematica gives

F (r) = C1r +
C2

r2
+
αR(r3 −R3)H(r −R)

3r2

= r

(
C1 +

αR

3
H(r −R)

)
+

1

r2

(
C2 −

αR4

3
H(r −R)

)
, (1.12)

where C1 and C2 are integration constants and H(r −R) is the Heaviside step
function, given by

H(r −R) =

{
0 if r < R
1 if r > R.

(1.13)

F (r) needs to remain finite as r → 0, and so C2 = 0, because H(0 − R) = 0.
Similarly, F (r) needs to be bounded as r → ∞, thus C1 = −αR/3, because
H(∞−R) = 1. So we get

F (r) = −αR
3

(
r(1−H(r −R)) +

R3

r2
H(r −R)

)
= −αR

2

3

{
r/R if r < R
(R/r)2 if r > R.

(1.14)

Thus we can write

h̄0y = F (r)Y11(θ, φ) = F (r)

√
3

4π
sin θ cosφ = f(r) sin θ cosφ, (1.15)
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where

f(r) = F (r)

√
3

4π
= −

√
3

4π

αR2

3

{
r/R if r < R
(R/r)2 if r > R

= −4MΩ

3

{
r/R if r < R
(R/r)2 if r > R

=


− 4MΩr

3R
if r < R

− 4MΩR2

3r2
if r > R,

(1.16)

which is the desired result.

Part (c)

Consider an observer at fixed r and θ = π/2. Suppose there is a ring mirror in
the plane θ = π/2 and at radius r. The observer sends out a flash of light and
some photons that hit the mirror tangentially will skim along the ring mirror
and come back to the observer on the other side. There are photons traveling
in the +φ and −φ directions. Since the photons are at constant r and θ, we
have dr = dθ = 0. Since they are photons, we have ds2 = 0 and so

0 = ds2 = g00dt
2 + 2g0φdtdφ+ gφφdφ

2

⇔ 0 = g00 + 2g0φΩ + gφφΩ2, (1.17)

where Ω = dφ/dt is the angular velocity of the photons. Solving the above
quadratic for Ω yields

Ω± =
−2g0φ ±

√
4g20φ − 4g00gφφ

2gφφ
= − g0φ

gφφ
±

√
g20φ
g2φφ
− g00
gφφ

. (1.18)

If the observer is rotating with angular velocity ω, then the observed angular
velocities of the photons will be Ω′± = Ω± − ω. We want to find ω so that the
observer sees no difference in the +φ and −φ directions, i.e. so that it looks to
the observer as if she was not rotating. Hence we want Ω′+ = −Ω′−, therefore

0 = Ω′+ + Ω′− = −2
g0φ
gφφ
− 2ω

⇔ ω = − g0φ
gφφ

. (1.19)

Thus we have shown that observers need to rotate with an angular velocity
ω = −g0φ/gφφ in order to be considered stationary in the sense that spacetime
looks symmetric in the φ direction for them.
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Part (d)

Note that the basis vectors ~ey = ∂/∂y and ~eφ = ∂/∂φ are parallel at φ = 0.
But ~ey has length 1 while ~eφ has length r sin θ. Thus we get

g0φ = r sin θ (h̄0y)
∣∣
φ=0

=


− 4MΩr2 sin2 θ

3R
if r < R

− 4MΩR2 sin2 θ

3r
if r > R.

(1.20)

Part (e)

Recall that gφφ = r2 sin2 θ and so inside the shell we have

ω = − g0φ
gφφ

=
4MΩr2 sin2 θ

3R

1

r2 sin2 θ
=

4MΩ

3R
, (1.21)

which is the desired result.

Problem 2

Outside the neutron star we have a Schwarzschild spacetime, which is spherically
symmetric and so we can choose Paul’s orbit to be in the θ = π/2 plane, so
uθ = 0. Since the orbit is circular, we have ur = 0. The geodesic equation

d2xα

dλ2
= −Γαβγ

dxβ

dλ

dxγ

dλ
(2.1)

now gives for α = r

0 = −Γrβγu
βuγ . (2.2)

Recall that the Schwarzschild metric is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2, (2.3)

and so

Γrβγ =
1

2
grµ(gµγ,β + gβµ,γ − gβγ,µ)

=
1

2
grr(grγ,β + gβr,γ − gβγ,r) (no summation over r), (2.4)
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since the metric is diagonal. Since ur = uθ = 0, we are only interested for
β, γ = t, φ. We find

Γrtt = −1

2
grrgtt,r = −1

2

(
1− 2M

r

)(
−2M

r2

)
=
M

r2

(
1− 2M

r

)
,

Γrtφ = 0,

Γrφφ = −1

2
grrgφφ,r = −1

2

(
1− 2M

r

)
2r sin2 θ = −

(
1− 2M

r

)
r, (2.5)

since θ = π/2. Now the geodesic equation gives

0 = −Γrtt(u
t)2 − Γrφφ(uφ)2

⇔
(
uφ

ut

)2

= − Γrtt
Γrφφ

=
M

r3
=

1

216M2
, (2.6)

since Paul’s orbit is at r = 6M . Note that

ω2 =

(
dφ

dt

)2

=

(
dφ

dλ

dλ

dt

)2

=

(
uφ

ut

)2

, (2.7)

and so

ω =
dφ

dt
=

1

6
√

6M
. (2.8)

Between the two meetings of Paul and Peter, Paul completes 10 orbits, so ∆φ =
20π and thus this takes

∆t = 20π × 6
√

6M = 120
√

6πM (2.9)

in coordinate time. Recall that uαuα = −1, so

−1 = gtt(u
t)2 + gφφ(uφ)2 = gtt(u

t)2 + gφφω
2(ut)2

=

(
−1 +

2M

r
+
Mr2 sin2 θ

r3

)
(ut)2

=

(
−1 +

3M

r

)
(ut)2

⇔ ut =

(
1− 3M

r

)−1/2
=
√

2. (2.10)

Since

ut =
dt

dτ
, (2.11)

the elapsed proper time measured by Paul is

∆τPaul =
∆t

ut
= 120

√
3πM ≈ 653M. (2.12)
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Let the H be the maximum height that Peter reaches. Once Peter is at
r = H, he will fall freely back to the neutron star. Due to symmetry, the time
it takes Peter to fall from H to r = 6M is ∆t/2. Using the equations derived
in class for radial free-fall, we have

∆τPeter = 2

√
H3

8M
(η + sin η), (2.13)

where the factor of 2 comes from the fact that Peter first travels from r = 6M
to r = H and then he freely falls from r = H back to r = 6M . By symmetry,
both directions take the same amount of proper time and coordinate time. To
find η and H, we have the following two equations

6M = r = Mh(1 + cos η),

30
√

6π =
∆t

2M
= ln

∣∣∣∣√h− 1 + tan η/2√
h− 1− tan η/2

∣∣∣∣+
√
h− 1

(
η +

h

2
(η + sin η)

)
, (2.14)

where h = H/(2M). We can find a numerical solution to the above equations
with Mathematica’s FindRoot, but we need to supply it with an initial guess.
We know that Peter passes r = 6M and keeps moving to a higher radius. Thus
we guess h ∼ 20 and then η = arccos(6/h−1) ∼ 2.3. With these initial guesses,
Mathematica gives

h ≈ 27.35, η ≈ 2.466. (2.15)

Thus the elapsed proper time for Peter is

∆τPeter = 2M
√
h3(η + sin η) ≈ 884M. (2.16)

Note that it makes sense that less proper time passes for Paul, because Paul
is in a highly relativistic orbit inside a deep gravitational well, which makes his
clock go much slower. Peter spends a lot of time much further away from the
neutron star.

Problem 3

A rocketship is a massive object so it must move along a time-like worldline.
Parameterize its trajectory by the proper time, τ , and so its 4-velocity must
satisfy

1 =− ~u · ~u = gµνu
µuν

=

(
1− 2M

r

)(
dt

dτ

)2

−
(

1− 2M

r

)−1(
dr

dτ

)2

− r2
(
dθ

dτ

)2

− r2 sin2 θ

(
dφ

dτ

)2

(3.1)
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Inside of the horizon, (r < 2M), all of the terms are negative, except the
(
dr
dτ

)2
term so then (

1− 2M

r

)−1(
dr

dτ

)2

> 0 (3.2)

We also know that the sign of drdτ must be negative for a physical, future directed
observer. From that,

dr <

(
1− 2M

r

)1/2

dτ

⇒ τmax =

∫ 0

2M

(
1− 2M

r

)−1/2
dr

⇒ τmax =
[√

r(2M − r) +M cos−1
( r

M
− 1
)] ∣∣∣∣0

2M

= πM (3.3)

Problem 4

Part (a)

When the particle moves in the equitorial plane, we have L2 = p2φ, which is

a conserved quantity because pφ is conserved. (~ξ = ∂
∂φ is a Killing vector so

~ξ · ~p is conserved.) However, by spherical symmetry, the motion is alway in the
equitorial plane for some rotated coordinate system. If pφ can be written as an
invarient quantity and then evaluated the invarient in the original system, that
would be sufficient to prove the problem statement.

At some instant when the particle is at radius r, the covarient 4-velocity p̃
has components (pr, pt, pθ, pφ). Consider the a ”reduced” 4-velocity p̃redα that
is constructed from p̃α via a projection operator and whose construction is
independent of θ and φ. Now when the motion is in the equitorial plane, pθ = 0
and θ = π/2 so then

L2 = gαβ p̃redα p̃redβ = gφφr2p2φ = p2φ (4.1)

is a conserved quantity. However, in general

L2 = gθθr2p2θ + gφφr2p2φ = p2θ +
p2φ

sin2 θ
(4.2)

so this must be conserved in general.
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Part (b)

Using spherical symetry of the metric, we orient the coordinate axes so that the
particla is at θ = π/2 with θ̇ = 0 at τ = 0. Now consider the geodesic equation
for the θ

d2θ

dτ2
=gαθΓθβγ

dxβ

dτ

dxγ

dτ

=gθθΓθβγx
βxγ

=
1

r2
Γθβγx

βxγ (4.3)

using the fact that the metric is diagonal and that gθθgθθ = 1. Using the
equation for Christoffel symbols Γθβγ = 1

2 (−gβγ,θ + gθβ,γ + gθγ,β), the only
nonzero symbols are

Γθθr = Γθrθ = r

Γθφφ = r2 sin θ cos θ (4.4)

Then the geodesic equation from above becomes

d2θ

dτ2
= −2

r
ṙθ̇ + sin θ cos θφ̇2 (4.5)

From the initial conditions, start with θ̇ = 0 and cosπ/2 = 0 which imply that

d2θ

dτ2
= 0 (4.6)

Thus, θ̇ is constant and so since it starts at 0, it will remain at 0 for all τ and
thus will not move out of the θ = π/2 plane.

Part (c)

Using the constant of motion L2 from above, start with(
dθ

dλ

)2

= (gθθpθ)
2 =

1

r4

(
L2 −

p2φ

sin2 θ

)
(4.7)

Let the unperturbed orbit be at θ = π/2 with L = pφ = K constant in which
case the equation is 0. Suppose that the particle is perturbed out of the plane
of the orbit, θ = π/2 + δθ, L = K + δL, pφ = K + δpφ. Taylor expand the
above equation and keep terms to first order in δL and δpφ and second order in
δθ, noting that the 0th order terms disappear because they match the equation
above. [

d(δθ)

dλ

]2
=

1

r4
[2K(δL)− 2Kδpφ −K2(δθ)2] (4.8)
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where the expansion about δθ = 0 gives sin−1(π/2 + δθ) = 1 + (δθ)2 +O(δθ4).
Now take the derivative of both sides by dλ and drop the higher order terms.

d

dλ

[
d(δθ)

dλ

]2
=
d(δθ)

dλ

[
d2(δθ)

dλ2

]
= −K

2

r4
δθ
d(δθ)

dλ

⇒ d2(δθ)

dλ2
= −K

2

r4
δθ (4.9)

But this is simply the equation of motion for a harmonic oscillator for δθ. Thus
the perturbation δθ does not grow, but continues to oscillate around π/2 and
so the orbit is stable.

Problem 5

Part (a)

Start by defining new coordinates X = x, Y = y, Z(t, z) and T (t, z). For ease
of notation, define Zz = ∂Z

∂z , Tz = ∂T
∂z , ... so then

dZ2 = Z2
zdz

2 + Z2
t dt

2 + 2ZzZtdzdt

dT 2 = T 2
z dz

2 + T 2
t dt

2 + 2TzTtdzdt (5.1)

Note, that to show the Rindler metric is flat, want −dT 2+dZ2 = −g2z2dt2+dz2

which means that

Z2
z − T 2

z = 1

TzTt = ZzZt

T 2
t − Z2

t = g2z2 (5.2)

The functions which satisfy these conditions are the hyperbolic sine and cosine
functions so

Z = ±z cosh gt

T = ±z sinh gt (5.3)

Plug those into the equation for the metric and see that ds2 = −dT 2 + dX2 +
dY 2 + dZ2.

Part (b)

The graph below illustrates the relationship between the two coordinate systems.
The curves of constant t obey ± tanh gt = T/Z which are straight lines. Note
that the slope of this family of lines is confined to between ±1. Curves of
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constant z obey z2 = Z2 − T 2 which are hyperbolae. The Rindler coordinates
also break down for the region where T > Z.

For a point particle dropped at t = 0, z = z0, its trajectory is a straight line
in the +T−direction in the T,Z coordinates, because it is moving in geodesic
in Minkowski spacetime. However, the particle will not appear to move in a
straight line in the Rindler coordinates, but it still moves along geodesics so it
obeys the geodesic equation of motion

d2xα

dλ2
= −Γαβγ ẋ

β ẋγ (5.4)

and since in a coordinate basis, Γαβγ = 1
2 (gαβ,γ + gαγ,β − gβγ,α). However, the

only derivative of the metric that is not zero is

g00,z = −2zg2

⇒ Γ00z = Γ0z0 = −g2z, Γz00 = g2z

⇒ Γ0
0z = Γ0

z0 =
1

z
, Γz00 = g2z (5.5)

Plugging this into the equation of motion for each of the components yields

ẍ = ÿ = 0

ẗ = −2

z
ṫż

z̈ = −g2zṫ2 (5.6)
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where the each dot reperesents d
dλ . To reduce them to Rindler coordinates,

dz

dt
=
ż

ṫ

⇒ d2z

dt2
=
d

dt

ż

ṫ

=
d
dλ (ż/ṫ)

ṫ

=
ṫz̈ − ẗż
ṫ3

=
−ṫ3g2z + 2

z ṫż
2

ṫ3

d2z

dt2
=− g2z +

2

z

(
dz

dt

)2

(5.7)

For large z, this looks like a harmonic oscillator potential pulling the particle
towards z = 0, but when z gets small, the second term takes over and slows the
particle down. The particle will reach the z = 0 plane at t =∞.

Part (c)

The Schwarzchild metric is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2 (5.8)

Let ũ =
(
1− 2M

r

)1/2
for r ≥ 2M . From there,

dũ =
1

2

1

ũ

2M

r2
dr

⇒ dr =
ũr2

M
dũ (5.9)

With this, the equation equation above can be rewritten with this coordinate
as

ds2 = −ũ2dt2 +
r4

M2
dũ2 + r2dΩ2 (5.10)

where now r = r(ũ). Near the event horizon, r ≈ 2M, ũ is small so then

ds2 = −ũ2dt2 +
16M4

M2
dũ2 + 4M2dΩ2 (5.11)

Make one last substitution for u = 4Mũ and then

ds2 =− u2

16M2
dt2 + du2 + 4M2dΩ2

=− (gu)2dt2 + du2 + 4M2dΩ2 (5.12)
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where g = 1
4M . This is the Rindler spacetime for radial infall. This transfor-

mation can help gain insight of what happens to a particle passing through the
event horizon. As it approaches r = 2M , a distant observer (whose proper time
is just t) sees the particle slow down and take an infinite time to reach u = 0,
just like above in part (b). But since Rindler is really just flat spacetime, an
observer with the particle sees nothing special as it pass through r = 2M .
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