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Problem 1
Part (a)
We find
as 18428,,,8" &
— 7 — g _ 5o 1297
Ao = Ug;) U™ = (|§U§u|1/2 9 |£V€u|3/2 ‘&511‘1/2
L EH L EREY
_ ga,p‘g _ é‘aé‘lj,ﬂg 26 . (11)
(34 [%3d
Recall that the defining property of a Killing vector is &,.;, = —,,,. So we have
guwgﬂfl’ = _gu;ygﬂgv = _gu;ugyglu =0. (1'2)
And the first term becomes
gu'agﬂ
g = — 72 . 1.3
€] (13)
Since u® = £*/|£,£"|'/? is a 4-velocity, we have
§al”
—1=wu u® =
(34
& 687 = ", (1.4)
and so
§uat  1(€uéM)a 1
= 2 = — 2 = — 1 H 1
[£28% 5/15” D) §u€” 2va 0og |€u§ |a ( 5)
which is the desired result. O
Part (b)

Since the 4-velocity @ of the fluid is parallel to some timelike Killing vector, let
¢ = 0/02° = & be this timelike Killing vector and then to have @ - @ = —1 it
follows that
U= %, (1.6)
(& &7

since € - £ < 0 because ¢ is timelike. Using part (a) we know that

— —

B P -
Vit = 5 Vlog|¢ - £ = Vlog |- £]'/* = Vlog(—g00)'/?, (17)
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because
€&l =—€-&=—& e = —goo. (1.8)
Note that £% = (1,0,0,0) and since u® o< £% it follows that u’ = 0, so
0
Vap = puu = pou = a5 =0, (1.9)

because we are in hydrodynamic equilibrium. Thus the Euler equation gives

(p+p)Vai = =Vp—1uVgp

0
& P45 log(—go0)/? = —p., — 0, (1.10)
which is the desired result. O
Problem 2

Part (a)

The problem gives that E = separation between the beads and that ¢ = 71 - E
The stick follows a geodesic, so that

Vagi=d=0 (2.1)
so 71 is parallel transported along o = % which implies that
Vait =0 (2.2)
so then
a = -
ar =Va(§- 1)
a0 = = s
72 =VaVa(§- )
=it - (VaVat) (2.3)
Part (b)
From part (a), % =i (VaVaé ). However, the Riemann curvature of the wave
(geodesic deviation) gives
617617:5: _R(*v aaé:ﬁ) (24)
Plugging this back in gives
>t A D= = & o o, Bey, 6
pr Rl R(_,4,&,14) = —R(7,4,§,4) = —Rapysn“u’ETu (2.5)
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Part (c)

In vacuum, where 7},, = 0 the wave equation for i becomes

B;w,aa =0= }_L;w,tt = Bm/,zz (26)
The other derivative terms drop out because in a plane wave in the z—direction,
there is no z or y dependence, also seen in the functional forms of h(t — z) given
in the problem statement. Look at the results of problem 3 part (a):

Rappy = *(how,/tﬁ + Buﬁ,va — hyw,ap = hap,uv)- (2.7)

| —

Note hy,, = i_LW - %nwh, and the partial derivative of n,,h is 0. Calculate one
of the Riemann components as follows

1 1-
Ry0z0 = i(hxt,tx + Nigte — Mitwe — haw) = _§h+,tt~ (2.8)

Since hy, is a function of (¢t — 2), i.e., by (t — 2), we can conclude that Ay, . =
—huy, and similarly for other terms. For example, another component is

1 1 1-
RzOzz = *§hxz,tz = +§hmr,tt - +§h+,tt~ (29)

From here, the rest of the Riemann tensor can be computed similarly. Up to
symmetries of the Riemann tensor like Ragys = Rap)}ys) = Rysas, the nonzero
terms can be written as

1-
RxOxO = 7Ry0y0 = 7Rx03:z = +Ry0yz = +szxz = 7Ryzyz = 7§h+,tt

1-
RmOyO = 7Rz0yz = eryz = *szyo = *ihxﬁg (210)

Part (d)

In the local Lorentz frame of the stick, £ = #7i, & = 1,0,0,0. Then from parts
(b) and (c),

d*¢
ﬁ = — ZRQQ’YOTLO‘TL’Y
= — E[QRxOanxny + Ryozon®n”® — Ryoyonyny]
_ 1.
= —l[—hxunnY — §h+7tt(n"”nw —n¥nY)]
_ 1.
=0l[h 11 (sin? 6 cos ¢ sin ¢) + §h+’tt(sin2 6 cos® ¢ — sin? sin” )]

_ 1 1.
:E[hxﬁtt(i sin? 0 sin 20) + §h+,tt(sin2 6 cos 29)] (2.11)
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As the perturbations of the stick’s length are small because A is small, let £ ~ £;.
Now, to lowest order here % = % so the differential equation can be integrated

in order to obtain £(7)
1- 1-
{=A+Br+ Ko[ihx sin? @'sin 20 + §h+ sin? @ cos 2] (2.12)

and applying initial constraints (i.e. initial velocity = 0 and h = 0 = £ = {p),
then we get

1- 1-
0= Lo[l + Shx sin? 0 sin 26 + 3P+ sin? 0 cos 2¢]. (2.13)
Problem 3
Part (a)
In linearized gravity theory, recall from class that the Christoffel symbols are
1
Lapp = §(hal3,u + hap,s — hﬁu,a) (3.1)

These Christoffel symbols are of order h, so when the Riemann tensor is ex-
panded in terms of Christoffel symbols, terms that are products of I'’s can be
dropped. Then the Riemann tensor is

Rappy zgou\(r/\w,ﬁ - F/\u/;?,u)
=20 pu[v,8]

=ha(,gu + hap,[8v] = Pufp.6l.a

=hafv,8lu = hul,8l,a

1

=5 (hawus + i v = Py = hap o) (32)

Part (b)
Under a gauge transformation,

huu — huu - €M7V - gl/,u (33)

Plugging this into each of the expressions for h,, in the equation above for the
Riemann tensor yields

Rau,@y — Rapﬂl/ - €a[,v,ﬁ],;¢ + f[J,[,V,,B],a - gu[,a,ﬁ],u + gu[,u,ﬁ],a (34)

However, since partial derivatives commute, all of the £ terms disappear because
of the antisymmetrization in two of the partials. This leaves only the original
Riemann tensor unchanged so the Riemann tensor must be gauge invarient.
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Problem 4

Part (a)

Recall that the action of the Lie derivative on a general tensor is completely
determined by the action of the Lie derivative on scalars and vectors. Therefore,
we only need to show the identity for scalar and vectors. For some scalar function
f we have

Lalsf = Ed(vﬁf) = Lﬁ(f,uvu) = (f,uvu);uuy
= fuwv"u” + f o u”, (4.1)
SO
Lalsf — Lalaf = fvfu” + fuof v — fufv” + f Lt v”
= ,M(vu;uuu - uu;uvu)

= f ([, 0)*
=Vigaf = Laglf (4.2)

and so we have shown that
Lals— LiLlg — £[71",D‘] =0 (4.3)

holds for scalars.

For vector fields, recall that L300 = [0, 4], so we find

LaLlyw — LLaW — Lig g0 = L[, W] — Ly, W] — [[4, V], ]
[ﬂ:, [67 ’LUH - [Uv [ﬁv U_;H - [[Uv v 7117]
= [ﬂ', [177 u_}H + [177 [1‘77 ﬁ“ + [117, [ﬁ, v ]
=0, (4.4)
where we used the Jacobi identity. Thus we have shown that (4.3) also holds
for vector fields and so we are done. O
Part (b)

Recall that 5 is a Killing vector field if and only if Egg = 0, where g is the

metric tensor. Let 5 and y be Killing vector fields, then using the result from
part (a) we find

Lig 9= Leleg — LiLeg = LA0) — L(0) =0, (4.5)

and so [€, ] is a Killing vector field. O
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Part (c)

Let E and X be Killing vector fields, and let a and b be constant scalars. Using
linearity of the Lie derivative gives

L9 = aLezg +bLzg = a(0) +b(0) =0, (4.6)

since L:Eg =Lyg =0, and so a§+ by is a Killing vector field. O

Problem 5

In this problem we will assume that we are always in a coordinate basis. The
time basis vector is already specified as /9t and we have the freedom to pick
the spatial basis vectors to be coordinate basis vectors as well.

Part (a)

Since we have a stationary spacetime, we have a timelike Killing vector field
¢ and we choose the time coordinate such that £ = 9/9t. Since ¢ is a Killing
vector field, we have

0=Lzg = gapu€" + 9up€a + gant’ 5
= gapul" =170, 9088" — 1V 5,900 8" + 9upE" o + 9upl™ 0"
+ gaul” 5 + gau ", 5"
= Gapu€" + 9up8" o + ganl” 4
=gas,0+0+0, (5.1)

where all the connection coefficients canceled, and we used that £&* = (1,0,0,0)
is a constant vector field and so the last two terms above vanish. We thus have

0= 9aB,0 = Jap,t- (52)

Note that gy = E €y. Now if E: €y — fE, the spatial basis vectors remain
the same and we know the that the metric is invariant, hence

gu=E-8=-£-=0. (5.3)

Thus we have shown that the first definition of static implies g+ = g+ = 0.

To prove the converse, suppose that gos: = g = 0. This means that a
time coordinate is already defined. Let ¥ = 9/9t. We need to show that ¥ is a
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Killing vector. We find

L39 = gap;u€t + guﬁfﬂ;a + gaugu;ﬁ
= gaﬁ,uﬁ“ + guﬁgu,a + gauguﬂ
= Jap,t = 0, (54)

since ¥ = (1,0,0,0), and so ¥ is indeed a Killing vector. We also need to show
that the metric is invariant under the transformation ¥’ — —y. We find

gt =X X = (=X) - (=X) =X X = gu.
gti:0_>07

and so the metric is indeed invariant under 9/0t — —9/9t. Thus we have shown
that gas,+ = gx = 0 implies the first definition of static and so gag,t = g4 = 0
is equivalent to the first definition of static spacetime.

Part (b)
Note that
o = 9o’ = gat, (5.6)

since 52 0/0t = (1,0,0,0). So if g;; = 0, then & = 0 and & = gi. So we can
write

§a = GitOal, (5'7)
which is of the form hf ., where h = g4 is a scalar and f =t is also a scalar.
Thus 5 is hypersurface orthogonal. O
Part (c)

Suppose that the Killing vector E = 0/0t is hypersurface orthogonal. Then

0= f[u;qu] = (gu;u - gl/;u)g)\ =+ (Ez\;;t - gu;)\)fu + (51/;)\ - fk;u)gu
= (fu;u - fu;u)@\ + 25)@151} - 25)\;115/1,7 (58)

where we used the fact that §,,, = —&,.,. Dotting the above with £ gives

0=

= (52)_1£M);V - ((52)_1£u);u7 (5-9)
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where £2 = £,6*. So for the vector v, = (§2)71¢, we have

0=V — Vi
s v, - oy —v,, + T v
v AL U vp A
A4 Vp,v = Vu,p,s (510)

since the Connection coefficients are symmetric in the last two indices, provided
we are in a coordinate basis. We already have €y = 9/0t and we can choose
spatial coordinate basis vectors. Since v, , = v,,,, it follows that ¥/ is a gradient,
hence

vy =h, = (&)1, (5.11)
and so
€ =Ehy =& Ehy = guh (5.12)
Recall that &, = gat, so the above gives
Jat = Gith o (5.13)

Setting = ¢, this implies that h; = 1 and so h =t + f(z%). Choosing a new
time coordinate ' =t + f(z*), we find

Gitr = guh i = gu(t') ; =0, (5.14)
and
0 o O
=y =Y = A =(1,0,0,0 5.15
ot Ca E axﬁg ( s Uy Uy )7 ( )
and so the metric is still independent of ¢', because go g = € - €3 and we

did not change the spatial basis vectors. To complete the proof, we just need
to show that the change in time coordinate did not change the Killing vector
& = 0/0t. We have

/

0 0z 0 0

ot ot oz ot

(5.16)

because = = (t+ f(2%),2%). So the timelike Killing vectors in both coordinates
are the same and are hypersurface orthogonal.

This means, given a stationary spacetime, we have a Killing vector { that
is hypersurface orthogonal, and there exists a choice of time coordinate ¢’ such
that £ = 9/0t' and g;» = 0. O
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