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Problem 1

Part (a)

We find

aα = uα;µu
µ =

(
ξα;µ
|ξνξν |1/2

− 1

2

ξα2ξν;µξ
ν

|ξνξν |3/2

)
ξµ

|ξνξν |1/2

=
ξα;µξ

µ

|ξνξν |
− ξαξν;µξ

µξν

|ξνξν |2
. (1.1)

Recall that the defining property of a Killing vector is ξν;µ = −ξµ;ν . So we have

ξν;µξ
µξν = −ξµ;νξµξν = −ξν;µξνξµ = 0. (1.2)

And the first term becomes

aα = −ξµ;αξ
µ

|ξνξν |
. (1.3)

Since uα = ξα/|ξνξν |1/2 is a 4-velocity, we have

− 1 = uαu
α =

ξαξ
α

|ξνξν |
⇔ |ξνξν | = −ξαξα, (1.4)

and so

aα =
ξµ;αξ

µ

ξµξµ
=

1

2

(ξµξ
µ);α

ξµξµ
=

1

2
∇α log |ξµξµ|, (1.5)

which is the desired result.

Part (b)

Since the 4-velocity ~u of the fluid is parallel to some timelike Killing vector, let
~ξ = ∂/∂x0 = ~e0 be this timelike Killing vector and then to have ~u · ~u = −1 it
follows that

~u =
~ξ

(−~ξ · ~ξ)1/2
, (1.6)

since ~ξ · ~ξ < 0 because ~ξ is timelike. Using part (a) we know that

∇~u~u =
1

2
∇ log |~ξ · ~ξ| = ∇ log |~ξ · ~ξ|1/2 = ∇ log(−g00)1/2, (1.7)
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because

|~ξ · ~ξ| = −~ξ · ~ξ = −~e0 · ~e0 = −g00. (1.8)

Note that ξα = (1, 0, 0, 0) and since uα ∝ ξα it follows that ui = 0, so

∇~up = p;µu
µ = p,0u

0 = u0
∂p

∂t
= 0, (1.9)

because we are in hydrodynamic equilibrium. Thus the Euler equation gives

(p+ ρ)∇~u~u = −∇p− ~u∇~up

⇔ (p+ ρ)
∂

∂xν
log(−g00)1/2 = −p,ν − 0, (1.10)

which is the desired result.

Problem 2

Part (a)

The problem gives that ~ξ = separation between the beads and that ` = ~n · ~ξ.
The stick follows a geodesic, so that

~∇~u~u = ~a = 0 (2.1)

so ~n is parallel transported along ~u = d
dτ which implies that

~∇~u~n = 0 (2.2)

so then

d`

dτ
=~∇~u(~ξ · ~n)

d2`

dτ2
=~∇~u~∇~u(~ξ · ~n)

=~n · (~∇~u~∇~u~ξ) (2.3)

Part (b)

From part (a), d2`
dτ2 = ~n ·(~∇~u~∇~u~ξ). However, the Riemann curvature of the wave

(geodesic deviation) gives

~∇~u~∇~u~ξ = −R̃( , ~u, ~ξ, ~u) (2.4)

Plugging this back in gives

d2`

dτ2
= −~n · R̃( , ~u, ~ξ, ~u) = −R̃(~n, ~u, ~ξ, ~u) = −Rαβγδnαuβξγuδ (2.5)
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Part (c)

In vacuum, where Tµν = 0 the wave equation for h̄ becomes

h̄ α
µν,α = 0⇒ h̄µν,tt = h̄µν,zz (2.6)

The other derivative terms drop out because in a plane wave in the z−direction,
there is no x or y dependence, also seen in the functional forms of h̄(t−z) given
in the problem statement. Look at the results of problem 3 part (a):

Rαµβν =
1

2
(h̄αν,µβ + h̄µβ,να − h̄µν,αβ − h̄αβ,µν). (2.7)

Note hµν = h̄µν − 1
2ηµνh, and the partial derivative of ηµνh is 0. Calculate one

of the Riemann components as follows

Rx0x0 =
1

2
(hxt,tx + htx,tx − htt,xx − hxx,tt) = −1

2
h̄+,tt. (2.8)

Since h̄µν is a function of (t− z), i.e., h̄µν(t− z), we can conclude that h̄µν,z =
−h̄µν,t and similarly for other terms. For example, another component is

Rx0xz = −1

2
hxx,tz = +

1

2
hxx,tt = +

1

2
h̄+,tt. (2.9)

From here, the rest of the Riemann tensor can be computed similarly. Up to
symmetries of the Riemann tensor like Rαβγδ = R[αβ][γδ] = Rγδαβ , the nonzero
terms can be written as

Rx0x0 = −Ry0y0 = −Rx0xz = +Ry0yz = +Rxzxz = −Ryzyz = −1

2
h̄+,tt

Rx0y0 = −Rx0yz = Rxzyz = −Rxzy0 = −1

2
h̄×,tt (2.10)

Part (d)

In the local Lorentz frame of the stick, ξ = `~n, ~u = 1, 0, 0, 0. Then from parts
(b) and (c),

d2`

dτ2
=− `Rα0γ0nαnγ

=− `[2Rx0y0nxny +Rx0x0n
xnx −Ry0y0nyny]

=− `[−h̄×,ttnxny −
1

2
h̄+,tt(n

xnx − nyny)]

=`[h̄×,tt(sin
2 θ cosφ sinφ) +

1

2
h̄+,tt(sin

2 θ cos2 φ− sin2 sin2 φ)]

=`[h̄×,tt(
1

2
sin2 θ sin 2θ) +

1

2
h̄+,tt(sin

2 θ cos 2φ)] (2.11)
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As the perturbations of the stick’s length are small because h̄ is small, let ` ≈ `0.
Now, to lowest order here d

dτ = d
dt so the differential equation can be integrated

in order to obtain `(τ)

` = A+Bτ + `0[
1

2
h̄× sin2 θ sin 2θ +

1

2
h̄+ sin2 θ cos 2φ] (2.12)

and applying initial constraints (i.e. initial velocity = 0 and h̄ = 0 ⇒ ` = `0),
then we get

` = `0[1 +
1

2
h̄× sin2 θ sin 2θ +

1

2
h̄+ sin2 θ cos 2φ]. (2.13)

Problem 3

Part (a)

In linearized gravity theory, recall from class that the Christoffel symbols are

Γαµβ =
1

2
(hαβ,µ + hαµ,β − hβµ,α) (3.1)

These Christoffel symbols are of order h, so when the Riemann tensor is ex-
panded in terms of Christoffel symbols, terms that are products of Γ’s can be
dropped. Then the Riemann tensor is

Rαµβν ≈gαλ(Γλµν,β − Γλµβ,ν)

=2Γαµ[ν,β]

=hα[ν,β],µ + hαµ,[βν] − hµ[ν,β],α
=hα[ν,β],µ − hµ[ν,β],α

=
1

2
(hαν,µβ + hµβ,να − hµν,αβ − hαβ,µν) (3.2)

Part (b)

Under a gauge transformation,

hµν → hµν − ξµ,ν − ξν,µ (3.3)

Plugging this into each of the expressions for hµν in the equation above for the
Riemann tensor yields

Rαµβν → Rαµβν − ξα[,ν,β],µ + ξµ[,ν,β],α − ξν[,α,β],µ + ξν[,µ,β],α (3.4)

However, since partial derivatives commute, all of the ξ terms disappear because
of the antisymmetrization in two of the partials. This leaves only the original
Riemann tensor unchanged so the Riemann tensor must be gauge invarient.
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Problem 4

Part (a)

Recall that the action of the Lie derivative on a general tensor is completely
determined by the action of the Lie derivative on scalars and vectors. Therefore,
we only need to show the identity for scalar and vectors. For some scalar function
f we have

L~uL~vf = L~u(∇~vf) = L~u(f,µv
µ) = (f,µv

µ);νu
ν

= f,µνv
µuν + f,µv

µ
;νu

ν , (4.1)

so

L~uL~vf − L~vL~uf = f,µνv
µuν + f,µv

µ
;νu

ν − f,µνuµvν + f,µu
µ
;νv

ν

= f,µ(vµ;νu
ν − uµ;νvν)

= f,µ([~u,~v])µ

= ∇[~u,~v]f = L[~u,~v]f, (4.2)

and so we have shown that

L~uL~v − L~vL~u − L[~u,~v] = 0 (4.3)

holds for scalars.

For vector fields, recall that L~v~u = [~v, ~u], so we find

L~uL~v ~w − L~vL~u ~w − L[~u,~v] ~w = L~u[~v, ~w]− L~v[~u, ~w]− [[~u,~v], ~w]

= [~u, [~v, ~w]]− [~v, [~u, ~w]]− [[~u,~v], ~w]

= [~u, [~v, ~w]] + [~v, [~w, ~u]] + [~w, [~u,~v]]

= 0, (4.4)

where we used the Jacobi identity. Thus we have shown that (4.3) also holds
for vector fields and so we are done.

Part (b)

Recall that ~ξ is a Killing vector field if and only if L~ξg = 0, where g is the

metric tensor. Let ~ξ and ~χ be Killing vector fields, then using the result from
part (a) we find

L[~ξ,~χ]g = L~ξL~χg − L~χL~ξg = L~ξ(0)− L~χ(0) = 0, (4.5)

and so [~ξ, ~χ] is a Killing vector field.
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Part (c)

Let ~ξ and ~χ be Killing vector fields, and let a and b be constant scalars. Using
linearity of the Lie derivative gives

La~ξ+b~χg = aL~ξg + bL~χg = a(0) + b(0) = 0, (4.6)

since L~ξg = L~χg = 0, and so a~ξ + b~χ is a Killing vector field.

Problem 5

In this problem we will assume that we are always in a coordinate basis. The
time basis vector is already specified as ∂/∂t and we have the freedom to pick
the spatial basis vectors to be coordinate basis vectors as well.

Part (a)

Since we have a stationary spacetime, we have a timelike Killing vector field
~ξ and we choose the time coordinate such that ~ξ = ∂/∂t. Since ~ξ is a Killing
vector field, we have

0 = L~ξg = gαβ;µξ
µ + gµβξ

µ
;α + gαµξ

µ
;β

= gαβ,µξ
µ − Γναµgνβξ

µ − Γνβµgανξ
µ + gµβξ

µ
,α + gµβΓµναξ

ν

+ gαµξ
µ
,β + gαµΓµνβξ

ν

= gαβ,µξ
µ + gµβξ

µ
,α + gαµξ

µ
,β

= gαβ,0 + 0 + 0, (5.1)

where all the connection coefficients canceled, and we used that ξµ = (1, 0, 0, 0)
is a constant vector field and so the last two terms above vanish. We thus have

0 = gαβ,0 = gαβ,t. (5.2)

Note that gtα = ~ξ · ~eα. Now if ~ξ = ~e0 → −~ξ, the spatial basis vectors remain
the same and we know the that the metric is invariant, hence

gti = ~ξ · ~ei = −~ξ · ~ei = 0. (5.3)

Thus we have shown that the first definition of static implies gαβ,t = gti = 0.

To prove the converse, suppose that gαβ,t = gti = 0. This means that a
time coordinate is already defined. Let ~χ = ∂/∂t. We need to show that ~χ is a
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Killing vector. We find

L~χg = gαβ;µξ
µ + gµβξ

µ
;α + gαµξ

µ
;β

= gαβ,µξ
µ + gµβξ

µ
,α + gαµξ

µ
,β

= gαβ,t = 0, (5.4)

since ~χ = (1, 0, 0, 0), and so ~χ is indeed a Killing vector. We also need to show
that the metric is invariant under the transformation ~χ→ −~χ. We find

gtt = ~χ · ~χ→ (−~χ) · (−~χ) = ~χ · ~χ = gtt,

gti = 0→ 0,

gij = ~ei · ~ej → ~ei · ~ej = gij , (5.5)

and so the metric is indeed invariant under ∂/∂t→ −∂/∂t. Thus we have shown
that gαβ,t = gti = 0 implies the first definition of static and so gαβ,t = gti = 0
is equivalent to the first definition of static spacetime.

Part (b)

Note that

ξα = gαβξ
β = gαt, (5.6)

since ~ξ = ∂/∂t = (1, 0, 0, 0). So if gti = 0, then ξi = 0 and ξt = gtt. So we can
write

ξα = gtt∂αt, (5.7)

which is of the form hf,α, where h = gtt is a scalar and f = t is also a scalar.

Thus ~ξ is hypersurface orthogonal.

Part (c)

Suppose that the Killing vector ~ξ = ∂/∂t is hypersurface orthogonal. Then

0 = ξ[µ;νξλ] = (ξµ;ν − ξν;µ)ξλ + (ξλ;µ − ξµ;λ)ξν + (ξν;λ − ξλ;ν)ξµ

= (ξµ;ν − ξν;µ)ξλ + 2ξλ;µξν − 2ξλ;νξµ, (5.8)

where we used the fact that ξµ;ν = −ξµ;ν . Dotting the above with ξλ gives

0 = (ξµ;ν − ξν;µ)ξλξ
λ + (ξλξ

λ);µξν − (ξλξ
λ);νξµ

= (ξµ;ν − ξν;µ)ξ2 + (ξ2);µξν − (ξ2);νξµ

= (ξµ;ν − ξν;µ)(ξ2)−1 + (ξ2)−2(ξ2);µξν − (ξ2)−2(ξ2);νξµ

= ((ξ2)−1ξµ);ν − ((ξ2)−1ξν);µ, (5.9)
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where ξ2 = ξλξ
λ. So for the vector vµ = (ξ2)−1ξµ we have

0 = vµ;ν − vν;µ
⇔ vµ,ν − Γλµνvλ − vν,µ + Γλνµvλ

⇔ vµ,ν = vν,µ, (5.10)

since the Connection coefficients are symmetric in the last two indices, provided
we are in a coordinate basis. We already have ~e0 = ∂/∂t and we can choose
spatial coordinate basis vectors. Since vµ,ν = vν,µ, it follows that ~v is a gradient,
hence

vµ = h,µ = (ξ2)−1ξµ, (5.11)

and so

ξµ = ξ2h,µ = ~ξ · ~ξ h,µ = gtth,µ. (5.12)

Recall that ξα = gαt, so the above gives

gαt = gtth,α. (5.13)

Setting α = t, this implies that h,t = 1 and so h = t + f(xi). Choosing a new
time coordinate t′ = t+ f(xi), we find

git′ = gtth,i = gtt(t
′),i = 0, (5.14)

and

∂

∂t′
= ~eα′ = ξα

′
=
∂xα

′

∂xβ
ξβ = (1, 0, 0, 0), (5.15)

and so the metric is still independent of t′, because gα′β′ = ~eα′ · ~eβ′ and we
did not change the spatial basis vectors. To complete the proof, we just need
to show that the change in time coordinate did not change the Killing vector
~ξ = ∂/∂t. We have

∂

∂t
=
∂xα

′

∂t

∂

∂xα′ =
∂

∂t′
, (5.16)

because xα
′

= (t+f(xi), xi). So the timelike Killing vectors in both coordinates
are the same and are hypersurface orthogonal.

This means, given a stationary spacetime, we have a Killing vector ~ξ that
is hypersurface orthogonal, and there exists a choice of time coordinate t′ such
that ~ξ = ∂/∂t′ and git′ = 0.
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