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Problem 1
Part (a)
Recall that
1
Gaﬁ = Raﬁ - §gaﬁRa (11)
where
Rop = Ruauﬂ’
R=R", (1.2)
And
Regys =15y = 1%+ FamF#BtS =I5y (1.3)
where
o= 1 T 1.4
ap = 39 (G + Gup.o = Gapp) - (1.4)

Now we split R, into the terms involving second time derivatives of the metric
and all the other terms not involving second time derivatives of the metric. We

denote terms that do not contain second time derivatives of the metric with
(+-+). We find

RQB = Rua,uﬁ = Fuaﬁ,# - Fua,u,ﬁ + ( o )

1 v
= 59 (Gav,pu + Gupran — Gapvp — Jovuf — Gvpa,8 + Japw,) + ()

1
= 59“1/ (gau,l/,li’ + 9Bu,v,a — GapB,u,v — g/w,(x,ﬁ) + ( e )7 (15)

where we changed the order of the derivatives, relabeled dummy indices, and
used that the metric is symmetric. Note that R,3 = Rga, as required. The
Ricci scalar becomes

R=R"; =g Rog

1 v
= igaﬁgu (gau,u,ﬁ + 98uva — GaBuw — gl“’aa,ﬁ) + ( T )
1 af uv
- 59 g (QQQM,V,B _29aﬁsﬂql’) + ()
= 99" gap.0,0 — gaﬁgoogaﬁ,o,o + ()
_ (g,ioguo _ googuu) G004 (). (1.6)
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We find
ROO — gOongBRaﬁ

1
(9°*9”° 9" gap0.0 + 99" 9" 950,00 — 6°*9°° 9% gap 0.0

2
— 999" gu00) + (++)

1
_ 5900 (gMOgVO o goog;w) 9,00 + ( . )

_ %QOOR+(...)7 (1.7)

and

ROk — RkO — gOagkﬁRaB

1
=5 (9"9"9" 9000 + 99" 9" 95100 = 9" 9" 9" 95 0.0
— 9%9"9" guw00) + (---)
1
= 59" (99" = 9"9") guvo0 + ()
1
= igkOR—F(w-). (1.8)
Now we get
0 _ poo L oop_ L oop 1 oo
G" =R g °R=-9g"R—=-g”R+(-)
2 2 2
— 04 (), (1.9)
and
ok _ pok Lok L ko 1 ook
G" =R g "R=-g"R—-¢g""R+(--+)
2 2 2
=04 (---), (1.10)
and so we have shown that G = G*° does not contain any second time deriva-
tives of the metric. O
Part (b)
From (|1.5) we get
R = g"*¢’’ Rag
1 .. o o
=5 (990" 9an.00 + 9797 9" 9500 — 9979 gap.0.0
= 999" gu00) + (---)

_ - (gzp,gjogm/ + gzog]MQOV _ glll«g.ngOO _ gz(JgJOg}J«V) Guv,0,0 + ( R )

2
(1.11)
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And so, using (|1.6)) we obtain
g 1
GY =RY — —g“R
29
§O_ov i g 00 i0 50 v

1 o
=§(g“g 9”4+ g0g" g% — g g’ g" — 9°¢"%g

— 979"9"° + 9”7 9" ¢") guvo0+ (++)

1. o
= (0)g00,0,0 + 3 (9°97°9% — 997" g") gok.0,0

+}( i0 jk 00 i0 50 kO ik 30 0l jk 0l _ ik jl 00

1 .
B 999 —9 99 )9k0,0,0+§(9 99" + g"g""g 9 99

_ giogjogkl _ gijgkoglo + gijgoogkl) oo+ ()
_ 5 (gzk (9]0901 o goog]l) + glO (g]kgm o g]ngl) _ gz] (gkOQOZ _ gOngl))
X gk,0,0 + (), (1.12)
and so G% does indeed contain second time derivatives of the metric. O
Problem 2
We have
T = (p + p)uru” + pg"”. (2.1)

Recall that T"",, = 0, so
0= (p+p)uutu” + (p+phut v’ + (p+ p)utu”, +p.g"" +pg"”,. (22)

The last term is zero since g"”,, = 0. Now multiply by the projection tensor
P,y = uquy + gar. You get

0= Po, T, = Pay(p+ p)uiu” , + p.ug" T

= (p+ p)u"ug,, + Do+ puutua, (2.3)
which is the same as the relativistic Euler equation
(p+p)Vaii = —=Vp — uVap. (24)
Problem 3

Part (a)
Start by looking at the RHS of equation (3) from the problem set:

1
Wap + Tap + §9Pa5 — aqUg (3.1)
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and plugging in expressions for each of the terms, starting with o, and then
Wepg and finally aq = ua;yu”.

1
Wap + 0ap + g@Pa[; — Qqup =

1 1 1
=Wap + 5 (Uayu Py +upuP’s) = 30Fap + 36Fap — aaug
1 1
:i(ua;upuﬁ —ugPty) + i(ua;ﬂpuﬁ —ug Py ) — aaug
:uaWP“ﬁ — uawu’y’ug (3.2)
Now plug in the projection operator so that

ua;uPliB — Uay ' Up :“a;u(gﬂﬁ + uMug) — Ut ug

=Uq;B (3.3)
Part (b)
From the definition of § = V - i, write
d0 «@ « «@ [e%
ar = uﬁ(u ;a);fj’ = u’u jaf T uﬁ(u Ba T R Ba'yu’y)
= uﬁua;ﬁa — Rg uPu? (3.4)

Now consider the term u/ u® 5, and use the results from part (a) as well as the
ability to raise/lower indices that are being contracted,
B

s

uﬂua;ﬁa :(ua;ﬁuﬁ)?a —utgu

_ B
=a"., — Ua;U

1 1
=a%, — (Wap + Tap + §9Pa5 — aqup) (W™ + 0P + §9PBO‘ — aPu®)
(3.5)

Now note that wag is antisymmetric and that both 0,3 and P, are symmetric.
So when considering the cross terms, terms that are contractions between sym-
metric and antisymmetric are 0 meaning that terms like wagaaﬂ = wagP“B =0.
Also, the projection operator is orthogonal to u® = P*Py, = 0. Next look at
terms like

1
Uayu P''s aPu® = §(uaua)maﬂP“ﬂ = (0) (3.6)
This shows, along with projection operator orthoganality, that terms like

1
w*Paqup = 0P agug = gﬁPﬁaaauﬁ =0 (3.7)
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Also, a“u, = 0 as the 4-velocity and 4-acceleration are orthogonal to each other.
After all these simplification, all that remains is

1 1
uPu® g, = 0o + wasgw®” — (oap + gepaﬁ)(aaﬁ + gGPaﬁ) (3.8)

Now consider contracting the projection operator with itself (keeping in mind
u® is orthogonal to it)

PosP? = (¢°F 4+ uu)gos = ¢* —u® =3
1 1 1
= 0Pup x -0P*F = _6? 3.9
3 073 3 (3.9)
The last term to consider is the contraction between o,5P*?. Note that the

projection operator acting on itself gives a projection operator, or simply put
PP, = P*, . Expanding o, the term becomes

1 1
Uaﬁpaﬂ = (2(ua;ﬂpuﬂ +ugPry) — 39Pa,8> pe?

1
:§(ua;uplm + uﬁ;upﬂﬁ) -0

@ ey
:uaW«P# —U

=0 (3.10)

Using these results in equation (3.8) and plugging everything back into (3.4))
yields the desired result:

do

1
i a®,+ Wapw®? — oa50®P — 592 - Raﬁa,yuﬁu”’ (3.11)

Part (c)

From the problem statement, let the hypersurfaces be parameterized by f =
constant for a scalar function f. So then let v, = hf,, for some scalar h. Then

Vpsw = P fu - Wfp (3.12)
Now consider the quanity of interest.
O] = Wil fog + 02 fiafu) (3.13)

Now the first term must be zero because f.\f.,, = f..f.x and so any antisym-
metrization of terms of that sort will be zero. The second term vanishes because
fiww = fou (because f is a scalar). Therefore, it must be that vjyvy,,) = 0.
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Part (d)
Consider each of the terms in the differential equation
de 1
pr a®., + Wapw®? — o450°F — §92 . Raﬁmuﬁzﬂ (3.14)

individually. First, the worldlines are all geodesics, so that a®,, = (u® 5u5 )ia =
0 by the geodesic equation. Next, u® is a hypersurface orthogonal. Consider
the quantity u upyuqa,. When plugging in the equation for uq,s from part (a),
the antisymmetrization with u, will cancel out any symmetric terms, leaving
only

U Uy Ua;p) = W URWag) =0
= Wag =0 (3.15)

The strong energy condition imposes an additional constraint for the Ricci ten-
sor,

1
Tutu” + §T >0

8 2
= —Ryuutu” <0 (3.16)

1 1
= — R, u'u” = (T;w — gWT) utu’ >0

Putting these together, along with —O’agdaﬁ < 0, the differential equation be-
comes

do
<

1
< 22
dr — 3
:>1 1>AT
0 6 3
to

g<
~ ST AT0,/3

(3.17)

Now if the initial 8y < 0, then the RHS of the expression blows up as A7 — —%,
diverging so that § — —oo.

Kevin Barkett, Jonas Lippuner, and Mark Scheel November 18, 2015



Solutions Ph 236a — Week 7 Page 8 of 10

Problem 4

Part (a)
We write the modified Einstein field equation as
87TTMU = Ruy - a/g;,wR
1 1
=R, — ig“”R + <2 — a> g R
1
=G+ (2 — a) g R (4.1)
Raising the indices yields
1
8T = GM + <2 - a) 9"’ R. (4.2)
Taking the divergence of the above equation gives

1
87TTMV;U - GHV;V + <2 - a> (gHV;VR + gMVR,V)

(b-o)n »

since G, = ¢g"”,, = 0. On the other hand, if we contract the modified field
equations (4.1)), we get

8rT", = R”, —ag”, R
< 81T =R —4aR = (1 —4a)R, (4.4)

and differentiating yields
8rT" = (1 — 4a)R*. (4.5)
Combining the above gives

87T, 8aT™

H = =
B = e T 1-1a
1/2—a
T = L2 46
D R sl (4.6)

where k = (1/2 — a)/(1 — 4a). The above is the equation of motion for TH¥.
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Part (b)

For a perfect fluid with density p and negligible pressure the stress-energy tensor
is

T = putu”. (4.7)

Thus in the Newtonian limit, the 4 = 0 component of (4.6) is

v

& (pu'u”), = KT, (4.8)

7%, = KT°

because covariant derivatives become ordinary partial derivatives in the Newto-
nian limit. Note that

T=T", =pu’u, = —p, (4.9)

since u” is a 4-velocity and so w’u, = —1. Recall that v¥ = ~(1,v), and
v = (1—v?)~Y2 & 1, because we are in the Newtonian limit and so v* < 1 = ¢2.
Thus u° = 1 and using the Minkowski metric (4.8)) becomes

K(=00)(—p) = Do+ puul  + (pu')

dp _ 9p
S Ko = +0+4+ V- (pv). (4.10)

The non-relativist Euler equation (mass conservation) states that

dp

—— . = 4.11

5 TV () =0, (4.11)
and so it follows that x = 0, which implies that a = 1/2, because k = (1/2 —
a)/(1 — 4a). O

Problem 5

Let Newtonian tarjectory be 2/ = 27(t,n) where n tells which trajectory under
consideration. Then

o ok o L0

= onaek " ok (5-1)

7}:
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which is a connecting vector between neighboring trajectories. The relative
acceleration of the neighboring trajectories is then

0%nJ B 0% [ 0x7
oz oe (an)
0 (0%
on ( o2 )
0 0P
o (o)

_ k0 (02
=" ek \ 9z

-n .

OxkoxI

2.7 . . .

where the equation of motion is 86527 = % for some Newtonian gravitational
potential. Now the geodesic deviation equation is

(5.2)

D2na

5 5
W = Raﬁ,\ﬂ;uﬂuwn = _Raﬁéwuﬁu’yn (53)

Now, in the Newtonian limit, velocities and the curvature is small so expand
quanitities in terms of small parameter ¢ < 1. This means u® = 1 + O(e),
w = O(e) and T, = O(e?). Also, 7 which connects events of equal proper
time now connect events of equal coordinate time, up to order O(e). Then

D 0

and therefore, when combined with equation (5.2, this becomes

32nj Jj k k 62(1)
e —Rgon” +0(e) = —n 0T
; 0*®
= Rlow = 5557 (5:5)

in the Newtonian limit. Note, unless the velocities involved approach ¢, the
other components of R%s5., don’t enter into the equation of relative motion of
test particles.
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