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Problem 1
Part (a)
The metric is
91 = {TOQ r? s?n2 9} ’ (1.1)
Since (€y, €y) is a coordinate basis, the connection coefficients are given by
Fijk = %gil(gjl,k + Gik,; — Gik1)- (1.2)

We use the same Mathematica code as in Homework 5 to do all the tedious
calculations.

x = {t, p}

g = {{r"2, 0}, {0, r~"2 Sin[t]"2}}

glnv = Inverse(g]

ConCoef[i_, j_, k_] := 1/2 Sum[gInv[[i, 111 (D[gllj, 111, x[[k1]1]
+ D[gll1, k11, x[[3111 - Dlgl[j, k11, x[[1111), {1, 1, 2}]

Table[ConCoef [1, j, k], {j, 1, 2}, {k, 1, 2}] // MatrixForm

Table[ConCoef [2, j, k], {j, 1, 2}, {k, 1, 2}] // MatrixForm

We find that the only non-zero connection coefficients are

F9¢¢ = —sinf cos¥,

[y, =17, = cotf. (1.3)
Part (b)
Recall that for a curve v/(\) = (0(A), ¢(\)) the geodesic equation is
d?~ - dy dy®
= ., —-——-. 14
0= Ty Ty 4
So we get
0=0"—sinfcosf (¢)?, (1.5)
0=¢" +2cot0'¢.
Note that we can rewrite (1.6]) as
e cosf , ,
0=¢ +2—Sin90¢
& 0=¢"sin?0+ 2sinfcosf O ¢
& 0= % (¢'sin0) . (1.7)
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Thus we have that
¢ sin? @ = k; = const (1.8)

along the entire curve. Note that rotating the sphere in the 3-dimensional space
in which it is embedded corresponds to adding constants to 8 and ¢. Thus if
O(A = 0) = 6y, we can rotate the sphere so that 6y = 0. This means that k; = 0
at A = 0 and since k; is constant we have k; = 0 along the entire curve. Thus
we must have that either # = 0, 7 or ¢’ = 0 along the curve. But if # = 0, 7 then
the curve would just consist of the north or south pole, which are not connected.
Thus we have that ¢’ = 0 and so ¢(\) = ¢ is constant. Hence reduces
to 6" =0 and so (\) = koA, because we have #(0) = 0. Hence, in the rotated
coordinate system, the geodesic is

7' (N) = (K2, do), (1.9)

which is a great circle passing through the north and south poles. Since rotating
the coordinate system preserves great circles, it follows that all geodesics on the
sphere are great circles. O

Part (c)
Since we are in a coordinate basis, the Riemann tensor is given by
Raﬁ,ﬂ; == Fa5577 - ].—‘aﬁ,y_’(g + Fa‘u,y].—"u‘ﬁé - Fayél—‘yﬁ,y. (110)

Thus we use the following Mathematica code to evaluate all components of the
Riemann tensor.

Riemann[i_, j_, k_, 1_] := D[ConCoef[i, j, 11, x[[k]]]

- D[ConCoef[i, j, k], x[[1]1]

+ Sum[ConCoef[i, d, k] ConCoefld, j, 11, {d, 1, 2}]

- Sum[ConCoef[i, d, 1] ConCoefld, j, kI, {d, 1, 2}]
Table[Riemann[1, 1, k, 11, {k, 1, 2}, {1, 1, 2}] // MatrixForm
Table[Riemann[1, 2, k, 11, {k, 1, 2}, {1, 1, 2}] // MatrixForm
Table[Riemann[2, 1, k, 11, {k, 1, 2}, {1, 1, 2}] // MatrixForm

1,

1
1
1
Table[Riemann[2, 2, k, 11, {k, 2}, {1, 1, 2}] // MatrixForm

We find that the only non-zero components of the Riemann tensor are
R0¢9¢ = Sin2 0,
R0¢¢9 = — Sin2 9,
¢ _
R%p = —1,
@ —
R%p40 = 1. (1.11)
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Problem 2

Part (a)

On Homework 5 we found that the geodesic equation for one-forms is

dug u
0= K — F“m,u”u s (21)
so we get
dpa
—— =TI" Y. 2.2
d)\ ozl/p;ufp ( )
Part (b)
The metric is
—(1—-2M/r) 0 0 0
_ 0 1+2M/r 0 0
I = 0 0 1+2M/r 0 - (23)
0 0 0 1+2M/r

where r = /22 + y? + 22. Since we are in a coordinate basis, the connection
coefficients are given by

1 (L
Faﬂv - §ga/ (9u,y + Guv,8 — 9Bv)s (2.4)
and so
17 1 72 1 70 72
'y, = 59 (gor,v + grv,0 — Jour) = 5(9 goo,r + 0 — g""gou,x)- (2.5)

Case p =i and v = j: Both terms in (2.5 vanish and we have I'"; = 0.
Case p =14 and v = 0: The first term in (2.5) vanishes and we get

, 1.
Iy = —591/\900,,\. (2.6)

Case p = 0 and v = j: The second term in (2.5) vanishes and we get

1

Fooj = 59009007]'. (27)

Case = 0 and v = 0: Both terms vanish because the metric is independent
of t, hence I', = 0.
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Now we find

de . . . .
an T o, pup” = T00opop” + Toopip” + T pop” + o pip?
1

2900900,jpopj +0

1 .
=0- ig“goo,xpipo +

1 )
=3 (—goo,,\pAPO + goo,jpjpo)

=0, (2.8)
since ggo,0 = 0 and so the sum over A = 1,2, 3,4 can be replaced with a sum over
k =1,2,3, just like the sum over j. And we also used p° = g"py = ¢"%py. O

Part (c)

We have p® = ¢°*py = ¢°°po, hence
0 Po
= 2.9
b 1—2M/r’ (2.9)

which is not constant in general, because r can vary.

Part (d)
The 4-velocity is defined as
dz®
&= 2.10
=& (210)
But since the atom is at rest, we have dz®/dr = 0 and so u& = (u2,0,0,0). The
normalization condition is u& (ue)s = —1, so we have
— 1= 2 (u)a = gasulul = —(1— 2M/R)(ul)?
1
. — (2.11)
V1-2M/R
where R is the radius of the sun.
Part (e)
In the rest frame of the emitting atom, we have F = —p'- 4, = hc/\.. But
E = —p'- i, is a scalar and so it is invariant. In the rest frame of the sun, we
found in part (d) that i, = ((1 —2M/R)~'/2,0,0,0) and so at r = R
—p+ e = Gapp™ul = goop”uy
(%) C=2wm) vam
R 1-2M/R) \/1—2M/R
SR — (2.12)

V1—2M/R’
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hence

he o p (2.13)

Ae  /1-2MJR’

where po is measured in the rest frame of the sun. We found in part (b)
that py does not change along the photon’s worldline, therefore po(r = R) =
po(r — 00) = pg in the sun’s rest frame.

Now consider an observer at rest at r — oo. Going through the same
math as in part (d), we see that ul = 1 in the sun’s rest frame. We have
E = —p'- i, = he/ )\, and evaluating this in the sun’s rest frame gives
0

iy = Gapp®ul = goopul

—— -0 (125 W =m. (2.14)
S0
i—f = po. (2.15)
Combining the above with yields
he he/ A
N Vi-2M/R
e \/1_A;7M/R. (2.16)
Thus we find
L Ar)\—eAe _ (- 2M/R/iel/2)\e —Ae _ <1 B 2;\%/[>1/2 o (217

Restoring factors of ¢ and G, we find that

oM 2MoG »
0 ~ 4.24 % 10
R Ro® A

(2.18)

since this is a small number, we can expand z above as follows
Y AN 1\ 2M M2
2= (13) “l=1- (2>R+O<<R) -1
M M\?
_ 19 2.19
R ((R) ) (2.19)

which is the desired result. O
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Problem 3

Consider the quantity 17" wav? which is a scalar since it is the inner product
of a tensor with a 1-form and vector. The second covariant derivative of this
quantity is mot zero, but it is independent of the order of differentiation,

(Taﬁ wavﬁ);uv = (Taﬁ wavﬂ);vu' (3.1)
Then

0=(T" W v?). 0 — (T wo 0?0

=T%. . wev” + T% wa;wvﬁ +T% wav’B;W

—T%.., wav? — T%w vP — T% wavﬁ;w

;v
=(T%. —T%., Jwav® + 7% (w - wa;w)vﬂ +T% wa(vﬁ;w - vﬂ;w)

=(T%. — T %wu Jwav® + % (—R’\M#wA)v’B +T% wa(RﬁMMv’\) (3.2)

[eHNZ

Relabeling the indices above, and moving the covariant derivatives of 7% to
the other side, then we get

(Taﬂ;uy — Taﬁ;yu )'UJO/Uﬁ :(TAB Ra/\yu — Ta)\ Raﬁyﬂ)wavﬁ
1% o _ pa A Ie% [e"
= T — T gn =R T — B, T (3-3)
Problem 4
Part (a)
Now we are given that Vze, = —é'gQBa, where Q8 = aﬁuo‘—uﬁao‘—i-u)\wpe’\pﬂ“

as well as that @ = €. We also know that Vg, e, = F/\aﬁé}\. Now consider

TP 085 = Vi, Ea = Ve = —E30°,
’\wpekp’ﬂ (4.1)

(03

:>Fﬂa0 =0 = —dPu, +ulaq —u

Now, because we know that @ = €, we can say that u’ = u; = 0,u’ = —up =1
for i« = 1,2,3 the spatial components. This implies that uoeopﬂa = EOkij is
nonzero for 4, j, k all spatial and unique. Now choosing a and (8, we can get
some for the connection coefficients:

oo =a’ [P =0

%, =a; I = —whey; (4.2)
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Part (b)

We are given a spatial geodesic curve parameterized by #° = 7 and z° = sn!
where 7 is the proper time and s is the proper distance. Now the geodesic
equation is

d*x® da? dx”
+ @ —_— = 0 4.3
ds? Prds ds (43)
However, given the curves above, ddi; = n’ and % =0 so d;f: = 0. Also,
n® = 0 because i is spatial (meaning n®u, = 0). Then the geodesic equation is

dz? dx” ,
0=0+T1% ———— =T, nin
Ty ds ds gk

Part (c)

Let the 3-velocity be given by v = (dwi / d;vo) €;. Now the geodesic equation for
a freely falling particle is

Pz o dxP dx?

2 +I%, ) =0 (4.5)
Break up the equation into the temporal component (« = 0) and the spatial
components (o = 14,4 = 1,2, 3) and use the results for the connection coefficients
found above.

d?a° da® da?
o~ ot o)y

_ g, a0 d

N AN d\

L (8

Tdz0 \ dA

2.0 0 2
=2 () (1.6

And then also

d\2 Y d\ d\
Y i P o
I ) W05 kTN TN
(Y dz\" da”
“\ax YXun) Tan
d*z’ i i [ d2® 2
T —(a 2w ) (50 (4.7
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Now look at the derivatives of z* with respect to z°. We know that %é =

(%\i )/(%) and since % = %, then we can write

ot _(d N1 d (dxi) (dio)
dr? = \da®) © T gy \Vax’/ Vax
([ (da0N _(dat [ (da0\’
“laxr /U d\ dX? X
d*z’ ;%0 dz®\?
:(d/\Q - d)\2>/<d/\> (48)

. . . . 2 0 2.0 . . —
Substituting in the expressions above for 4% and <% and contracting with &;
g P X ax g )
the expression becomes

A2zt
== 2(wxv)+2v(e-v) (4.9)

Problem 5

Part (a)
From class, the equation of geodesic deviation in general is

D2 «
Ttx = 17~'i"‘5,y(;uﬁzﬂac‘S (5.1)

Since we are in a local Lorentz frame comoving with the center of mass, the 4-
velocity is @ = (1,0,0,0) and in this case x® is purely spatial so can be written
as x'. So then the equation becomes
d229 : .
— RJ k _ J k
e - Ropt™ = — gy (5-2)

Part (b)

Torque is a length crossed with a force and force is mass times acceleration.
. 2.7 ;

Let f7 = pddf; = —pR’,,x" be the force per unit volume with density p. The

torque is then

T = /6ilj$lfjd3$ = —€ilj/],‘lpRj0k0.de3]}: —GiljRjOko/pxl$kd3$ (53)
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where the fact that R is nearly constant was used to take it out of the integral.
Now to get the quadrupole tensor, consider the quantity 5lk6iljR]0kO which is
the same as eikJRjOkO:

kj ik ik kj
" Rjoro = —€7/" Rjoro = —€;/" Riojo = —¢;” Rjor = 0 (5.4)

where the indices were relabeled in the last step. This means that any term
that has the form of 5lkeiljR]0k0 can be added to Eq. |D without changing its
value.

) ) . 1
T =— eiljRJOkO/pxlzkddx + GiljRJOko /p§7'25”“d3x

; 1
=— eiljRJOkO/p(xlxk - 57"25”“)(1320

= — €iljRj0k0tlk (5.5)

where t'* = [ p(z'zk — Lr26™%)dPa.

Part (c)

Torque is the change of angular momentum with time so in the local Lorentz
frame dS*/dt = —eilj RJOkOtlk. Define the spin vector S* such that there are only
spatial components governed by the equation above. Since u* is the 4-velocity
of the center of mass, S#u, = 0. Define t# similarly so then t*Pug = 0. Now
u’ = 0 and ©° = 1 in the LLF, so we can write in this frame Rjozco = Rjgk)\u"u)‘.

Similarly, in the LLF,
€ijk = €oijk = U €uij, (5.6)

SO

s’ i Rj e ke ‘Rj ik

ar  uftoko® = €u i ok0
o il k
= —ufe," Rjooty
_ K, 1B n
= utey RaOnOtﬂ
= fu“e//ﬂaR
= uuelﬂa“R
— iBap A, o4 M
= uy,¢ R, saru u’ts

= ePory ututg, R

A, 04 M
oz/\nau u t,B

A, o1 M
a)\no'u U tﬁ

(5.7)

oaX?

where on the 3rd line we have used t*ug = 0 (i.e. t with any zero index is

zero) and the antisymmetry of Riemann to write 3-d sums as 4-d sums, and on

the 4th line we have used RjOkO = RjUkAu"u)‘.
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In the LLF, dS%/dt is the same as DS?/dr. Because S = 0 and €***u,, = 0,
we can change the 7 index to a 4-d p index, and write
DS¥
dr

= Py uuMg, R L. (5.8)

We have now constructed a tensor equation, so even though we derived this
equation in the LLF, it is true in all frames.
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