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Problem 1

Part (a)
In Homework 2 we found that

0 . . .
r = -— =sinfcospé, +sinfsin¢gé, + cosd e,

™y

or
0
€y = %= rcosfcos &, +rcosfsing ey —rsinf e,
0
€y = % = —rsinfsing e, + rsinfcos ey, (1.1)

and the metric for these basis vectors is

1 0 0
9ij = 0 7"2 0 . (12)
0 0 r2sin?6

Since (€, €y, ) is a coordinate basis, the connection coefficients are given
by

1

Iy = §9il(9jl,k + Gtk = Yik.1)- (1.3)

We use Mathematica to do all the tedious calculations. First we define the
vector of variable x, the metric g, and its inverse gInv.

x = {r, t, p}
g = {{1, 0, 0o}, {0, r~2, 0}, {0, 0, r"2 Sin[t]"2}}
gInv = Inversel[g]

Then we define the function ConCoef that calculates I‘ijk according to (|1.3).

ConCoef [i_, j_, k.1 := 1/2 Sum[gInv[[i, 111(DI[gl[j, 111, x[[k]1]
+ DIgl[1, k11, x[[j]11] - DIgl[j, k11, xC[1111), {1, 1, 3}]

We then evaluate I' ik with the Table function.

Table[ConCoef[1, j, kI, {j, 1, 3}, {k, 1, 3}] // MatrixForm
Table[ConCoef[2, j, kI, {j, 1, 3}, {k, 1, 3}] // MatrixForm
Table[ConCoef [3, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm
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We find that the only non-zero connection coefficients are

Free == 77’,
Myy=—r sin? 6,
1

I ,=T% =~
0 Or r

3

0 .
"4, = —sind cosd,

1

o _

I =T%, ==,

[y, =17, = cotf. (1.4)

Part (b)

Since g;; = d;; in an orthonormal basis, all the metric derivatives are 0 and so
the connection coefficients are given by

4 4% 1
_ l _
1—‘15]; — g" (Cl?]; —+ Ci/;‘j — C}’;‘i) = i(cljiC + CZ];j' — ij;)

(5" + e’ =), (1.5)

N~ N~

since g;; = 5;3 and so we can raise and lower indices as we please. In Homework
4 we found that the only non-zero commutation coefficients are

5 1

6_ . o_ 1L

o T "% T T

; 1

¢ _ _ . & -

Cog| = Con = T
b ¢fﬁcos€ 16
00 40 rsinf’ (1.6)

We enter this information in Mathematica as c.

c = {{{05 O’ O}: {0: _1/r, O}: {O, O: _1/r}},
{{o, 1/r, 0}, {0, 0, 0}, {0, 0, -Cos[t]l/(r Sin[t])}},
{{0, 0, 1/r}, {0, 0, Cos[t]/(r Sin[t])}, {0, O, O}}}

And we compute the connection coefficients as follows.

ConCoef[i_, j_, k_] :=

1/2 (clli, j, k11 + c[li, k, j11 - cllj, k, 111D
Table[ConCoef[1, j, kI, {j, 1, 3}, {k, 1, 3}] // MatrixForm
Table[ConCoef [2, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm
Table[ConCoef[3, j, k1, {j, 1, 3}, {k, 1, 3}] // MatrixForm
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We find that the only non-zero connection coefficients are

R . 1
" =TI, =—=
66 b r’
5 1
6 _
=
5 cot @
re. . =—
b r
o -1
¢’
3 cot @
r*ﬁéqg =— (1.7)
Part (c)
Recall that we have
AF = AF 4 TR AL (1.8)

In the Cartesian coordinate basis we have I';, = 0 and so A%, = A¥ | = 9, A*.

In the basis (€, €y, €,) we use the connection coefficients we have found in

(1.4) to find
OAT  9A?  9A? 1 1
Ak = A" 4= A’
& 8r+80+8¢+ (0+T+r)+ (0 + 0+ cot 0)
+ A% (0+0+0)

DAT  9A°  9A® 2 ,

0A?
Ao
Finally, in the basis (€7, €j, €, 43) we use the connection coefficients we have

found in ([1.7)) and obtain
i 9AT 19A° 1 040 L 11 ; cot 6
AkAzi - A" - - A0
+= or "7 a0 ' rsmo 0¢ * <0+r+r>+ <0+0+ T >
+ A% (0+0+0)

_aA*+1aA9+ 1 6A$+2A,ﬁ+cot9
- Or r 00 rsinf 0¢ r

10,45, 1 0 /. 6
2 (A7) rsin@%(“neA)Jr

= L0 epry 1 L0 g an) 4

r2 Or sin 6 90 (1.9)

yu

1 949
rsing 9¢ ’

(1.10)

which is the familiar divergence in spherical coordinates from (e.g.) Jackson.
Note that electromagnetism textbooks use an orthonormal basis, not a coordi-
nate basis, for spherical (and cylindrical) coordinates!
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Part (d)

Note that det g = r*sin? 0. If we take
€Ik = ek (1.11)
where

- +1 if (z,7,k) is an even permutation of (1,2,3),
¢k = ¢ —1 if (4,4, k) is an odd permutation of (1,2,3), (1.12)
0  otherwise

is the Levi-Civita tensor in the Cartesian coordinate basis (€, €y,€,). Note
that since we are in 3-dimensional space and there are no minus signs in the
metric, we do not pick up a minus sign when changing all covariant indices to
contravariant ones. We find

€123 = g“ggjggkeijk =r*sin? 0 aé'? = rtsin® 0 a. (1.13)
We want

€123 = +v/det g = r*sin#, (1.14)

so it follows that @ = 1/(r? sin ) and we have

1
and if (i,4,k) is an even permutation of (1,2,3),
€ ————— if (4,4, k) is an odd permutation of (1,2,3), (1.15)
r2sin 6
0 otherwise.
Part (e)
We have

(curl A)' = €75 Ay = €% (A — TV A) = €75 Ay — e7°TY A (1.16)

Note that in the basis (€, €y, €;), the connection coefficients are symmetric in
the last two indices and thus the second term above vanishes, because it is a
contraction of an anti-symmetric with a symmetric object. Thus for the basis
(€, €y, €y) we find

L1 (04, 04
(curl 4)7 = r2sind ( a0 ¢ ) ’
o1 (04, 04,
(curl A)" = r2sinf \ O0¢ or )’
1 049 0A
¢ _ _ r
(curl A) s ( 5 50 ) . (1.17)
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In the basis (€7, €, €;) the connection coefficients are not symmetric in the
last two indices and so we the second term in does not vanish. Also
note that the Levi-Civita tensor in the basis (€7, €;,€3) is the same as in 3-
dimensional Cartesian coordinates, because the metric is the identity. Thus we
find

0A; 0A;
1 é 1 4 cotHAA

(curl 4)7 = r 80 rsind oler + r ¢
_ ﬁ ((%(sin@A(Z)) _ ‘95;9) ,
- % (mlle 83/3 - ('i(TA@)> ’
(curlA)‘g = 04y 194, + 1Aé

or r 00 r

1/0 DA;
~ (&“(TAé) Y > ’

which is the usual curl in spherical coordinates found in electromagnetism text-
books (these textbooks, as we see, use an orthonormal basis and not a coordinate
basis).

(1.18)

Problem 2
Part (a)
First note that from the notes that g, = Axuy + I'pny. So then we can write
9°" == gaung"’ g™
== (Tapy + P#M)guﬂg/\a
— e, g _TP_ge (2.1)

Part (b)

In coordinate frame, T* ; = 19" (gva,p + GuB.a — Gap,y). in the case where

@ = p as in this problem, then the last two terms will cancel, leaving I'* 5 =
39%" gva,p- From the previous set, we have that %% = g*g,a,6 so then

s = %gf = % (log(=9)) 5 = (log(—g)%) 5 (2.2)

)
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Part (c)
We will use the results from parts (a) and (b) above.
guurauy _ —gaﬁ,g _ Fﬁ)\ﬁgAa by part (a)
= —gaﬂﬁ — (log(—g)%) )\g)“" by part (b)
=—g*, - (log(—g)%> g’e relabeling indices
=g, —(~9)? g™ (~g) %
v 1
=-——7(9""(-9)?)» (2.3)
(—9)2
Part (d)

Again, we will use the result from part (b) to find
A =A% 4+ T, AP

1 1
1\ 2 Aﬁ
LR

(—9)*A%) q (2.4)

:A‘J“’CK +

1
(—9)

N|=

Part (e)

Start with the definition of the Levi-Civita tensor as €,,p0 = v/—g€uvpo Where
we know that €y123 = 1 and each permutation results in a sign change. Now
let us expand out the covariant derivative and use the fact that for coordinate
basis that I =19 5s0 that

€uvporia = (V—9€uwpo),a — Fﬁua V' —Y€pvpos — Fﬁl/a\/ —9€uppo
- rﬁpa V _géﬂl’ﬁa - Fﬁaoz \% _géltVP/B (25)

First treat the case where u,v, p, o are not all unique. Then the first term
in Eq. vanishes. But what about the other terms? Suppose p = v. Then
the last two terms of Eq. vanish individually because of the antisymmetry
of Levi-Civita, and the remaining terms can be written

_Fﬁua V _géﬁwﬂf + Fﬁva V _géﬁﬂpa’ (26)

which is antisymmetric in p and v, and thus vanishes when p = v. Therefore
€uvposa = 0 if = v. The same argument can be used if any of the components
are equal, and shows that €., 5. = 0 if i, v, p, o are not all unique.
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So now consider the case where p, v, p,o are all unique. Examine the first
connection term in Eq. : —I# paN —9€pupo- The only value for 3 that can
make a nonzero contribution to this term is § = y, since any other value would
result in a duplicated index in the Levi-Civita tensor. So then this term becomes
—I* oV =9€uvpo (Where there is no sum on the y index). Similarly, the second
connection term is —I'V,, /= g€, po (Where there is no sum on the v index), and
so on. Summing the four connection terms therefore yields -r? P oV =9€p0
(where there is a sum on 3). Therefore, for u,v, p,o all unique,

€uvpoia = ((V *g),a - Fﬁﬁa V 79) é/tvpo (27)

From above in part (b), we can use Fﬁﬁa = (log(—g)(%)> and then the equa-

«
tion reduces to

o = (VDo = (0-0P) VT) e =0 (29

Problem 3

Part (a)

To write out the components of Vzu = 0, use the property of taking the covari-
ant derivative on a lower index,
Vgt = 0 =uug.q
=u® (uﬁva - F’yﬁau’)’)
_dug
)
which is the parallel transport equation for .

—T7 g uu® =0 (3.1)

Part (b)

To show this is equivalent to the geodesic equation for vector components, start
with the 1-form geodesic equation and manipulate it into the form of the vector
geodesic equation we are given. Specfically,

du# du#

= hub I gouyu® =—=gup + 00" gus. — 17 g usu® =
dA A

_du¥

)

dut L,V ) 1 Y
:Wg#ﬁ +utu (gpﬁ]-—‘ B +955P ,ul/) -T ﬂau’Yu

_dut
T dA

gus + v’ (Lppy + L) — T guqu® =

@

Gup + u(su”I“;ﬂl, + u“u”gggf“sw =T uyu® (3.2)

Kevin Barkett, Jonas Lippuner, and Mark Scheel October 28, 2015



Solutions Ph 236a — Week 5 Page 9 of 10

where in going from line 1 to line 2 the relation g,3, = I'y8, + I'gu was used
and then the definition of I3, = gm;F‘SBV was used to get to line 3. On the last
line of the equation above, note that the second and last terms cancel after a
relabeling of indicies. After that, what’s left is

dut y dut o
Ty us T uu ggsT?,, = 9n T gupTH qu'u

dut
=9up (:)\ + I‘Hvauvua>
=0 (3.3)

as the equation in the parenthesis is simply the the geodesic equation for vectors.
Note that the geodesic equation for vectors is not just the ”naively raised”
geodesic equation for 1-forms.

Problem 4

Part (a)

A geodesic with tangent vector @ is spacelike, timelike or null according to
whether ¢ -4 is > 0,< 0,= 0. But ¢ - @ is conserved along the geodesic since
Vz(@ - @) = 24 - Vg = 0 since the geodesic equation is Vg = 0.

Part (b)

The general case gives Euler-Lagrange equation, using the definitions of F)y
and & in the problem statement

) OF _doF
Jxr ds 0%

_OF 9y d (OF Oy

_&/%_Cls<8y@¢)

08y _dyd (0F) 0rd (3) o
Oy 0r Oxds \ Oy 0y ds \ Ot

Now the partial can be reexpressed in the following manner

d (OF 0 Jdyd 0xrd 0z 0 oF 0?F Oy
— =)=l tamat Tt ) ) =57 (42
ds \ Oy 0s 0s0y 0sdxr 0sdi y y? 0s

where the fact that F'(y) only explicitly depends on y to produce the last equal-
ity. Then the Euler-Lagrange equation can be simplified as

Oy 0*°F 0y OF {634_ d (8@/)}

95 02 0s "oy |ox ds \az )| " (4.3)
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Now, because s is an affine parameter % = 0 and since F' is a monotonic
function of y, its derivative is nonzero, or %—F # 0. The equation then becomes
Yy
Oy O*F or |0 d (0
— )+ |- (Y
0z Oy? Oy |0x ds \ 0z
_OoF [0y _d (dy
Oy |0z ds \ 0%
dy d [0y
0=—"—-——|= 4.4
= Or ds <3x> (44)

which gives the Euler-Lagrange equation for geodesics we are looking for.

Problem 5

Let v* = Sa'37 My, then the left-hand side is

(S0 M7 ) = 0%y =%, + 1%, 0"
= (8%, My") 0 +T%,, 8" MY
=859 Mg+ 8% MY +T%,,5" M, (5.1)
Expanding the right-hand side yields
Saﬁv;a Mﬁy + Saﬂv Mﬁv;a
= M, (8% +T°,, 8" +18, 8§ —T* §°))
+ 8% (M, =T, M;" + 17, My°)
=9 M" + 85 M 41,5 M
+(T7,, 8% MY —T%,5% M)
+ (=T 8% MY + 17,8 My©)
=9 M" + 5 MY 417,57 MY +(0) +(0), (5.2)

since the terms inside the parenthesis exactly cancel because all indices are
dummy indices. Thus we have shown that

(S0 MY )i = S, MY + S0 MY . (5.3)

O
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