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Problem 1

Part (a)

In Homework 2 we found that

~er =
∂

∂r
= sin θ cosφ~ex + sin θ sinφ~ey + cos θ ~ez

~eθ =
∂

∂θ
= r cos θ cosφ~ex + r cos θ sinφ~ey − r sin θ ~ez,

~eφ =
∂

∂φ
= −r sin θ sinφ~ex + r sin θ cosφ~ey, (1.1)

and the metric for these basis vectors is

gij =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (1.2)

Since (~er, ~eθ, ~eφ) is a coordinate basis, the connection coefficients are given
by

Γijk =
1

2
gil(gjl,k + glk,j − gjk,l). (1.3)

We use Mathematica to do all the tedious calculations. First we define the
vector of variable x, the metric g, and its inverse gInv.

x = {r, t, p}

g = {{1, 0, 0}, {0, r^2, 0}, {0, 0, r^2 Sin[t]^2}}

gInv = Inverse[g]

Then we define the function ConCoef that calculates Γijk according to (1.3).

ConCoef[i_, j_, k_] := 1/2 Sum[gInv[[i, l]](D[g[[j, l]], x[[k]]]

+ D[g[[l, k]], x[[j]]] - D[g[[j, k]], x[[l]]]), {l, 1, 3}]

We then evaluate Γijk with the Table function.

Table[ConCoef[1, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm

Table[ConCoef[2, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm

Table[ConCoef[3, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm
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We find that the only non-zero connection coefficients are

Γrθθ = −r,
Γrφφ = −r sin2 θ,

Γθrθ = Γθθr =
1

r
,

Γθφφ = − sin θ cos θ,

Γφrφ = Γφφr =
1

r
,

Γφθφ = Γφφθ = cot θ. (1.4)

Part (b)

Since gij = δij in an orthonormal basis, all the metric derivatives are 0 and so
the connection coefficients are given by

Γî
ĵk̂

=
1

2
gîl̂(cl̂ĵk̂ + cl̂k̂ĵ − cĵk̂l̂) =

1

2
(cî

ĵk̂
+ cî

k̂ĵ
− c î

ĵk̂
)

=
1

2
(c k̂
îĵ

+ c ĵ

îk̂
− c î

ĵk̂
), (1.5)

since gîĵ = δîĵ and so we can raise and lower indices as we please. In Homework
4 we found that the only non-zero commutation coefficients are

c θ̂
r̂θ̂

= −c θ̂
θ̂r̂

= −1

r
,

c φ̂

r̂φ̂
= −c φ̂

φ̂r̂
= −1

r
,

c φ̂

θ̂φ̂
= −c φ̂

φ̂θ̂
= − cos θ

r sin θ
. (1.6)

We enter this information in Mathematica as c.

c = {{{0, 0, 0}, {0, -1/r, 0}, {0, 0, -1/r}},

{{0, 1/r, 0}, {0, 0, 0}, {0, 0, -Cos[t]/(r Sin[t])}},

{{0, 0, 1/r}, {0, 0, Cos[t]/(r Sin[t])}, {0, 0, 0}}}

And we compute the connection coefficients as follows.

ConCoef[i_, j_, k_] :=

1/2 (c[[i, j, k]] + c[[i, k, j]] - c[[j, k, i]])

Table[ConCoef[1, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm

Table[ConCoef[2, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm

Table[ConCoef[3, j, k], {j, 1, 3}, {k, 1, 3}] // MatrixForm
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We find that the only non-zero connection coefficients are

Γr̂
θ̂θ̂

= Γr̂
φ̂φ̂

= −1

r
,

Γθ̂
r̂θ̂

=
1

r
,

Γθ̂
φ̂φ̂

= −cot θ

r
,

Γφ̂
r̂φ̂

=
1

r
,

Γφ̂
θ̂φ̂

=
cot θ

r
. (1.7)

Part (c)

Recall that we have

Ak;k = Ak,k + ΓkikA
i. (1.8)

In the Cartesian coordinate basis we have Γijk = 0 and so Ak;k = Ak,k = ∂kA
k.

In the basis (~er, ~eθ, ~eφ) we use the connection coefficients we have found in
(1.4) to find

Ak;k =
∂Ar

∂r
+
∂Aθ

∂θ
+
∂Aφ

∂φ
+Ar

(
0 +

1

r
+

1

r

)
+Aθ (0 + 0 + cot θ)

+Aφ (0 + 0 + 0)

=
∂Ar

∂r
+
∂Aθ

∂θ
+
∂Aφ

∂φ
+

2

r
Ar + cot θ Aθ

=
1

r2
∂

∂r

(
r2Ar

)
+

1

sin θ

∂

∂θ

(
sin θ Aθ

)
+
∂Aφ

∂φ
. (1.9)

Finally, in the basis (~er̂, ~eθ̂, ~eφ̂) we use the connection coefficients we have

found in (1.7) and obtain

Ak̂
;k̂

=
∂Ar̂

∂r
+

1

r

∂Aθ̂

∂θ
+

1

r sin θ

∂Aφ̂

∂φ
+Ar̂

(
0 +

1

r
+

1

r

)
+Aθ̂

(
0 + 0 +

cot θ

r

)
+Aφ̂ (0 + 0 + 0)

=
∂Ar̂

∂r
+

1

r

∂Aθ̂

∂θ
+

1

r sin θ

∂Aφ̂

∂φ
+

2

r
Ar̂ +

cot θ

r
Aθ̂

=
1

r2
∂

∂r

(
r2Ar̂

)
+

1

r sin θ

∂

∂θ

(
sin θ Aθ̂

)
+

1

r sin θ

∂Aφ̂

∂φ
, (1.10)

which is the familiar divergence in spherical coordinates from (e.g.) Jackson.
Note that electromagnetism textbooks use an orthonormal basis, not a coordi-
nate basis, for spherical (and cylindrical) coordinates!
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Part (d)

Note that det g = r4 sin2 θ. If we take

εijk = aε̂ijk, (1.11)

where

ε̂ijk =

 +1 if (i, j, k) is an even permutation of (1,2,3),
−1 if (i, j, k) is an odd permutation of (1,2,3),
0 otherwise

(1.12)

is the Levi-Civita tensor in the Cartesian coordinate basis (~ex, ~ey, ~ez). Note
that since we are in 3-dimensional space and there are no minus signs in the
metric, we do not pick up a minus sign when changing all covariant indices to
contravariant ones. We find

ε123 = g1ig2jg3kε
ijk = r4 sin2 θ aε̂123 = r4 sin2 θ a. (1.13)

We want

ε123 = +
√

det g = r2 sin θ, (1.14)

so it follows that a = 1/(r2 sin θ) and we have

εijk =


+

1

r2 sin θ
if (i, j, k) is an even permutation of (1,2,3),

− 1

r2 sin θ
if (i, j, k) is an odd permutation of (1,2,3),

0 otherwise.

(1.15)

Part (e)

We have

(curlA)i = εijkAk;j = εijk
(
Ak,j − ΓlkjAl

)
= εijkAk,j − εijkΓlkjAl. (1.16)

Note that in the basis (~er, ~eθ, ~eφ), the connection coefficients are symmetric in
the last two indices and thus the second term above vanishes, because it is a
contraction of an anti-symmetric with a symmetric object. Thus for the basis
(~er, ~eθ, ~eφ) we find

(curlA)r =
1

r2 sin θ

(
∂Aφ
∂θ
− ∂Aθ

∂φ

)
,

(curlA)θ =
1

r2 sin θ

(
∂Ar
∂φ
− ∂Aφ

∂r

)
,

(curlA)φ =
1

r2 sin θ

(
∂Aθ
∂r
− ∂Ar

∂θ

)
. (1.17)
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In the basis (~er̂, ~eθ̂, ~eφ̂) the connection coefficients are not symmetric in the

last two indices and so we the second term in (1.16) does not vanish. Also
note that the Levi-Civita tensor in the basis (~er̂, ~eθ̂, ~eφ̂) is the same as in 3-
dimensional Cartesian coordinates, because the metric is the identity. Thus we
find

(curlA)r̂ =
1

r

∂Aφ̂
∂θ
− 1

r sin θ

∂Aθ̂
∂φ

+
cot θ

r
Aφ̂

=
1

r sin θ

(
∂

∂θ
(sin θ Aφ̂)−

∂Aθ̂
∂φ

)
,

(curlA)θ̂ =
1

r sin θ

∂Ar̂
∂φ
−
∂Aφ̂
∂r
− 1

r
Aφ̂

=
1

r

(
1

sin θ

∂Ar̂
∂φ
− ∂

∂r
(rAφ̂)

)
,

(curlA)φ̂ =
∂Aθ̂
∂r
− 1

r

∂Ar̂
∂θ

+
1

r
Aθ̂

=
1

r

(
∂

∂r
(rAθ̂)−

∂Ar̂
∂θ

)
, (1.18)

which is the usual curl in spherical coordinates found in electromagnetism text-
books (these textbooks, as we see, use an orthonormal basis and not a coordinate
basis).

Problem 2

Part (a)

First note that from the notes that gλµ,γ = Λλµγ + Γµλγ . So then we can write

gαβ,γ =− gλµ,γgµβgλα

=− (Γλµγ + Γµλγ)gµβgλα

=− Γαµγg
µβ − Γβλγg

λα (2.1)

Part (b)

In coordinate frame, Γµαβ = 1
2g
µν(gνα,β + gνβ,α − gαβ,ν). in the case where

α = µ as in this problem, then the last two terms will cancel, leaving Γααβ =
1
2g
ανgνα,β . From the previous set, we have that

g,β
g = gανgνα,β so then

Γααβ =
1

2

g,β
g

=
1

2
(log(−g)),β =

(
log(−g)

1
2

)
,β

(2.2)
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Part (c)

We will use the results from parts (a) and (b) above.

gµνΓαµν = −gαβ,β − Γβλβg
λα by part (a)

= −gαβ,β −
(

log(−g)
1
2

)
,λ
gλα by part (b)

= −gαν,ν −
(

log(−g)
1
2

)
,ν
gνα relabeling indices

= −gαν,ν − (−g)
1
2
,νg

αν(−g)−
1
2

= − 1

(−g)
1
2

(gαν(−g)
1
2 ),ν (2.3)

Part (d)

Again, we will use the result from part (b) to find

Aα;α =Aα,α + ΓαβαA
β

=Aα,α +
1

(−g)
1
2

((−g)
1
2 ),βA

β

=
1

(−g)
1
2

((−g)
1
2Aα),α (2.4)

Part (e)

Start with the definition of the Levi-Civita tensor as εµνρσ =
√
−gε̂µνρσ where

we know that ε̂0123 = 1 and each permutation results in a sign change. Now
let us expand out the covariant derivative and use the fact that for coordinate
basis that Γαβγ = Γαγβ so that

εµνρσ;α = (
√
−gε̂µνρσ),α − Γβµα

√
−gε̂βνρσ − Γβνα

√
−gε̂µβρσ

− Γβρα
√
−gε̂µνβσ − Γβσα

√
−gε̂µνρβ (2.5)

First treat the case where µ, ν, ρ, σ are not all unique. Then the first term
in Eq. (2.5) vanishes. But what about the other terms? Suppose µ = ν. Then
the last two terms of Eq. (2.5) vanish individually because of the antisymmetry
of Levi-Civita, and the remaining terms can be written

−Γβµα
√
−gε̂βνρσ + Γβνα

√
−gε̂βµρσ, (2.6)

which is antisymmetric in µ and ν, and thus vanishes when µ = ν. Therefore
εµνρσ;α = 0 if µ = ν. The same argument can be used if any of the components
are equal, and shows that εµνρσ;α = 0 if µ, ν, ρ, σ are not all unique.
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So now consider the case where µ, ν, ρ, σ are all unique. Examine the first
connection term in Eq. (2.5): −Γβµα

√
−gε̂βνρσ. The only value for β that can

make a nonzero contribution to this term is β = µ, since any other value would
result in a duplicated index in the Levi-Civita tensor. So then this term becomes
−Γµµα

√
−gε̂µνρσ (where there is no sum on the µ index). Similarly, the second

connection term is −Γννα
√
−gε̂µνρσ (where there is no sum on the ν index), and

so on. Summing the four connection terms therefore yields −Γββα
√
−gε̂µνρσ

(where there is a sum on β). Therefore, for µ, ν, ρ, σ all unique,

εµνρσ;α =
(

(
√
−g),α − Γββα

√
−g
)
ε̂µνρσ (2.7)

From above in part (b), we can use Γββα =
(

log(−g)(
1
2 )
)
,α

and then the equa-

tion reduces to

εµνρσ;α =

(
(
√
−g),α −

(
log(−g)(

1
2 )
)
,α

√
−g
)
ε̂µνρσ = 0 (2.8)

Problem 3

Part (a)

To write out the components of ∇~uũ = 0, use the property of taking the covari-
ant derivative on a lower index,

∇~uũ = 0 =uαuβ;α

=uα(uβ,α − Γγβαuγ)

=
duβ
dλ
− Γγβαuγu

α = 0 (3.1)

which is the parallel transport equation for ũ.

Part (b)

To show this is equivalent to the geodesic equation for vector components, start
with the 1-form geodesic equation and manipulate it into the form of the vector
geodesic equation we are given. Specfically,

duµgµβ
dλ

− Γγβαuγu
α =

duµ

dλ
gµβ + uµuνgµβ,ν − Γγβαuγu

α =

=
duµ

dλ
gµβ + uµuν(Γµβν + Γβµν)− Γγβαuγu

α =

=
duµ

dλ
gµβ + uµuν(gµδΓ

δ
βν + gβδΓ

δ
µν)− Γγβαuγu

α

=
duµ

dλ
gµβ + uδu

νΓδβν + uµuνgβδΓ
δ
µν − Γγβαuγu

α (3.2)
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where in going from line 1 to line 2 the relation gµβ,ν = Γµβν + Γβµν was used
and then the definition of Γµβν = gµδΓ

δ
βν was used to get to line 3. On the last

line of the equation above, note that the second and last terms cancel after a
relabeling of indicies. After that, what’s left is

duµ

dλ
gµβ + uµuνgβδΓ

δ
µν =

duµ

dλ
gµβ + gµβΓµγαu

γuα

=gµβ

(
duµ

dλ
+ Γµγαu

γuα
)

=0 (3.3)

as the equation in the parenthesis is simply the the geodesic equation for vectors.
Note that the geodesic equation for vectors is not just the ”naively raised”
geodesic equation for 1-forms.

Problem 4

Part (a)

A geodesic with tangent vector ~u is spacelike, timelike or null according to
whether ~u · ~u is > 0, < 0,= 0. But ~u · ~u is conserved along the geodesic since
∇~u(~u · ~u) = 2~u · ∇~u~u = 0 since the geodesic equation is ∇~u~u = 0.

Part (b)

The general case gives Euler-Lagrange equation, using the definitions of F, y
and ẋ in the problem statement

0 =
∂F

∂x
− d

ds

∂F

∂ẋ

=
∂F

∂y

∂y

∂x
− d

ds

(
∂F

∂y

∂y

∂ẋ

)
=
∂F

∂y

∂y

∂x
− ∂y

∂ẋ

d

ds

(
∂F

∂y

)
− ∂F

∂y

d

ds

(
∂y

∂ẋ

)
(4.1)

Now the partial can be reexpressed in the following manner

d

ds

(
∂F

∂y

)
=

(
∂

∂s
+
∂y

∂s

∂

∂y
+
∂x

∂s

∂

∂x
+
∂ẋ

∂s

∂

∂ẋ

)(
∂F

∂y

)
=
∂2F

∂y2
∂y

∂s
(4.2)

where the fact that F (y) only explicitly depends on y to produce the last equal-
ity. Then the Euler-Lagrange equation can be simplified as

−∂y
∂ẋ

∂2F

∂y2
∂y

∂s
+
∂F

∂y

[
∂y

∂x
− d

ds

(
∂y

∂ẋ

)]
= 0 (4.3)
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Now, because s is an affine parameter ∂y
∂s = 0 and since F is a monotonic

function of y, its derivative is nonzero, or ∂F
∂y 6= 0. The equation then becomes

0 =− ∂y

∂ẋ

∂2F

∂y2
(0) +

∂F

∂y

[
∂y

∂x
− d

ds

(
∂y

∂ẋ

)]
=
∂F

∂y

[
∂y

∂x
− d

ds

(
∂y

∂ẋ

)]
⇒ 0 =

∂y

∂x
− d

ds

(
∂y

∂ẋ

)
(4.4)

which gives the Euler-Lagrange equation for geodesics we are looking for.

Problem 5

Let vα = SαβγM
γ

β , then the left-hand side is

(SαβγM
γ

β );α = vα;α = vα,α + Γαµαv
µ

= (SαβγM
γ

β ),α + ΓαµαS
µβ
γM

γ
β

= Sαβγ,αM
γ

β + SαβγM
γ

β ,α + ΓαµαS
µβ
γM

γ
β . (5.1)

Expanding the right-hand side yields

Sαβγ;αM
γ

β + SαβγM
γ

β ;α

= M γ
β (Sαβγ,α + ΓαµαS

µβ
γ + ΓβναS

αν
γ − ΓλγαS

αβ
λ)

+ Sαβγ (M γ
β ,α − ΓδβαM

γ
δ + ΓγεαM

ε
β )

= Sαβγ,αM
γ

β + SαβγM
γ

β ,α + ΓαµαS
µβ
γM

γ
β

+ (ΓβναS
αν
γM

γ
β − ΓδβαS

αβ
γM

γ
δ )

+ (−ΓλγαS
αβ
λM

γ
β + ΓγεαS

αβ
γM

ε
β )

= Sαβγ,αM
γ

β + SαβγM
γ

β ,α + ΓαµαS
µβ
γM

γ
β + (0) + (0), (5.2)

since the terms inside the parenthesis exactly cancel because all indices are
dummy indices. Thus we have shown that

(SαβγM
γ

β );α = Sαβγ;αM
γ

β + SαβγM
γ

β ;α . (5.3)
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