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Problem 1

Part (a)

We are given that the first law of thermodynamics for a relativistic fluid can be
written as

d(pV) = —PdV +TdS (1.1)

which uses the fact that the total number of baryons, N, is conserved. That
means we can write some of the quantities in terms of the number of baryons
and the density of baryons. Let n be the baryon number density. Then we can
write the volume and entropy as

V=N/n S =sN (1.2)
where s is the entropy per baryon. Then we can rewrite the first law as

d (/Z) —_Pd <Z) +Td(Ns) (1.3)

but since N is constant, we can divide it out.

d(%) :—P<Tll)+Tds

dp_pdn _pa (90 L g
n n2 n?
d
dp =(P + p) == + nTds (1.4)
n

which is the desired result.

Part (b)
We are given that for a perfect fluid that
Ty = (P + p)uyuy, + Py (1.5)

and that the conservation of baryons is (nu®) , = 0. In the fluid’s rest frame,
write out the 0 component of the equation of motion.

%, =P,g% + Pg", + (P + p) ,u"u’+
+ (P +p)u”u’ +u’,u’] =0 (1.6)

Now we know that g"”,, = 0 in general, and also that in the rest frame u =1
and

1
b, = —Uaua; = _§(uozua);u =0 (17)
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so that the equation of motion reduces to

d d
=——P+ —(P P v 1.
0= 2P+ (P4 )+ (P4 o, (18)
Now let the baryon number density in the fluid’s rest frame be n. Now the

number-flux vector of baryons is conserved,

(nu®).a = 0=nu” +nu”,, = diz +nu”,
1dn

v o=-—=2 1.9

uy = (1.9)

This equation can be used to eliminate u”,, in the equation of motion to give

v

dp _ PHpdn
dt n dt

(1.10)

If we compare this to the first law of thermodynamics from Part (a), it must be

that % = 0 which is the condition for isentropy. Therefore the perfect fluid is

isentropic.

Problem 2

Part (a)

For each case, we need to find the parameter value which evaluates the curve
to the point Py = (0,1,0) and then compute the derivative of the function and
evaluate at that point.

x*(AN) = (A 1,N)

First, set (0,1,0) = (A, 1,)\) and we can see that here A\ = 0. Now

fa*\) =22 =2 +22 =X 214+ =222 -1 (2.1)
Now take the derivative with respect to A and evaluate at A =0

daf

|, Alr=o =0 (2.2)

2?(§) = (sing, cos§,§) :
Follow the same procedure as above to see that

(siné, cos€,€) = (0,1,0) = £ =0

f@S(€) =2 — > + 22 =sin€? —cos€? + €62 =1 —2cos€? + €2

df

3 620:4sin§cos§+2§|/\:0:0 (2.3)
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a? (&) = (sinh p, cosh p, p + p®) :

(sinh p, cosh p, p + p*) = (0,1,0) = p=0
f(zP(p)) = 2* — y* + 2% =sinh p? — cosh p? + (p + p*)?
=pS +2pt +p? —1
df

= = 6p° +8p° +2p|, =0 (2.4)
dp|,—o

Part (b)

Computing the components of the vectors d/dA,d/d€, and d/dp is the same
thing as asking for the directional derivatives along each of the curves evaluated

at the same point as in part (a). The directional derivative at a point Py is
defined as

(@), (%), (@) &

So in the case we are considering with Catesian coordinates (and implied Minkowski

metric)
d dx d dy d dz d
—) = (E 4= 2.6
(d/\)P (d)\dx+d)\dy+d)\dz)P (2:6)
0 0

Now apply this to each of the curves given in the problem

d d d i d
Y (Lo L) L gy
(dA)A_O (d:c+ +dz)/\_0 i 27)

z
d d d d d d
L R N N LI [ AL 3
(d£>5_0 (Cosgdx Smgderdz)&_O wtsn @8
d d d d d d
LY —(eoshpL —sinhp L+ (1432 L) =244 (o
(dp>p=0 (oo —sihpgy + 03T ) = v g 09
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Problem 3

Part (a)

Let Vf : M — R where M is the manifold. Let’s expand all of the terms
(dropping the vector arrows for convienence),

U, [V, W] =UVW(f))-UWV(f)-VIWU)))+WVU))

[V, W, U]l =V(W(U(f)) = VUW(f))) = WUV (f) +UWV(f))

WU V] =W(UV(f)) =WV U)) - UVIW())+ VUMW)
(3.1)

Sum up the above 3 equations and find that all of the terms cancel. Thus we
have [U, [V, W]] + [V, [W,U]] + [W,[U,V]] =0
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Part(b)

WVIWHD) e be denote Like below as O_A('f)"’ "f—(ﬁ)%%ﬁ
£ s K which meons these

$ (Sood Ler,, Tl 2009) R
Wviwio) s alo a vector ct O, cenoted by OA

Soo {viw ()

A

Simi lewy we have BB = WW(V()

O = Viwrue))
= wiviwio))
O = Viuw(n)
0F WHLEVE)))

"

A Y TuLy,wil = G -3b - tiD = g+ led ee )
[yrwan] - 3 -iE G <35 = EC+FB (bue)

b 2 A = 3

LWIUA1) =R -gb ~04 40t = DF +AE (hlack )

o Wil e back

o bagin with .

C No mester which paiat

v t ‘ bve .
ot e oo hoseh_abre

I

Mewg  dhis vewop  Ynished.
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Part(c)
First, let’s do this the easy way. If e, are basis vectors,
leasep] = copeqs (3.2)
SO
[ex, [eas es]] = [ex, cap’er] = Cap” sey + Cag’ [exs €4]

_ .7 Y. P
=Cag AEy T Cag Cry €p
= (Caﬁw,k + Caﬁpc)\p’y) €ys (3.3)

where ¢, 5" | (or equivalently dic,,") means ey acting on c,,”, i.e. the direc-

tional derivative along ey of the scalar c,, 57.

Then, the Jacobi identity says that the sum of (3.3]) for cyclic combinations
of A\, a, B is zero. You get

caﬁv)\ + CBAW,a + c/\avﬁ + coéﬂpckp7 + cﬁ)\”cap”Y + c/\apcﬂpV =0. (3.4)

O

It is instructive to derive this the hard way, using full vector components.
Define the vectors as follows,

U=u%, V=0lcsg V=ue, (3.5)

where each of the e, are basis vectors. Then the commutator between two
vectors can be written as

[V, W] = [vPes,wes] = vPuw[es, e0] + vPe 05w — wesd,v®
= U’Bw”cﬁowev + (V7 0pw” — w7 yv7) ey,
= (vﬁw”c507 + 070, wY — w"&,v'y> e,
=Qey, (3.6)

where in the last line I defined Q7 as a shortcut. The commutator between
three vectors is

U, [V, W]] = [u“eq,Q7eq] = (uﬁQ”cﬂg'y +u0,Q" — Q"@Uu'y) €y,
(3.7)

where I have repeated the steps in Eq. (3.6). Now let’s evaluate the derivative
of 7, which we need in the above equation:

Q" = cﬁaw(waa,\vﬁ + 0P ow®) + vﬂuzo“@,\c@o;y
+ 8,\’Uﬁaﬁwv — akwﬁa(-ﬂﬂ + Uﬁa)\aﬂw’y — wﬁa,\ag’l}’Y (3.8)
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Then
(@, [U, [V, W]]) = < Puwes,” + v 0o — waaaw) (NN
+u? (cﬁa‘* (w*ov? + vP o w®) + Uﬁwo‘a,\cﬁav
+ \POpwY — 0\wP O + vP9NIpwT — wPONsvY) . (3.9)

To evaluate the Jacobi identity, we sum the previous equation for cyclic combi-
nations of U, V', and W, and set the result to zero. This is straightforward, but
a bit tedious. When we do this, we get

0 = u*vPw? (caﬁi)\ + cmn’ya + cmﬂyﬁ + caﬁpcApv + cmpco(p7 + cmpcmﬂ)
—( Buedyw? + vPw*onu” + wlu ‘*aﬂﬂ) cs A

(03
+ urP 9505w 4 v P OrdsuY + wru 959507
— P 950507 — v P ONIgwT — w P DrDsu”
+ (12 terms with cﬂ&V times 1st derivs of u, v, or w)

+ (12 terms with no c4,” and two Ist derivs of u, v, or w).
(3.10)

The terms on the last two lines on Eq. , which I didn’t write out explicitly,
contain either one or two first derivatives of u, v, or w. These terms cancel out
(Just write them out, there are 24 of them. Each term appears twice, but with
opposite sign, taking into account the fact that cﬁ(j is antisymmetric on the
first two indices). However, we need a bit more work to simplify the remaining
lines. Let’s first look at the two terms that have a second derivative of w: the
first term on the 3rd line of Eq. , and the second term on the 4th line of
Eq. . These terms can be written

’\vﬁé%ﬁgw” — uﬁaAaﬁm = u P (0x0sw” — 00 w")

= a” s

= uMPo, N w”
P

= u)‘vﬁcwpa w?. (3.11)

Note that this expression is the same as (minus) the first term on line 2 of
Eq. , so it cancels out that term. Likewise, the two terms on line 3 and
4 of Eq. (3.10) that have second derivatives of u cancel out another term on
line 2 of , and the terms that have second derivatives of v cancel out
the remaining term on line 2. So in the end, only the first line of Eq.
survives, and this is line is the same as Eq. since it must hold for arbitrary
u, v, and w. O
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Problem 4

Part (a)

Expanding the derivative yields

9 =(9"9" gu) = 9" 19" g + 9" 9" L Gur + 99" G

- gwwtgﬁu + gyﬁ,vaau + guagyﬁglw,v
=g+ 9% +9"9" g

= - gaﬂ,v = 9" 9" g, (4.1)
where we have used the fact that g”ﬁgw = gﬁu = 6'6}“ which was shown on the
second homework. Thus we have shown the desired result. O
Part (b)

Suppose we have a matrix C' = C(e), for small €, we can Taylor-expand C'(e)
around € = 0. We find

Cle) = C(0) + ¢ a;—o +O0(?) = A+ B+ O(é?), (4.2)
€ le=0
where we have defined A = C(0) and B = % |€:O. To first order in €, we find
det(C(¢)) = det(A + eB) = det(A(1 + €A™' B))
= det(A)det(1 + eA™'B) = det(A)(1 + etr(A™'B))

= det(A) + € det(A)tr(A~'B). (4.3)
And so
d(det(C(e))) ~ lim det(C(e)) — det(C(0))
de o €0 €

— det(C(0))tr <[C(0)]_1 %

€_0> ) (4.4)

since A = C(0) and B = ¢ ._o- Because we can always shift the argument of
the function, we can write the above as

(det C)' = det C'tr(C~1C"). (4.5)
Thus for the matrix C' = g, we have
9o = 9t1(9"" gur,a) = 99" Gupa = 99" G000 (4.6)

because C~! = ¢g", 9,C = g,x ., matrix multiplication is contraction over
inner indices (i.e. C719,C = g"gyxr.a), taking the trace is contracting the
indices of a matrix (i.e. tr(4) = A* ), and finally we used symmetry of g, in
the last equality. O
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Problem 5

Part (a)
On Homework 2 we found that the 1-forms
dr = sin cos ¢ dz + sin O sin ¢ dy + cos 0 dz,

~ 0 ~ 0 si ~ inf -
(w:cos cos¢dx+cos sm¢dy_s1n i,

r
sing - cos¢ =
— dx -
rsin 6 rsin @

dp = —

are dual to the basis vectors

e, = i sin 6 cos ¢ €, + sinfsin¢ €, + cosf €,
€y = 90— rcosfcos e, +rcosfsing e, —rsinb e,
€p = % = —rsinfsin¢é, + rsinf cos ¢ €.

Denote €., €y, €, by €;, and denote &, &, é'q; by €;. We have

where
. 1 0 0
LZ% = ({0 1/r 0
0 0 1/(rsinf)

Denote dr, df, d¢ by dz’, and define

& = Lida,

where
. 1 0 0
L', =10 r 0
0 0 rsinf
We find that

(@', &) = (Lde’, I.8)) = ;17 (da', &) = L1 6% = L L',
100

_ s
=4,

Il
o o
O =
— O

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.7)
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where we used the fact that dz’ are dual to €;. We have thus shown that the
basis 1-forms @&'defined in (5.5) are dual to the orthonormal basis vectors €.
Evaluating (5.5)) yields

@" = dr = sinf cos ¢ dz + sin O sin ¢ dy + cos 0 dz,

& = rdo = cos 0 cos ¢ dz + cosﬁsin(bciy —sinfdz,
T rsinfdp = —sin ¢ dz + cos ¢ dy. (5.8)

Part (b)

Recall that c%j_fC is defined as

ooy ko
[ew j] - ;j k> (5 9)
where
8,7 = 05,0z, — 05,05, = & — &8, (5.10)
Note that [€;, é’;] is antisymmetric and so cgiif is antisymmetric. Hence C%j'];. =0
for i = j and ek = —c. k. Thus
1] J?
0=cp" =cpil = .l =c,"=c,.l=c.P=c."=c.'=c.? (5.11)

e en 0 (10) 10 (0
[RRCER T or \rod r 00 \ Or

10 1 02 1 92 1
_ 1o 1 St 1o 12
r2 00 + rordd r 000r o (5.12)
which means that
Cog = —Cp =0,
; ;1
6 _ 6 _
€ = "% T T
)l =—c, " =0. (5.13)
We also find
CACA RNy (S S W S Ay (0
el e " 9r \rsinf 0¢ rsin® d¢ \ Or
1 0 1 0?2 1 02 1

" 2sinf ¢ + rsing ordg  rsinf 0¢or € (5.14)
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which gives

T P
7o = G =0
6 _ 6 _
c’f‘(l; __Cd;'ﬁ —O,
A ;1
o _ _ . b _ _ =
Cg = Cgp =T (5.15)

Finally, we obtain

€; éﬁ]—é&éﬂ_éﬂé’h—lg 1 9y 1 9 /(19
O 7¢l T "0 T 2 99 \ rsinf 0o rsin@ 8¢ \ r 90
cosf 0O 1 9? 1 0? cosf

=— — - =— ., (5.16
r2sin® 6 O * r2sinf 900¢  r2sin dpol rsing % (5-16)
and so
C%T = fc(z)ar =0,
o _ o _
Cop = ~Cop = 0,
b_ b cos
oo = Cop = g (5.17)

To show that cl-jk is not a tensor, consider its transformation under a change
of basis. We find

i€ = 16, &) = 05, 0) = 0;0; — 0;0;

= LLo,L7-0; — [7-9; L0,

K3 J 7 K3

= Liz (Ljﬁaj + Lji(‘)i(?j) — Lj3 (Liaj(?i + LZ;8]81>

= L1 5(0:0; — 0;00) + (L4L, — 115 )

= DL e o + (D5LY, — L% ) LR

= DL Dy ey + (L‘;Lkﬁ ~ Lk, j) L*.é, (5.18)
and thus
C

Gt = DL LR 4 (L5Lh, = DL% ) LR, (5.19)

which means that the commutation coefficient cijk does not transform like a
tensor because of the extra second term.

Alternatively, one can use the following (simpler) argument. In some bases

(e.g. (€z, €y, €-)) it is obvious that all commutation coefficients vanish, i.e. cijk =
0. If cijk were a tensor, then we would have
ot = L1 L e, f =0, (5.20)

in all other coordinate systems. But we have seen that this is not true in the
orthonormal spherical coordinate system, thus cijk is not a tensor.
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Problem 6

Let L%, be the transformation matrix from the unbarred into the barred frame,
ie. €5 = L%;€4. Then we find

[e3%

7 6 =Vs@y—= Vi 2, (L%¢Ca) = L3V, (L% 580), (6.1)

where we have used linearity of the covariant derivative. Using the chain rule,
we get

758 = 175 (Ve, L%0)ea + L3V e,8a) (6.2)

where we have treated L“ like a scalar field, because it is not a tensor in the
sense that it transforms like a tensor under a coordinate change. Therefore,

Ve, L% = 05, L% = L% 4, (6.3)
and so
I 8 = L5 (L% 58 + L0GT7 8 )
_ 78 1a 3 B ra v >
= L EL d,ﬁL’yae’V + L BL &F’yaﬁL’y,}/e:},
- (L’BBL‘I&LWWF"’QB + Lﬂgmamw) &, (6.4)

where we have just rearranged terms and expanded unbarred vectors in terms
of barred ones. We have thus found

v _ 718 ¥ Y B 17
T af = L ELQ@L"’,YF ap T L BLVQL‘“@ﬂ. (6.5)
If the second term was not there, I'" | s would indeed transform as a tensor, but
because the second term is not 0 in general, F'YQB does not transform like a

tensor. 0
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