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Problem 1

Part (a)
We are given u Av =u ® v — v ® u so we can see that
vAU=0Ru—u®v=—(uU®U—vQu)=—uAv (1.1)

so the wedge product is antisymmetric. When looking at p- and g-forms 24 =

I%Qaﬁ...m A...Nu, and Qg = %wa/gmvl A ... Avg and so the wedge product will
produce an antisymmetric (p + ¢)-form

1 1
Q1 NAQy = (p'Qaﬁ__,(ul A A up)) A <q'wwm(vl A A vq)>

1
= <p!q!Qa’8“'wW'“> UL A AU AU A LAY (1.2)

Similarly,

1 1
Qa AN Qq = (p'Qag__,(vl AL A vq)) A <q'w,w”_(u1 A A up)>

1
= (MQQBMwW“) VIA L AVg AU A A Uy (1.3)

so we can see that this equation has all of the same terms as €1 A Q2 up to
a possible minus sign. In order to determine the sign, use the anticommutator
relation for the wedge product shown above.

ur Ao ANupy Avr Ao Aoy
=(—1)us A . Aup—1 Av1 Atp Ava... Ay
=(—1D)Pvi Aug Ao Aup Ava Ao Ay
...(repeat this process for each v;)...
(=P Ao Avg Aug Ao Ay, (1.4)

which is the same as the term as in Q2 A Q1 up to (—1)?9, so because the
coefficients are all equivalent, then we can see that Q1 A Q2 = (—1)P1Q5 A Q4

Part (b)

By definition of the exterior derivative, if £ is a p-form, then dQ is a (p+1)-
form. To get the desired result, start with equation (3) from the homework and
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use the commutation relation derived above.

d A Qg + (—1)PQq A dQ

=(—1)PHaQ, A dQy 4 (—1)P(—=1)PTD a0, A Qy
=(=1)1Q A dQq + (—1)%PdQy A Q4

=dQa A Q1+ (—1)1Q5 A dQy (1.5)

d(Q1 A Q)

= d((—1)P1Q5 A )
=d (22 A Q1)

= d(Q5 A Q)

Which is the result we are trying to prove.

Problem 2

Part (a)

Recall that we can always find a frame that locally looks like flat spacetime. In
that frame, the Faraday tensor is

[0 —-E' —-E? —E3
E' 0 B3 —B2

ELV = E2 _B3 0 Bl 9
E3 B? -—B! 0
[0 E' E? E3
_ 1 3 _nR2
v _ |-E' 0 B B 2.1)

~E* -B* 0 B!
-E* B> -B' 0

Since F' is a tensor, if we contract its indices, we get something that is invariant.
For example, F},, F*” is invariant. Note that this operation corresponds to
multiplying the matrices F,, and F*” element-wise and then adding up all
entries. We find that

Fl F* = ~2|[E|* + 2] B|]* = 2(B* - E?). (2.2)

Since 2(B? — E?) is invariant, it follows that B? — E? is also invariant. O

Recall that F),, is antisymmetric, thus its dual *F,z exists and is defined as

0 2B  —2(-B?) 2B3
. 1w 1| —2B! 0 2E3 —2F?%|
op = o Cwap = 5 19 g2y _op» 0 2E!
—2B3  2F? —2F! 0

0 Bl B?> B?
-B! 0 E3 —FE?
-B? —E3 0 E!
-B3 E?* —E' 0

(2.3)
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Since * F,5 is a tensor, the contraction *F,3F®? is invariant, hence
*F.sF*® =4E-B (2.4)

is also invariant. Thus E - B is invariant. U

Part (b)

If a quantity is a spacetime invariant, it also must be an invariant under spatial
rotations, i.e. a spatial scalar. In a given Lorentz frame, there are only three
ways to make a spatial scalar from E and B: these are E- E, B- B, and B - E
(and combinations of these scalars).

Now suppose that there were three independent spacetime invariants that
can be made from E - E, B- B, and B - E. This would imply that each of these
spatial scalars is actually a spacetime scalar. However, it is easy to verify (e.g.
by carrying out an explicit Lorentz transformation) that F - E and B - B are
not spacetime scalars.

Alternatively, one can show that all combinations of F*¥ and *F*, where
all indices are contracted, involve only B? — E2 or E - B. This is more difficult.

Since both tensors are antisymmetric we have
Pl ="F" =0, (2.5)

which is not a combination of E' and B. Thus we need to consider expressions
with two tensors. The possible combinations are

F,,F" = —F, F"" =2(B* - E?),
*FMV*FHV _ _*FHV*FVH _ 2(E2 _ BQ),
F#D*FNV = _FMV*FVM =4F- B, (2'6)

which are just multiples of B2 — E? or E - B. Note that inserting a Levi-Civita
tensor would simply convert one of the tensors to its dual and it would not give
a different combination of F'*¥ and *F*” that what was considered above.

Unfortunately, the above is not quite enough to show that the only invariants
are B2 — E? and E - B. One can also construct scalars with more than just two
tensors. For example,

FNI/FU)\F)\M = (_FVH)(_F)\VX_FNA) = _FVMF)\VFH)\
=—F", F" F*,, (2.7)
since we can relabel contracted indices, the above says * = —x and thus

x=F F'F )\u = 0, in this particular example. There seems to be no easy
argument that one could apply to any higher order combination of F' and *F
with all indices contracted.
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Another proof that the only invariants formed by E and B are B2 — E? and
E - B goes as follows. Consider the vector

F=FE+iB=(E,+iB;,E,+iBy,E. +iB.), (2.8)

where 7 is the imaginary unit. Now consider a Lorentz boost in the (¢, ), plane,
i.e. let v = (vg,0,0). Applying the usual Lorentz transformations for E and B,
namely,

B =E)

E\ =~v(EL +vxBy)

B =B

Bl = (B —vxEL) (29)

where B = (E,,0,0), By = (0, Ey, E.) and similarly for B, we find

F;ZEZH'B —F,
Fy =~v(By = v:B:) + i7(By + v2Fz)

V(Ey +iBy )+Wr(l B.) = vFy + yvgiF;

V(E: +vaBy) + W(Bz—vm v)

Y(E. +iB.) + g (—iE, + By) = vF, — yugiF,. (2.10)

We can write the above as

Fl =F,
F, = cosh®) Fy, + isinh ¢ F,
F. = —isinhe F,, + cosh) F, (2.11)

where tanh ¢ = v, and so

1 1
h = - = _ =
coshp \/1 ~tanhZ ¢ \/1 2 7

sinhtp = \/cosh?th —1 = /42 -1 =

2
SR N S E——— (2.12)

1—1)% 1/1—1]:}%

Recall that cosh 1 = cosity and sinh ¢ = —isiniy, so we get

Fl—F,
F, = cosiy) F, + siniy) F,
F. = —siniy F, + cosiyp F, (2.13)

Kevin Barkett, Jonas Lippuner, and Mark Scheel October 19, 2015



Solutions Ph 236a — Week 3 Page 6 of 11

and so F’ is obtained by rotating F' by the imaginary angle —it) in 3-space
in the (y, z) plane. Similarly, the Lorentz boosts in the (¢,y) and (¢, z) planes
correspond to rotations by imaginary angles in the (z,2) and (z,y) planes in
3-space. The only other Lorentz transformations in 4-space are regular rotations
in 3-space, which obviously correspond to rotations by real angles in 3-space.

Thus we have a correspondence between all Lorentz transformations in 4-
space (rotations in the (t,z), (¢t,y), (t,2), (x,y), (z,2), and (y,z) planes) to
rotations in 3-space by imaginary or real angles. Note that E and B are in-
dependent in F' and thus by considering all Lorentz transformations of F in
4-space, we are actually considering all possible Lorentz transformations of E
and B. All these transformations correspond to rotations of F' in 3-space (by
imaginary or complex angles). But rotations only preserve the length of a vec-
tor, thus ||F|| is the only quantity conserved by rotations and thus it is the only
quantity conserved by Lorentz transformations of £ and B. Therefore, the only
conserved quantity is

|F|| = E* = B* + 2E - B, (2.14)

hence the real numbers E? — B2 and E - B are the only quantities that are
independently conserved under Lorentz transformations of E and B. O

Also see http://arxiv.org/abs/1309.4185 for a more complicated proof.

Problem 3

Part (a)

We are given that Aaﬁuo‘uﬂ = 0 for a timelike vector u®. Now let @ = €&; +
€e;,0 < e < 1fori=1,2,3. Expanding Aa,@uo‘uﬁ =0, we get

Ago + €Aoi + €A + €Ay = 0
= Ago =0, A4 =0, Aip = —Ao; (3.1)
Now let @ = €, 4 €€; + 0€;,0 < €,0 < % for (i,7) = 1,2,3 and i # j. Then we
get
Aoo+edoi + eAio + € A+
+(5A0j + (SAjO + 62Ajj + 6(5141']‘ + (SfAji =0
= 0+€A0i - EAOZ' + 620 + (SA()j - 5A0j + 620 + €6Aij + 5€Aj7; =0
= Aij = — Aﬂ (32)

thus we have Ay = —AgaVo, 8 =0,1,2,3.
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Part (b)
Lets start with the 4-momentum relationship 7+ 5 = —m? where m is the rest
mass of an arbitrary particle. Now take the derivative of both sides,
d 9 d d
iy =0 = =929 D 3.3
7 (=) 2P P) =2p P (3.3)

However, we know that the Lorentz force is given by the equation,

d _\“ o
<d7_p> =qF Buﬁ (3.4)

where ¢ is the charge and F' is the Faraday tensor. Substituting that back in,
we find that

d «
i (drp) = aPaFpu’ = mqF % uau”
= Fopuu’ =0 (3.5)

Therefore, using the result from Part (a), we can say that F' is antisymmetric.

Problem 4

Part (a)
See ([2.1)) for the Faraday tensor. From it, we can compute

0 Bl E? E3
" El 0 B3 —B?
F’V = E2 _pB3 0 Bl (41)
E3 B?> -B! 0

Now the contraction of F' with itself gives us
F*F,, = 2(B* - BY) (4.2)

where B? = (B')?+(B?)?+(B?)2. So then, using equation (7) from the problem
set, the energy density is

OO

E2))

+ E?) (4.3)

(Fo“F

(7

2 19"(B* - E2)>

[\D\H ‘z;

1
Tir
1
Tir
L

87r
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which should be a familiar result. To get the momentum density in general, let
us first look at a particular case, the density in the z—direction

1 1 1
Oz _ Oppx _ —  Ox 2 2 —_ YRZ _ LZRY
T = <F F, = 59" (B E)> (BB —E°BY +0)  (44)

The momentum density in the i—direction is given by

% 1 i
10 = ()
1 .

Which can be written in 3-vector form as the Poynting vector S = ﬁEH x B.
Finally, for the 3D stress tensor, if ¢ = j, then ¢"* = 1 and otherwise g/ = 0 so
we can rewrite the 3D spatial metric as ¢g*/ = §. To get the rest of the tensor,
consider the case where ¢ = z and j = y. Then

F*™EY, = —-E*EY — B*BY
and in the case where ¢ = j = x then
FopY, = —(E®)? + B — (B®)?
so in general
Ftpi, = —E'E’ — B'B/ 4§ B?
=TV = 4i (—EZEJ’ - B'BI + %6”(52 - EQ)> (4.6)

7

Part (b)
Given the general Faraday, we know that part of Maxwell’s equations read
OpF = F°P , =4z e (4.7)

Now let’s take the derivative of the Maxwell stress-energy tensor, (noting that
FMOgF,, = F,,03F"),

1 1
DsT? =4 (Fﬁu OpF M + F 95 FP, — Zgo‘ﬁ (2F “”%F/w))

1 1
S (—477F‘”‘JH + <Fﬁu dpFoH — 2F“53QF~5>> (4.8)

47

Clearly we will have the desired result 957" = —F*F J4 if the other terms
vanish. We can show that it does by using the antisymmetry of F*¥ and the
Maxwell equation

6BFCW + &XFH,@ + 8;¢F6a =0. (4.9)
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Using this equation and maniuplating upper and lower indices we can show that

0% =FP* (95 F%, + 0 Fup + 0, F5°)
=FF,04F*" — FPrO*F,p5 + FMPOpF,*

1
=2 (Fﬁu Qg FH — 214"ﬁ~a@1:’,15) (4.10)
Thus the extra terms vanish so we get the result g7° = —F8 Jg.

Part (c)

atter

If the total stress energy tensor is conserved, then dg (ngﬁw + Tﬁfbﬁ ) =0 and
DTl = —FPJ5 give O3T0 ., = F*Js. Examine the time and spatial

-

components seperately with J = (p, ).
First, note that by definition of 77, T% . is the energy density and

70! is the energy flux in the i-th direction. Then we can say

matter

. dE
o = 0 . atTﬁgltteT + &-TOZ = nerey

matter — W = FOiJi = 2 ' E (411)

which is simply Ohmic heating.

For the spatial components, T ... is the density of the i-th component of
momentum and 777 ... is the flux of the i-th component of momentum in the

j-th direction. Then

a=1: atT’rlr(L)atter + aiT:rZatte'r = L = FlOJO + F”']j = pEl + elijjBk
dtdv
(4.12)
which is just the Lorentz force equation.
Problem 5
Part (a)
From TH, = 0 we obtain 0 = T+, = T + T‘“;i and so 7" = fT’”;i.
Recall that 0y = 9/0t and so we find
9 O 3 a0 3 v 3
g T"d’z= | T"yd°x=— [ T, d’x, (5.1)
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where we have assumed that 79 is a smooth function of # so that we can in-
terchange differentiation and integration, and we have used that T is symmetric.
Applying the divergence theorem to the last integral yields

0

T By = f/ T%n;dS =0, (5.2)
ot S

where n; is the normal vector to the surface S. Since TH*” = 0 outside some
bounded region of space, take the surface S to be a surface that is outside this
region and encloses it. Thus on the surface S, T = 0 and so the integral over
S is zero. Note that the contributions to the volume integral from points outside
S is zero, because T"” vanishes there. Thus our result does indeed apply to the

volume integral over all space. O
Part (b)
We find

9? - G, _ 9 o

- T00113:7/T00 2]3:_7/7'10]{5 i, 13

8t2/ 'zt dx T ox'T! d’x 5 pr'e) dx

f% (/ TO%2igdny, d3x — /TOk(éikxj +xi5jk)>
s
=0+ %/(To%j + T% 2" d3x, (5.3)

where we have used integration by parts and the surface term vanishes by the
same argument used in part (a). Finally we get
92 o o o o o
% T2 27 @3y = /(TOZ)O ) + TOJ’O ) dPr = — /(T””J€ zl + Tkjvk ') d*x
=0+ / (TF67, + T §%)) dPa = 2 / TV &z, (5.4)

where we have again used integration by parts and the fact that the surface
terms are 0. O
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Part (c)
We obtain
02 ; %) , d ,
pre) /Too(xlxi)Q dr = 5 /T0070 (z'x;)> dx = _E/T%’k (ziw;)? dPx
=—0+ %/TOkQ(xjmj)(ykxi +2%0y,) dPx
= 4/T’€O’0 (272))z), dPx = —4/Tkl’l (z72))z), Pz
=0+ 4/Tkl((5jll‘jxk + CUj(Sjl.’L'k + :cjxjékl) d3z
= 4/(Tijja:k + Tkj wlay, + T 29x;) dPx
= S/Tijxixj d>x + 4/Tk,C rlr; dx, (5.5)
where we have used integration by parts twice. O
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