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Problem 1

Part (a)

We are given u ∧ v = u⊗ v − v ⊗ u so we can see that

v ∧ u = v ⊗ u− u⊗ v = −(u⊗ v − v ⊗ u) = −u ∧ v (1.1)

so the wedge product is antisymmetric. When looking at p- and q-forms Ω1 =
1
p!Ωαβ...u1 ∧ ...∧up and Ω2 = 1

q!ωαβ...v1 ∧ ...∧ v2 and so the wedge product will

produce an antisymmetric (p+ q)-form

Ω1 ∧Ω2 =

(
1

p!
Ωαβ...(u1 ∧ ... ∧ up)

)
∧
(

1

q!
ωµν...(v1 ∧ ... ∧ vq)

)
=

(
1

p!q!
Ωαβ...ωµν...

)
u1 ∧ ... ∧ up ∧ v1 ∧ ... ∧ vq (1.2)

Similarly,

Ω2 ∧Ω1 =

(
1

p!
Ωαβ...(v1 ∧ ... ∧ vq)

)
∧
(

1

q!
ωµν...(u1 ∧ ... ∧ up)

)
=

(
1

p!q!
Ωαβ...ωµν...

)
v1 ∧ ... ∧ vq ∧ u1 ∧ ... ∧ up (1.3)

so we can see that this equation has all of the same terms as Ω1 ∧ Ω2 up to
a possible minus sign. In order to determine the sign, use the anticommutator
relation for the wedge product shown above.

u1 ∧ ... ∧ up ∧ v1 ∧ ... ∧ vq
=(−1)u1 ∧ ... ∧ up−1 ∧ v1 ∧ up ∧ v2... ∧ vq
=(−1)pv1 ∧ u1 ∧ ... ∧ up ∧ v2 ∧ ... ∧ vq
=...(repeat this process for each vi)...

=(−1)pqv1 ∧ ... ∧ vq ∧ u1 ∧ ... ∧ up (1.4)

which is the same as the term as in Ω2 ∧ Ω1 up to (−1)pq, so because the
coefficients are all equivalent, then we can see that Ω1 ∧Ω2 = (−1)pqΩ2 ∧Ω1

Part (b)

By definition of the exterior derivative, if Ω1 is a p-form, then d̃Ω1 is a (p+ 1)-
form. To get the desired result, start with equation (3) from the homework and
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use the commutation relation derived above.

d̃(Ω1 ∧Ω2) =d̃Ω1 ∧Ω2 + (−1)pΩ1 ∧ d̃Ω2

⇒ d̃((−1)pqΩ2 ∧Ω1) =(−1)(p+1)qΩ2 ∧ d̃Ω1 + (−1)p(−1)p(q+1)d̃Ω2 ∧Ω1

⇒ d̃(Ω2 ∧Ω1) =(−1)qΩ2 ∧ d̃Ω1 + (−1)2pd̃Ω2 ∧Ω1

⇒ d̃(Ω2 ∧Ω1) =d̃Ω2 ∧Ω1 + (−1)qΩ2 ∧ d̃Ω1 (1.5)

Which is the result we are trying to prove.

Problem 2

Part (a)

Recall that we can always find a frame that locally looks like flat spacetime. In
that frame, the Faraday tensor is

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 ,

Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (2.1)

Since F is a tensor, if we contract its indices, we get something that is invariant.
For example, FµνF

µν is invariant. Note that this operation corresponds to
multiplying the matrices Fµν and Fµν element-wise and then adding up all
entries. We find that

FµνF
µν = −2‖

˜
E‖2 + 2‖

˜
B‖2 = 2(B2 − E2). (2.2)

Since 2(B2 − E2) is invariant, it follows that B2 − E2 is also invariant.

Recall that Fµν is antisymmetric, thus its dual ∗Fαβ exists and is defined as

∗Fαβ =
1

2!
Fµνεµναβ =

1

2


0 2B1 −2(−B2) 2B3

−2B1 0 2E3 −2E2

2(−B2) −2E3 0 2E1

−2B3 2E2 −2E1 0

 =

=


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

 . (2.3)
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Since ∗Fαβ is a tensor, the contraction ∗FαβF
αβ is invariant, hence

∗FαβF
αβ = 4

˜
E ·

˜
B (2.4)

is also invariant. Thus
˜
E ·

˜
B is invariant.

Part (b)

If a quantity is a spacetime invariant, it also must be an invariant under spatial
rotations, i.e. a spatial scalar. In a given Lorentz frame, there are only three
ways to make a spatial scalar from

˜
E and

˜
B: these are

˜
E ·

˜
E,

˜
B ·

˜
B, and

˜
B ·

˜
E

(and combinations of these scalars).

Now suppose that there were three independent spacetime invariants that
can be made from

˜
E ·

˜
E,

˜
B ·

˜
B, and

˜
B ·

˜
E. This would imply that each of these

spatial scalars is actually a spacetime scalar. However, it is easy to verify (e.g.
by carrying out an explicit Lorentz transformation) that

˜
E ·

˜
E and

˜
B ·

˜
B are

not spacetime scalars.

Alternatively, one can show that all combinations of Fµν and ∗Fµν , where
all indices are contracted, involve only B2 −E2 or

˜
E ·

˜
B. This is more difficult.

Since both tensors are antisymmetric we have

Fµµ = ∗Fµµ = 0, (2.5)

which is not a combination of
˜
E and

˜
B. Thus we need to consider expressions

with two tensors. The possible combinations are

FµνF
µν = −FµνF νµ = 2(B2 − E2),

∗Fµν
∗Fµν = −∗Fµν∗F νµ = 2(E2 −B2),

Fµν
∗Fµν = −Fµν∗F νµ = 4

˜
E ·

˜
B, (2.6)

which are just multiples of B2 −E2 or
˜
E ·

˜
B. Note that inserting a Levi-Civita

tensor would simply convert one of the tensors to its dual and it would not give
a different combination of Fµν and ∗Fµν that what was considered above.

Unfortunately, the above is not quite enough to show that the only invariants
are B2−E2 and

˜
E ·

˜
B. One can also construct scalars with more than just two

tensors. For example,

Fµν F
ν
λF

λ
µ = (−F µ

ν )(−F ν
λ )(−F λ

µ ) = −F νµFλν F
µ
λ

= −F νµF
µ
λF

λ
ν , (2.7)

since we can relabel contracted indices, the above says x = −x and thus
x = Fµν F

ν
λF

λ
µ = 0, in this particular example. There seems to be no easy

argument that one could apply to any higher order combination of F and ∗F
with all indices contracted.

Kevin Barkett, Jonas Lippuner, and Mark Scheel October 19, 2015



Solutions Ph 236a – Week 3 Page 5 of 11

Another proof that the only invariants formed by
˜
E and

˜
B are B2−E2 and

˜
E ·

˜
B goes as follows. Consider the vector

˜
F =

˜
E + i

˜
B = (Ex + iBx, Ey + iBy, Ez + iBz), (2.8)

where i is the imaginary unit. Now consider a Lorentz boost in the (t, x), plane,
i.e. let

˜
v = (vx, 0, 0). Applying the usual Lorentz transformations for

˜
E and

˜
B,

namely,

˜
E′‖ =

˜
E‖

˜
E′⊥ = γ(

˜
E⊥ +

˜
v ×

˜
B⊥)

˜
B′‖ =

˜
B‖

˜
B′⊥ = γ(

˜
B⊥ −

˜
v ×

˜
E⊥), (2.9)

where
˜
E‖ = (Ex, 0, 0),

˜
E⊥ = (0, Ey, Ez) and similarly for

˜
B, we find

F ′x = Ex + iBx = Fx

F ′y = γ(Ey − vxBz) + iγ(By + vxEz)

= γ(Ey + iBy) + γvx(iEz −Bz) = γFy + γvxiFz

F ′z = γ(Ez + vxBy) + iγ(Bz − vxEy)

= γ(Ez + iBz) + γvx(−iEy +By) = γFz − γvxiFy. (2.10)

We can write the above as

F ′x = Fx

F ′y = coshψ Fy + i sinhψ Fz

F ′z = −i sinhψ Fy + coshψ Fz, (2.11)

where tanhψ = vx and so

coshψ =

√
1

1− tanh2 ψ
=

√
1

1− v2x
= γ

sinhψ =

√
cosh2 ψ − 1 =

√
γ2 − 1 =

√
1

1− v2x
− 1 =

√
1− 1 + v2x

1− v2x

=

√
v2x

1− v2x
=

vx√
1− v2x

= vxγ. (2.12)

Recall that coshψ = cos iψ and sinhψ = −i sin iψ, so we get

F ′x = Fx

F ′y = cos iψ Fy + sin iψ Fz

F ′z = − sin iψ Fy + cos iψ Fz, (2.13)
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and so
˜
F ′ is obtained by rotating

˜
F by the imaginary angle −iψ in 3-space

in the (y, z) plane. Similarly, the Lorentz boosts in the (t, y) and (t, z) planes
correspond to rotations by imaginary angles in the (x, z) and (x, y) planes in
3-space. The only other Lorentz transformations in 4-space are regular rotations
in 3-space, which obviously correspond to rotations by real angles in 3-space.

Thus we have a correspondence between all Lorentz transformations in 4-
space (rotations in the (t, x), (t, y), (t, z), (x, y), (x, z), and (y, z) planes) to
rotations in 3-space by imaginary or real angles. Note that

˜
E and

˜
B are in-

dependent in
˜
F and thus by considering all Lorentz transformations of

˜
F in

4-space, we are actually considering all possible Lorentz transformations of
˜
E

and
˜
B. All these transformations correspond to rotations of

˜
F in 3-space (by

imaginary or complex angles). But rotations only preserve the length of a vec-
tor, thus ‖

˜
F‖ is the only quantity conserved by rotations and thus it is the only

quantity conserved by Lorentz transformations of
˜
E and

˜
B. Therefore, the only

conserved quantity is

‖
˜
F‖ = E2 −B2 + 2i

˜
E ·

˜
B, (2.14)

hence the real numbers E2 − B2 and
˜
E ·

˜
B are the only quantities that are

independently conserved under Lorentz transformations of
˜
E and

˜
B.

Also see http://arxiv.org/abs/1309.4185 for a more complicated proof.

Problem 3

Part (a)

We are given that Aαβu
αuβ = 0 for a timelike vector uα. Now let ~u = ~et +

ε~ei, 0 < ε < 1 for i = 1, 2, 3. Expanding Aαβu
αuβ = 0, we get

A00 + εA0i + εAi0 + ε2Aii = 0

⇒ A00 = 0, Aii = 0, Ai0 = −A0i (3.1)

Now let ~u = ~et + ε~ei + δ~ej , 0 < ε, δ < 1
2 for (i, j) = 1, 2, 3 and i 6= j. Then we

get

A00+εA0i + εAi0 + ε2Aii+

+δA0j + δAj0 + ε2Ajj + εδAij + δεAji = 0

⇒ 0+εA0i − εA0i + ε20 + δA0j − δA0j + ε20 + εδAij + δεAji = 0

⇒ Aij =−Aji (3.2)

thus we have Aαβ = −Aβα∀α, β = 0, 1, 2, 3.
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Part (b)

Lets start with the 4-momentum relationship ~p · ~p = −m2 where m is the rest
mass of an arbitrary particle. Now take the derivative of both sides,

d

dτ
(−m2) = 0 =

d

dτ
(~p · ~p) = 2~p · d

dτ
~p (3.3)

However, we know that the Lorentz force is given by the equation,(
d

dτ
~p

)α
= qFαβ u

β (3.4)

where q is the charge and F is the Faraday tensor. Substituting that back in,
we find that

0 = pα

(
d

dτ
p

)α
= q~pαF

α
β u

β = mqFαβ uαu
β

⇒ Fαβu
αuβ = 0 (3.5)

Therefore, using the result from Part (a), we can say that F is antisymmetric.

Problem 4

Part (a)

See (2.1) for the Faraday tensor. From it, we can compute

Fµν =


0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (4.1)

Now the contraction of F with itself gives us

FµνFµν = 2(
˜
B2 −

˜
E2) (4.2)

where
˜
B2 = (B1)2+(B2)2+(B3)2. So then, using equation (7) from the problem

set, the energy density is

T 00 =
1

4π

(
F 0µF 0

µ −
2

4
g00(

˜
B2 −

˜
E2)

)
=

1

4π

(
˜
E2 +

1

2
(
˜
B2 −

˜
E2)

)
=

1

8π
(
˜
B2 +

˜
E2) (4.3)
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which should be a familiar result. To get the momentum density in general, let
us first look at a particular case, the density in the x−direction

T 0x =
1

4π

(
F 0µF xµ −

1

2
g0x(

˜
B2 −

˜
E2)

)
=

1

4π
(EyBz − EzBy + 0) (4.4)

The momentum density in the i−direction is given by

T 0i =
1

4π

(
F 0µF iµ

)
=

1

4π

(
εijkE

jBk
)

(4.5)

Which can be written in 3-vector form as the Poynting vector ~S = 1
4π
~E × ~B.

Finally, for the 3D stress tensor, if i = j, then gii = 1 and otherwise gij = 0 so
we can rewrite the 3D spatial metric as gij = δij . To get the rest of the tensor,
consider the case where i = x and j = y. Then

F xµF yµ = −ExEy −BxBy

and in the case where i = j = x then

F xµF yµ = −(Ex)2 +B2 − (Bx)2

so in general

F iµF jµ = −EiEj −BiBj + δijB2

⇒ T ij =
1

4π

(
−EiEj −BiBj +

1

2
δij(

˜
B2 +

˜
E2)

)
(4.6)

Part (b)

Given the general Faraday, we know that part of Maxwell’s equations read

∂βF
αβ = Fαβ,β = 4πJα (4.7)

Now let’s take the derivative of the Maxwell stress-energy tensor, (noting that
Fµν∂βFµν = Fµν∂βF

µν),

∂βT
αβ =

1

4π

(
F βµ ∂βF

αµ + Fαµ∂βF
β
µ −

1

4
gαβ(2Fµν∂βFµν)

)
=

1

4π

(
−4πFαµJµ +

(
F βµ ∂βF

αµ − 1

2
Fµβ∂αFµβ

))
(4.8)

Clearly we will have the desired result ∂βT
αβ = −FαβJβ if the other terms

vanish. We can show that it does by using the antisymmetry of Fµν and the
Maxwell equation

∂βFαµ + ∂αFµβ + ∂µFβα = 0. (4.9)
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Using this equation and maniuplating upper and lower indices we can show that

0α =F βµ
(
∂βF

α
µ + ∂αFµβ + ∂µF

α
β

)
=F βµ ∂βF

αµ − F βµ∂αFµβ + Fµβ∂βF
α

µ

=2

(
F βµ ∂βF

αµ − 1

2
F βµ∂αFµβ

)
(4.10)

Thus the extra terms vanish so we get the result ∂βT
αβ = −FαβJβ .

Part (c)

If the total stress energy tensor is conserved, then ∂β

(
TαβEM + Tαβmatter

)
= 0 and

∂βT
αβ
EM = −FαβJβ give ∂βT

αβ
matter = FαβJβ . Examine the time and spatial

components seperately with ~J = (ρ,
˜
i).

First, note that by definition of Tαβmatter, T
00
matter is the energy density and

T 0i
matter is the energy flux in the i-th direction. Then we can say

α = 0 : ∂tT
00
matter + ∂iT

0i
matter =

dEnergy

dtdV
= F 0iJi =

˜
j ·

˜
E (4.11)

which is simply Ohmic heating.

For the spatial components, T i0matter is the density of the i-th component of
momentum and T ijmatter is the flux of the i-th component of momentum in the
j-th direction. Then

α = i : ∂tT
i0
matter + ∂iT

ij
matter =

dpi

dtdV
= F i0J0 + F ijJj = ρEi + εijkJjBk

(4.12)

which is just the Lorentz force equation.

Problem 5

Part (a)

From Tµν,ν = 0 we obtain 0 = Tµν,ν = Tµ0,0 + Tµi,i and so Tµ0,0 = −Tµi,i .
Recall that ∂0 = ∂/∂t and so we find

∂

∂t

∫
T 0α d3x =

∫
Tα0,0 d

3x = −
∫
Tαi,i d

3x, (5.1)
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where we have assumed that T 0α is a smooth function of xµ so that we can in-
terchange differentiation and integration, and we have used that T is symmetric.
Applying the divergence theorem to the last integral yields

∂

∂t

∫
T 0α d3x = −

∫
S

Tαini dS = 0, (5.2)

where ni is the normal vector to the surface S. Since Tµν = 0 outside some
bounded region of space, take the surface S to be a surface that is outside this
region and encloses it. Thus on the surface S, Tµν = 0 and so the integral over
S is zero. Note that the contributions to the volume integral from points outside
S is zero, because Tµν vanishes there. Thus our result does indeed apply to the
volume integral over all space.

Part (b)

We find

∂2

∂t2

∫
T 00xixj d3x =

∂

∂t

∫
T 00

,0 x
ixj d3x = − ∂

∂t

∫
T 0k

,k x
ixj d3x

= − ∂

∂t

(∫
S

T 0kxixjnk d
3x−

∫
T 0k(δikx

j + xiδjk)

)
= 0 +

∂

∂t

∫
(T 0ixj + T 0jxi) d3x, (5.3)

where we have used integration by parts and the surface term vanishes by the
same argument used in part (a). Finally we get

∂2

∂t2

∫
T 00xixj d3x =

∫
(T 0i

,0 x
j + T 0j

,0 x
i) d3x = −

∫
(T ki,k x

j + T kj,k x
i) d3x

= −0 +

∫
(T kiδjk + T kjδik) d3x = 2

∫
T ij d3x, (5.4)

where we have again used integration by parts and the fact that the surface
terms are 0.
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Part (c)

We obtain

∂2

∂t2

∫
T 00(xixi)

2 d3x =
∂

∂t

∫
T 00

,0 (xixi)
2 d3x = − ∂

∂t

∫
T 0k

,k (xixi)
2 d3x

= −0 +
∂

∂t

∫
T 0k2(xjxj)(δ

i
kxi + xiδik) d3x

= 4

∫
T k0,0 (xjxj)xk d

3x = −4

∫
T kl,l (x

jxj)xk d
3x

= −0 + 4

∫
T kl(δjlxjxk + xjδjlxk + xjxjδkl) d

3x

= 4

∫
(T kjxjxk + T kj x

jxk + T kk x
jxj) d

3x

= 8

∫
T ijxixj d

3x+ 4

∫
T kk x

ixi d
3x, (5.5)

where we have used integration by parts twice.
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