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Problem 1

Part (a)

For a particle in its rest frame, we know that its 4-velocity is given by @ = (1, 0)

L,
and we are given in the problem statement that its spin vector is S = (0, s).
Thus

S.i=0,
d, z .
—(§-d) =0 (1.1)

Part (b)

First, let us examine the derivative spatial components of S while in the particles
rest frame so that
ds o
— = A .5 1.2
dr 1 (1.2)
Where i, j are spatial indices that run over 1,2,3. To see what happens, let us
pick a spin component and expand (for example, the z-direction)
ds?
dr
But this is just the form we expect of the usual 3-vector cross product. So using
that result with equation (1) from the problem set, we get

ds

= A1 F4S7 = Ay (s"By — sV By) (1.3)

%:A1§XB7
ge
! 2m ( )
To get Ao, we start with
d = . di ds
Li7) — =g = 1.
dT(S 0)=0=S5 I 1 I (1.5)

Note, that g—f is an acceleration, which is force divided by mass. Since the
electromagnetic force is given by qFoéuﬁ7 we can write

= di q o o
§ == %SaFﬁuB = —A 1S Fyu” + Ay (1.6)
where we used the fact that As@ - @ = —Ay. Now we can plug in the result of
A; from above and solve for Ay and we get
ge
A= —
Yo
e g
Ay = F4S,uP—(Z -1 1.
2 BSau m(2 ) (1.7)
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Part (c)

Let E =0 and §= (s°,5). Thus the particle’s 4-velocity is given by @ = (1, v).
Then

S i=0=7(-s"+s-v)=s-v=2s" (1.8)
Now note that since E'= 0 = F'% = 0 if either a or § = 0. So then

ds® 0 of 0

and from that, in the lab frame with time coordinate ¢, the time rate of change
of the helicity is,

i(:@'@):diozﬁdl: 2
dt it dr dt
= F‘};Sauﬁé(g —1)
- yFijSivj%(g ~1)
=70 (s x B); (5 = 1) (1.10)

In the case where g = 2, the quantity (§ — 1) = 0 which implies the time
rate of change of the helicity is 0, so the helicity is constant.

Problem 2

Part (a)
Start by evaluating

v, =P@) = Pagvﬁ = gagvﬁ + uaugv'g =V, + uaugvﬁ (2.1)
To show that it is orthogonal to i,

= (vo + uauﬁvﬁ)ua = Va0 + uauau/gvﬁ = vu (1 +uqu®) =0 (2.2)

S

since U is a 4-velocity. Thus ¢/| is orthogonal to u.
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Part (b)

We want to show that ¥, = P(v]) and we know from above that v] = v, +
uqugv? so then

P(U1) = (gap + tatig) (v + uus0?)

= gagvﬁ + ga,guﬁuﬂyv'y + uau/;UB + uauguﬁuviﬂ

= Vo + UaUuyV) + uau5vﬁ — U UV

= Vo + uaum;ﬂ

. (2.3)

Thus we have shown that P is unique.

Part (c)

Since we are given a non-null vector ¢ we can define ¢°> = ¢- ¢ and we don’t need
to be afraid of dividing by ¢?. Now define our projection tensor for ¢ as
1
Pg=gas — 20098 (2.4)

It can be shown using the same arguments as in parts (a) and (b) that P is
indeed the projection tensor and that it is unique.

Part (d)
For a null vector E, construct its projection tensor as Pj; = ckq kg for an arbitrary
real number c¢. Thus, for an arbitrary vector ¢, we have

k-P(7) = k%ckakgv® = ckgoP(0) =0 (2.5)

Thus Py is indeed the projection operator, however it is not unique because ¢
is arbitrary.

Problem 3

Part (a)
Using the usual spherical coordinates, the Cartesian coordinates are given by

x = rsinf cos ¢,
y = 7sin @ sin ¢,
z =rcosé. (3.1)
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Since €, is the tangent vector of the curves parametrized by r with constant 6
and ¢, we find

. o oz 9

€r = — = - = sin# cos ¢ €, + sinfsin ¢ €, + cos b €,
" or or Ox* * Y =

(3.2)
where i = 1,2,3 and we used 2! = z, 22 = y, and 2> = 2. Similarly, we find
9] ozt 0
€y = 20— a—a;@ =rcosfcos¢pé, +rcosfsingéy, —rsinbdé,,
- o 9" 0

€y = 96~ 90 or = —rsinfsin¢ ey + rsinfdcos g é,.

(3.3)

Part (b)
Recall that the spherical coordinates are given by

r = /22 + y2 + 22,

0 = arccos - ,

Va2 +y?+ 22
| arccot(z/y) ify>0
¢= { arccot(z/y) +m if y <0, (3-4)

where arccos returns a value in [0, 7] and arccot returns a value in [0, 7] (when
extending its domain to include +00). We find that

~ s, or s 1 ~ ~ ~
dr = O;rda’ = —dz' = ————— (2wdx + 2ydy + 22d
r rax &ﬂx 5 x2+y2+22(a:x+ yay + zz)
= sinf cos ¢ dz + sin O sin ¢ dy + cos 0 dz,

(3.5)
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and

~ < 1 2zzdx
o = 8,0dz* = — _
22 ( 2(372 +y2 +Z2)3/2
1 —c
.'172 + y2 + 22

QyZCZy " dz 222dz
AP +yP+ 7 Rt Er AR 4yt 2P
22 + 12 + 22 —zzdr — zydy + (2 + y2)dz
22 + 42 (22 + 2 + 22)3/2
_ Tz dr + 2y )
Va2 +y?(x? +y? 4 22) Va2 +y?(a? +y? + 22)
/.'L'2 + y2 -
- —————dz
1’2 +y2 + 22
r2sinf cos pcosf
= - dx -
r3sin 6 73 sin 6
cos 0 cos ¢Jaz . cos 6 sin ¢d~y B sin@czz’ (3.6)

T T T

2 sin fsi 0 - inf -
r* sin 0 sin ¢ cos dy — 7"51;1 i
r

and finally

. . 1 dr  zdy 1 5 3
d:8 g A — - — — 5 :7(_d d)
Q/) Zd)l’ 1+.’L’2/y2<y y2> $2+y2 y$+$y
:;(_Tsinesinqbcz,r+rsinecos¢ciy)

r2gin? 0
Sl LY
rsinf 7 sin 6

Part (c)

We have found in part (a) that
» =sinfcos ¢ €, +sinfsin g e, + cosb &,
rcosfcos e, +rcosfsing e, —rsinf e,

—rsinfsin¢é, + rsinf cos ¢ €,

D

®

0
¢:

1

)

and in part (b) we found that
dr = sin@cosqﬁdﬁ: + sin981n¢>dy + cosfdz,
Jo — cochosquZx n cosGsinqSJy B siné?dz7
r T
i Sing g4 80 4 (3.9)

dop = — .
rsin @ rsinf

Kevin Barkett, Jonas Lippuner, and Mark Scheel October 6, 2015



Solutions Ph 236a — Week 2 Page 7 of 13

Recall that (€3, €, €>) are basis vectors and thus they are linearly independent.
It can be shown (but is not necessary) that (é,,ép,€,) are also linearly inde-
pendent. And since these are 3 vectors in a 3-dimensional space, it follows that
they form a basis. Similarly, it can be shown that (dr, (Z@,cigé) are linearly in-
dependent and since the space of 1-forms is also 3-dimensional, it follows that
they form a basis too.

Thus it remains to be shown that (dr, d6, J¢) are dual to (€, €y, €s). Since
(dz,dy,dz) are dual to (€, €y, €;), we have that

(dz',é;) = o'

Jo

(3.10)
where dx! = Jm, dz? = Jy, da3 = d~z, €1 = €, €2 = €y, and €3 = &,. We find

(dr,&,) = sin® 0 cos? ¢ + sin Osin® ¢ + cos? 0 = 1,

(dr,&p) = rsinf cosf cos® ¢ + rsin f cos @ sin® ¢ — rsinf cos = 0,

(dr, €s) = —rsin® @ sin ¢ cos ¢ + rsin’ fsin ¢ cos ¢ = 0, (3.11)
and
(d@,é}> _ sin @ cos 6 cos? ¢ 4 sin @ cos 0 sin? ¢ B sin # cos 6 —0,
r r r
10, &) = cos? 0 cos? ¢ + cos? fsin® ¢ + sin® 0 = 1,
de 20cos? ¢ 29sin? ¢ 2p=1
df,&s) = —sinf cos B sin ¢ cos ¢ + sin § cos fsin ¢ cos ¢ = 0, (3.12)
and finally
(dqb, &) = _sm¢rcos¢ L sin qbrcosqb ~0,
<(%,é’9) _ _005981.11¢cos¢ COS@SI-D(bCOS(b ~0,
sin sin
(do, &y) = sin® ¢ + cos® ¢ = 1. (3.13)
Thus we have shown that
(da', &) = o', (3.14)
where dz! = dr, dz? = df, da® = do, é; = €,, € = €, and €3 = €y, and so we
have shown that (dr,dd,d¢) are dual to (&, &, €p). O
Part (d)

Recall that the components of the metric tensor are given by

gij = € - €5 (3.15)
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Using we find
gi1 = €y - €, = sin® 0 cos® ¢ + sin? Osin® ¢ + cos? 0 = 1,
gi3 = 51 = €y - €9 = 1sinf cos f cos? ¢ + rsin f cos sin? ¢
— rsinfcosf
= O’
913 =931 = €r - € = —T sin? 6 sin ¢ cos ¢ + 7 sin? 0 sin ¢ cos ¢
= O’
G55 = € - €9 = 12 cos> 0 cos® ¢ + 12 cos® O sin? ¢ + r2sin? 0
= 1"27
G535 = 933 = —12sin 6 cos O sin ¢ cos ¢ + 12 sin 6 cos O sin ¢ cos ¢ = 0,
g33 = r2sin? @sin? ¢ + 2 sin? 0 cos? ¢ = 12 sin? 4. (3.16)
Hence the components of the metric tensor in spherical coordinates are
10 0
g5 = |0 r? 0 . (3.17)

0 0 r2sin’@
The full metric tensor in all its glory is
g = gi; dr'@dx? = dr @ dr +r* df @ df + r* sin? do @ dg. (3.18)
Part (e)
Since 9i; = € - 537 it is obvious that g;; = 5;3 if the vector & are orthonormal.

We have already found in (3.16) that & are orthogonal, so we can make them
orthonormal by scaling them with the inverse of their lengths. Thus we obtain

S € 2 . o o S
€ = ——— = TT =sinfcos¢é, +sinfsinge, + cosb €.,
VEé - &
- €p €o . L s
€y = —=—= = — =cosblcospé, +cosfsinp&, —sinbd e,
VE - €Eg T
. €, € Cs S
€)= ﬁ¢ =—2% = _singé, + cos P é,. (3.19)

)

\/ ¢€¢ T’Sina

Problem 4

Part (a)

If A, is antisymmetric and S, is symmetric, then

Sy — guaguﬁsaﬁ — guﬁguasﬂa — gvm (4.1)
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so we know that S* is also symmetric.
So finally

A S =-A,,5"" =-A4,,5" =—-A,,5". (4.2)
Here the first step used antisymmetry of A,,, the second step used symmetry

of S*”, and the third step relabeled dummy indices. Since A,,S*” is equal to
minus itself, it must be zero.

Part (b)

Let A, and S, be as above and let V,,, be an arbitrary tensor. For equation
(4) in the problem set, we can see that

VI A = %(VW’A#V + VY AW)
= %(V””AW —-VH*A,,)
= %(V””AW - VAL
= LV VA, (43)
Similarly to get equation (5) in the problem set
VS = %(VMVS#V + V" Suw)
= %(V‘“’SW - V*S,.)
= %(VW/S}W +VSw)

1
= (V" + V)8, (4.4)

Part (c)

To show that these transformation matricies are inverses of each other, simply
operate with both of them in succession.

& = A&, = A" (A, 6) (4.5)

Since we are transforming back into the barred frame, that means
5;2 == 517/7 _;j

= ANGAY, = (4.6)
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The reverse can be shown be doing the same thing except with 1-forms instead.
Now we know by definition that tensors can be written as

%Y = T(", &, ") (4.7)

We also know that it a linear operator and so plugging in the transformation
matrices we have

APGAT T (4.8)

Part (d)
Since g,,,, is a tensor, its indices can be raised and lowered as any other tensor.

9ap = gaugﬁuglw (49)
9* = g*"9"" g (4.10)

To show that g3 = 0”4, just raise or lower one of the indices and use equation
(8) from the homework set.

gaﬁ = ga7976 = 6(15 (411)

Problem 5

Part (a)

Case 1: First consider the case where «, 3, and 7 are not unique. In that case
€*#1P = 0 for all p, which means the right-hand side will be 0. If o, 3, and ~ are
not unique, it makes no sense to talk about even or odd permutations of them
and so this case falls under “otherwise”. The same argument holds if p, v, and
A are not unique.

Case 2: Thus we are left with the cases where «, 3, and 7 are unique and
also p, v, and A are unique. However, since each index can be 0, 1, 2, or 3,
the two sets of indices do not necessarily have to be the same (e.g. we could
have o, 8,7 =10,1,2 and p,v, A = 1,2,3). Consider a case like this (i.e. the set
{a, 8,7} is different from the set {u, v, A}). Since the Levi-Civita tensor is only
non-zero if all four indices are distinct, there is only one value of p, say pi, that
makes €77 non-zero. Similarly, there is only one value of p, say ps, that makes
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€uvap NON-zero. Since {yu, v, A} is different from {a, 3,7}, it follows that p; # ps
and thus all four terms in the sum over p are 0 and so the total sum is 0. Since
the two sets of indices are not the same, one is not a permutation of the other
and so this case also falls under “otherwise”.

Thus we are left with the cases where the two sets of indices are the same.
In that case (o, 8,7) is always either an even or odd permutation of (u, v, \).
Recall that the Levi-Civita tensor does not change under an even permutation
of its indices.

Case 3: Consider the case where (a, 8,7) is an even permutation of (u,v, ).
Since we can perform any even permutations we like without changing the Levi-
Civita tensor, we can consider the specific case («, 3,7) = (u, v, A) without loss
of generality. There is only one value of p, say pg that is different from «, 3,
and . This is the only value of p for which €*#7? is non-zero. Thus the sum
over p reduces to one non-zero term, namely

0 a = =€ ey = =0, = —(£1)(F1) = +1, (5.1)

since €qgys = —eaB9,

Case 4: The only remaining case now is where («, 3, 7) is an odd permutation of
(1, v, A). In that case we can take («, 3,7) = (v, u, A) without loss of generality,
because even permutations do not change the Levi-Civita tensors. Again, we
only have one value of p, say po for which %77 is non-zero. The sum over p
again reduces to one term, namely

aBy — _aBvp — _aBvpo _ aBypo
0 = —€ Epvrp = —€ €Barypy = T€ €aBypo

+(£1)(F1) = —1. (5.2)

[N

Thus we have shown that

+1 if (o, B,7) is an even permutation of (u, v, \)
6“51”/)\ =< -1 if (o, 8,7) is an odd permutation of (u, v, \) (5.3)
0 otherwise.

Note that

_ !

aff
67 5

57, (5.4)

v

From what we found above, it is obvious that 6"‘5;“/ =0ifa=p,u=v,or
{a, B} # {p, v}, which fall under “otherwise”.

If (a, B) is an even permutation of (u,v), then we must have that (a, 8) =
(u,v), and there are only two values of v, say 7; and 7, for which §*%7 is
non-zero. Thus the sum over v reduces to two terms, namely

. 1, 1/ o 1
6%y = 50 = 5 (5 fn 45 ﬁwam) —-(1+1)=+L (55

aBy 2
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Finally, if («, 8) is an odd permutation of (u, V), then we must have that (o, 8) =
(v, 1), and there are again only two values of v, say 71 and 7, for which §*%7
is non-zero. Thus the sum over  again reduces to two terms, namely
1 1 1
aff _ T saf _ = saBm apBy _ (1 _
6" = 50y = 5 (6 00 ) = 5(-1-D)
= -1 (5.6)

Bar

Thus we have shown that

+1 if (o, B) is an even permutation of (p, )
6 =< —1 if (o, B) is an odd permutation of (u, ) (5.7)
0  otherwise.

Part (b)

Since J is a 3-index antisymmetric tensor, *J is a 1-index tensor. We find

1

sk iy = *f]ueuaﬁ'y _ *']Heua,@'y — ?‘]UAPEV)\IJHG‘M&,@'Y _ gJVApey)‘p“%aﬁw
1 N 1 \
- 75‘]”)%6” Pleapy = 7§JWP(*5U paﬁw)
1 A
= 6 u)\p(SV paﬁ’y. (58)

Now recall that J is an antisymmetric tensor. Thus J,g, = 0 if the 3 indices are

not distinct. Similarly, 8" . = 0if o, 8, and 7 are not distinct. Similarly, the

aBy
terms in the sum above are 0 if v, A, and p are not distinct. Also 6”)“’&57 =0

if {v,\,p} # {@,8,7}. Thus there are only 6 terms in the sum for which

6”"’&&7 # 0, namely the terms where (v, A, p) is a permutation of («, 3,7). We
find
*% 1 vAp 1
afy = 6 vAp0 afy — 6 (Jaﬁ’y —Jarp + Jyap = Jypa + Jya — Jﬁav)
1
~ 6 (Japy + Japy + Japy + Japy + Japy + Japy)
1
= 6 (6Japy) = Japy, (5.9)

where we have used that J is antisymmetric, hence Joy3—Jagy, for example. [J

For the 2-index antisymmetric tensor F' we find

11,
op = g1t Perouv€” op

*% %

af = 9 M epnap = o Fue"”

21!
1 1 1
= ZFAPEAW”GWQQ = EF,\peAp“”eagW = ZFAP (—2(5)‘paﬂ)

1 A
= P30 (5.10)
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From part (a) we know that (V"’Oéﬁ = 0 unless (), p) = (o, 8) or (A, p) = (8, ).
Thus we find

o 1. 1 1
ap = =50 oy = =5 (Fap = Fpa) = —5 (Fap + Fap)
= —Fap, (5.11)
where we have used that F' is antisymmetric, hence Fi,g = —Fq. O

Finally, for the 1-index antisymmetric tensor B we find

Ba — 5 BHV)\QWAQ — ? B;WAGHV)\Q — ng%;w)\GHV}\a
1 § 1 1 §
B gBPGM “Aepwra = _ﬁBP‘EWMGaW’\ =55 (—207%,,,)
1
= ngapﬂw. (5.12)

Note that 67, = 0 if p # a because in that case the two sets of indices are
always different. Thus §°#, , is only non-zero if p = «, in that case we find

Pt =070 o+ 07 07+ 07 5 =3, (5.13)

because p will be 0, 1, 2, or 3. Thus we found that
Ot = 36, (5.14)

where 0, is the usual Kronecker delta. Thus (5.12)) becomes

1 1
"B = 5By, = 5B,36", = Ba, (5.15)

ap

which is what we need to show. O
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