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Problem 1

Part (a)

For a particle in its rest frame, we know that its 4-velocity is given by ~u = (1,
˜
0)

and we are given in the problem statement that its spin vector is ~S = (0,
˜
s).

Thus

~S · ~u = 0,

d

dτ
(~S · ~u) = 0 (1.1)

Part (b)

First, let us examine the derivative spatial components of ~S while in the particles
rest frame so that

d
˜
s

dτ
= A1F

i
jS

j (1.2)

Where i, j are spatial indices that run over 1, 2, 3. To see what happens, let us
pick a spin component and expand (for example, the z-direction)

dsz

dτ
= A1F

z
jS

j = A1(sxBy − syBx) (1.3)

But this is just the form we expect of the usual 3-vector cross product. So using
that result with equation (1) from the problem set, we get

d
˜
s

dτ
= A1

˜
s×

˜
B,

⇒ A1 =
ge

2m
(1.4)

To get A2, we start with

d

dτ
(~S · ~u) = 0⇒ ~S · d~u

dτ
= −~u · d

~S

dτ
(1.5)

Note, that d~u
dτ is an acceleration, which is force divided by mass. Since the

electromagnetic force is given by qFαβu
β , we can write

~S · d~u
dτ

=
q

m
SαF

α
βu

β = −A1SαF
α
βu

β +A2 (1.6)

where we used the fact that A2~u · ~u = −A2. Now we can plug in the result of
A1 from above and solve for A2 and we get

A1 =
ge

2m
,

A2 = FαβSαu
β e

m
(
g

2
− 1) (1.7)
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Part (c)

Let
˜
E = 0 and ~s = (s0,

˜
S). Thus the particle’s 4-velocity is given by ~u = γ(1,

˜
v).

Then

~S · ~u = 0 = γ(−s0 +
˜
s ·

˜
v)⇒

˜
s ·

˜
v = s0 (1.8)

Now note that since
˜
E = 0⇒ Fαβ = 0 if either α or β = 0. So then

ds0

dτ
= A1F

0
βS

β +A2u
0 = γA2 (1.9)

and from that, in the lab frame with time coordinate t, the time rate of change
of the helicity is,

d

dt
(
˜
s ·

˜
v) =

ds0

dt
=
ds

dτ

dτ

dt
= A2

= FαβSαu
β e

m
(
g

2
− 1)

= γF ijSiv
j e

m
(
g

2
− 1)

= γvj(
˜
s×

˜
B)j

e

m
(
g

2
− 1) (1.10)

In the case where g = 2, the quantity ( g2 − 1) = 0 which implies the time
rate of change of the helicity is 0, so the helicity is constant.

Problem 2

Part (a)

Start by evaluating

~v⊥ = P(~v) = Pαβv
β = gαβv

β + uαuβv
β = vα + uαuβv

β (2.1)

To show that it is orthogonal to ~u,

~v⊥ · ~u = (vα + uαuβv
β)uα = vαv

α + uαu
αuβv

β = vαu
α(1 + uαu

α) = 0 (2.2)

since ~u is a 4-velocity. Thus ~v⊥ is orthogonal to ~u.
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Part (b)

We want to show that ~v⊥ = P( ~v⊥) and we know from above that ~v⊥ = vα +
uαuβv

β so then

P( ~v⊥) = (gαβ + uαuβ)(vβ + uβuγv
γ)

= gαβv
β + gαβu

βuγv
γ + uαuβv

β + uαuβu
βuγv

γ

= vα + uαuγv
γ + uαuβv

β − uαuγvγ

= vα + uαuβv
β

= ~v⊥ (2.3)

Thus we have shown that P is unique.

Part (c)

Since we are given a non-null vector ~q we can define q2 = ~q ·~q and we don’t need
to be afraid of dividing by q2. Now define our projection tensor for ~q as

P~q = gαβ −
1

q2
qαqβ (2.4)

It can be shown using the same arguments as in parts (a) and (b) that P~q is
indeed the projection tensor and that it is unique.

Part (d)

For a null vector ~k, construct its projection tensor as P~k = ckαkβ for an arbitrary
real number c. Thus, for an arbitrary vector ~v, we have

~k ·P~k(~v) = kαckαkβv
β = ckβv

β(0) = 0 (2.5)

Thus P~k is indeed the projection operator, however it is not unique because c
is arbitrary.

Problem 3

Part (a)

Using the usual spherical coordinates, the Cartesian coordinates are given by

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ. (3.1)
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Since ~er is the tangent vector of the curves parametrized by r with constant θ
and φ, we find

~er =
∂

∂r
=
∂xi

∂r

∂

∂xi
= sin θ cosφ~ex + sin θ sinφ~ey + cos θ ~ez, (3.2)

where i = 1, 2, 3 and we used x1 = x, x2 = y, and x3 = z. Similarly, we find

~eθ =
∂

∂θ
=
∂xi

∂θ

∂

∂xi
= r cos θ cosφ~ex + r cos θ sinφ~ey − r sin θ ~ez,

~eφ =
∂

∂φ
=
∂xi

∂φ

∂

∂xi
= −r sin θ sinφ~ex + r sin θ cosφ~ey. (3.3)

Part (b)

Recall that the spherical coordinates are given by

r =
√
x2 + y2 + z2,

θ = arccos

(
z√

x2 + y2 + z2

)
,

φ =

{
arccot(x/y) if y ≥ 0
arccot(x/y) + π if y < 0,

(3.4)

where arccos returns a value in [0, π] and arccot returns a value in [0, π] (when
extending its domain to include ±∞). We find that

d̃r = ∂ird̃x
i =

∂r

∂xi
d̃xi =

1

2
√
x2 + y2 + z2

(
2xd̃x+ 2yd̃y + 2zd̃z

)
= sin θ cosφ d̃x+ sin θ sinφ d̃y + cos θ d̃z, (3.5)
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and

d̃θ = ∂iθd̃x
i = − 1√

1− z2

x2 + y2 + z2

(
− 2xzd̃x

2(x2 + y2 + z2)3/2

− 2yzd̃y

2(x2 + y2 + z2)3/2
+

d̃z√
x2 + y2 + z2

− 2z2d̃z

2(x2 + y2 + z2)3/2

)

= −

√
x2 + y2 + z2

x2 + y2

−xzd̃x− zyd̃y + (x2 + y2)d̃z

(x2 + y2 + z2)3/2

=
xz√

x2 + y2(x2 + y2 + z2)
d̃x+

zy√
x2 + y2(x2 + y2 + z2)

d̃y

−
√
x2 + y2

x2 + y2 + z2
d̃z

=
r2 sin θ cosφ cos θ

r3 sin θ
d̃x+

r2 sin θ sinφ cos θ

r3 sin θ
d̃y − r sin θ

r2
d̃z

=
cos θ cosφ

r
d̃x+

cos θ sinφ

r
d̃y − sin θ

r
d̃z, (3.6)

and finally

d̃φ = ∂iφx̃
i = − 1

1 + x2/y2

(
d̃x

y
− xd̃y

y2

)
=

1

x2 + y2

(
−yd̃x+ xd̃y

)
=

1

r2 sin2 θ

(
−r sin θ sinφ d̃x+ r sin θ cosφ d̃y

)
= − sinφ

r sin θ
d̃x+

cosφ

r sin θ
d̃y. (3.7)

Part (c)

We have found in part (a) that

~er = sin θ cosφ~ex + sin θ sinφ~ey + cos θ ~ez,

~eθ = r cos θ cosφ~ex + r cos θ sinφ~ey − r sin θ ~ez,

~eφ = −r sin θ sinφ~ex + r sin θ cosφ~ey, (3.8)

and in part (b) we found that

d̃r = sin θ cosφ d̃x+ sin θ sinφ d̃y + cos θ d̃z,

d̃θ =
cos θ cosφ

r
d̃x+

cos θ sinφ

r
d̃y − sin θ

r
d̃z,

d̃φ = − sinφ

r sin θ
d̃x+

cosφ

r sin θ
d̃y. (3.9)
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Recall that (~ex, ~ey, ~ez) are basis vectors and thus they are linearly independent.
It can be shown (but is not necessary) that (~er, ~eθ, ~eφ) are also linearly inde-
pendent. And since these are 3 vectors in a 3-dimensional space, it follows that
they form a basis. Similarly, it can be shown that (d̃r, d̃θ, d̃φ) are linearly in-
dependent and since the space of 1-forms is also 3-dimensional, it follows that
they form a basis too.

Thus it remains to be shown that (d̃r, d̃θ, d̃φ) are dual to (~er, ~eθ, ~eφ). Since

(d̃x, d̃y, d̃z) are dual to (~ex, ~ey, ~ez), we have that

〈d̃xi, ~ej〉 = δij , (3.10)

where d̃x1 = d̃x, d̃x2 = d̃y, d̃x3 = d̃z, ~e1 = ~ex, ~e2 = ~ey, and ~e3 = ~ez. We find

〈d̃r, ~er〉 = sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ = 1,

〈d̃r, ~eθ〉 = r sin θ cos θ cos2 φ+ r sin θ cos θ sin2 φ− r sin θ cos θ = 0,

〈d̃r, ~eφ〉 = −r sin2 θ sinφ cosφ+ r sin2 θ sinφ cosφ = 0, (3.11)

and

〈d̃θ, ~er〉 =
sin θ cos θ cos2 φ

r
+

sin θ cos θ sin2 φ

r
− sin θ cos θ

r
= 0,

〈d̃θ, ~eθ〉 = cos2 θ cos2 φ+ cos2 θ sin2 φ+ sin2 θ = 1,

〈d̃θ, ~eφ〉 = − sin θ cos θ sinφ cosφ+ sin θ cos θ sinφ cosφ = 0, (3.12)

and finally

〈d̃φ, ~er〉 = − sinφ cosφ

r
+

sinφ cosφ

r
= 0,

〈d̃φ, ~eθ〉 = −cos θ sinφ cosφ

sin θ
+

cos θ sinφ cosφ

sin θ
= 0,

〈d̃φ, ~eφ〉 = sin2 φ+ cos2 φ = 1. (3.13)

Thus we have shown that

〈d̃xī, ~ej̄〉 = δīj̄ , (3.14)

where d̃x1̄ = d̃r, d̃x2̄ = d̃θ, d̃x3̄ = d̃φ, ~e1̄ = ~er, ~e2̄ = ~eθ, and ~e3̄ = ~eφ, and so we

have shown that (d̃r, d̃θ, d̃φ) are dual to (~er, ~eθ, ~eφ).

Part (d)

Recall that the components of the metric tensor are given by

gīj̄ = ~eī · ~ej̄ . (3.15)
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Using (3.8) we find

g1̄1̄ = ~er · ~er = sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ = 1,

g1̄2̄ = g2̄1̄ = ~er · ~eθ = r sin θ cos θ cos2 φ+ r sin θ cos θ sin2 φ

− r sin θ cos θ

= 0,

g1̄3̄ = g3̄1̄ = ~er · ~eφ = −r sin2 θ sinφ cosφ+ r sin2 θ sinφ cosφ

= 0,

g2̄2̄ = ~eθ · ~eθ = r2 cos2 θ cos2 φ+ r2 cos2 θ sin2 φ+ r2 sin2 θ

= r2,

g2̄3̄ = g3̄2̄ = −r2 sin θ cos θ sinφ cosφ+ r2 sin θ cos θ sinφ cosφ = 0,

g3̄3̄ = r2 sin2 θ sin2 φ+ r2 sin2 θ cos2 φ = r2 sin2 θ. (3.16)

Hence the components of the metric tensor in spherical coordinates are

gīj̄ =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (3.17)

The full metric tensor in all its glory is

g = gīj̄ d̃x
ī⊗̃dxj̄ = d̃r ⊗ d̃r + r2 d̃θ ⊗ d̃θ + r2 sin2 θ d̃φ⊗ d̃φ. (3.18)

Part (e)

Since gîĵ = ~eî · ~eĵ , it is obvious that gîĵ = δîĵ if the vector ~eî are orthonormal.
We have already found in (3.16) that ~eī are orthogonal, so we can make them
orthonormal by scaling them with the inverse of their lengths. Thus we obtain

~er̂ =
~er√
~er · ~er

=
~er
1

= sin θ cosφ~ex + sin θ sinφ~ey + cos θ ~ez,

~eθ̂ =
~eθ√
~eθ · ~eθ

=
~eθ
r

= cos θ cosφ~ex + cos θ sinφ~ey − sin θ ~ez,

~eφ̂ =
~eφ√
~eφ · ~eφ

=
~eφ

r sin θ
= − sinφ~ex + cosφ~ey. (3.19)

Problem 4

Part (a)

If Aµν is antisymmetric and Sµν is symmetric, then

Sµν = gµαgνβSαβ = gνβgµαSβα = Sνµ (4.1)
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so we know that Sµν is also symmetric.

So finally

AµνS
µν = −AνµSµν = −AνµSνµ = −AµνSµν . (4.2)

Here the first step used antisymmetry of Aµν , the second step used symmetry
of Sµν , and the third step relabeled dummy indices. Since AµνS

µν is equal to
minus itself, it must be zero.

Part (b)

Let Aµν and Sµν be as above and let Vµν be an arbitrary tensor. For equation
(4) in the problem set, we can see that

V µνAµν =
1

2
(V µνAµν + V µνAµν)

=
1

2
(V µνAµν − V µνAνµ)

=
1

2
(V µνAµν − V νµAµν)

=
1

2
(V µν − V νµ)Aµν (4.3)

Similarly to get equation (5) in the problem set

V µνSµν =
1

2
(V µνSµν + V µνSµν)

=
1

2
(V µνSµν − V µνSνµ)

=
1

2
(V µνSµν + V νµSµν)

=
1

2
(V µν + V νµ)Sµν (4.4)

Part (c)

To show that these transformation matricies are inverses of each other, simply
operate with both of them in succession.

~eµ̄ = Λµµ̄~eµ = Λµµ̄(Λν̄µ~eν̄) (4.5)

Since we are transforming back into the barred frame, that means

~eµ̄ = δν̄µ̄~eν̄

⇒ Λµµ̄Λν̄µ = δν̄µ̄ (4.6)
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The reverse can be shown be doing the same thing except with 1-forms instead.
Now we know by definition that tensors can be written as

Tα γ
β = T(w̃α, ~eβ , w̃

γ) (4.7)

We also know that it a linear operator and so plugging in the transformation
matrices we have

T ᾱ γ̄

β̄
= T(w̃ᾱ, ~eβ̄ , w̃

γ̄)

= T(Λᾱαw̃
α,Λβ

β̄
~eβ ,Λ

γ̄
γw̃

γ)

= ΛᾱαΛβ
β̄
Λγ̄γT(w̃α, ~eβ , w̃

γ)

= ΛᾱαΛβ
β̄
Λγ̄γT

α γ
β (4.8)

Part (d)

Since gµν is a tensor, its indices can be raised and lowered as any other tensor.

gαβ = gαµgβνg
µν (4.9)

gαβ = gαµgβνgµν (4.10)

To show that gαβ = δαβ , just raise or lower one of the indices and use equation
(8) from the homework set.

gαβ = gαγgγβ = δαβ (4.11)

Problem 5

Part (a)

Case 1: First consider the case where α, β, and γ are not unique. In that case
εαβγρ = 0 for all ρ, which means the right-hand side will be 0. If α, β, and γ are
not unique, it makes no sense to talk about even or odd permutations of them
and so this case falls under “otherwise”. The same argument holds if µ, ν, and
λ are not unique.

Case 2: Thus we are left with the cases where α, β, and γ are unique and
also µ, ν, and λ are unique. However, since each index can be 0, 1, 2, or 3,
the two sets of indices do not necessarily have to be the same (e.g. we could
have α, β, γ = 0, 1, 2 and µ, ν, λ = 1, 2, 3). Consider a case like this (i.e. the set
{α, β, γ} is different from the set {µ, ν, λ}). Since the Levi-Civita tensor is only
non-zero if all four indices are distinct, there is only one value of ρ, say ρ1, that
makes εαβγρ non-zero. Similarly, there is only one value of ρ, say ρ2, that makes
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εµνλρ non-zero. Since {µ, ν, λ} is different from {α, β, γ}, it follows that ρ1 6= ρ2

and thus all four terms in the sum over ρ are 0 and so the total sum is 0. Since
the two sets of indices are not the same, one is not a permutation of the other
and so this case also falls under “otherwise”.

Thus we are left with the cases where the two sets of indices are the same.
In that case (α, β, γ) is always either an even or odd permutation of (µ, ν, λ).
Recall that the Levi-Civita tensor does not change under an even permutation
of its indices.

Case 3: Consider the case where (α, β, γ) is an even permutation of (µ, ν, λ).
Since we can perform any even permutations we like without changing the Levi-
Civita tensor, we can consider the specific case (α, β, γ) = (µ, ν, λ) without loss
of generality. There is only one value of ρ, say ρ0 that is different from α, β,
and γ. This is the only value of ρ for which εαβγρ is non-zero. Thus the sum
over ρ reduces to one non-zero term, namely

δαβγµνλ = −εαβγρεµνλρ = −εαβγρ0εαβγρ0 = −(±1)(∓1) = +1, (5.1)

since εαβγδ = −εαβγδ.
Case 4: The only remaining case now is where (α, β, γ) is an odd permutation of
(µ, ν, λ). In that case we can take (α, β, γ) = (ν, µ, λ) without loss of generality,
because even permutations do not change the Levi-Civita tensors. Again, we
only have one value of ρ, say ρ0 for which εαβγρ is non-zero. The sum over ρ
again reduces to one term, namely

δαβγµνλ = −εαβγρεµνλρ = −εαβγρ0εβαγρ0 = +εαβγρ0εαβγρ0

= +(±1)(∓1) = −1. (5.2)

Thus we have shown that

δαβγµνλ =

 +1 if (α, β, γ) is an even permutation of (µ, ν, λ)
−1 if (α, β, γ) is an odd permutation of (µ, ν, λ)
0 otherwise.

(5.3)

Note that

δαβµν =
1

2
δαβγµνγ (5.4)

From what we found above, it is obvious that δαβµν = 0 if α = β, µ = ν, or
{α, β} 6= {µ, ν}, which fall under “otherwise”.

If (α, β) is an even permutation of (µ, ν), then we must have that (α, β) =
(µ, ν), and there are only two values of γ, say γ1 and γ2, for which δαβγ is
non-zero. Thus the sum over γ reduces to two terms, namely

δαβµν =
1

2
δαβγµνγ =

1

2

(
δαβγ1αβγ1 + δαβγ2αβγ2

)
=

1

2
(1 + 1) = +1. (5.5)
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Finally, if (α, β) is an odd permutation of (µ, ν), then we must have that (α, β) =
(ν, µ), and there are again only two values of γ, say γ1 and γ2, for which δαβγ

is non-zero. Thus the sum over γ again reduces to two terms, namely

δαβµν =
1

2
δαβγµνγ =

1

2

(
δαβγ1βαγ1 + δαβγ2βαγ2

)
=

1

2
(−1− 1)

= −1. (5.6)

Thus we have shown that

δαβµν =

 +1 if (α, β) is an even permutation of (µ, ν)
−1 if (α, β) is an odd permutation of (µ, ν)
0 otherwise.

(5.7)

Part (b)

Since J is a 3-index antisymmetric tensor, ∗J is a 1-index tensor. We find

∗∗Jαβγ = ∗Jµεµαβγ = ∗Jµε
µ
αβγ =

1

3!
Jνλρενλρµε

µ
αβγ =

1

3!
Jνλρε

νλρµεµαβγ

= − 1

3!
Jνλρε

νλρµεαβγµ = − 1

3!
Jνλρ(−δνλραβγ )

=
1

6
Jνλρδ

νλρ
αβγ . (5.8)

Now recall that J is an antisymmetric tensor. Thus Jαβγ = 0 if the 3 indices are

not distinct. Similarly, δνλραβγ = 0 if α, β, and γ are not distinct. Similarly, the

terms in the sum above are 0 if ν, λ, and ρ are not distinct. Also δνλραβγ = 0
if {ν, λ, ρ} 6= {α, β, γ}. Thus there are only 6 terms in the sum for which

δνλραβγ 6= 0, namely the terms where (ν, λ, ρ) is a permutation of (α, β, γ). We
find

∗∗Jαβγ =
1

6
Jνλρδ

νλρ
αβγ =

1

6
(Jαβγ − Jαγβ + Jγαβ − Jγβα + Jβγα − Jβαγ)

=
1

6
(Jαβγ + Jαβγ + Jαβγ + Jαβγ + Jαβγ + Jαβγ)

=
1

6
(6Jαβγ) = Jαβγ , (5.9)

where we have used that J is antisymmetric, hence Jαγβ−Jαβγ , for example.

For the 2-index antisymmetric tensor F we find

∗∗Fαβ =
1

2!
∗Fµνεµναβ =

1

2!
∗Fµνε

µν
αβ =

1

2!

1

2!
Fλρελρµνε

µν
αβ

=
1

4
Fλρε

λρµνεµναβ =
1

4
Fλρε

λρµνεαβµν =
1

4
Fλρ

(
−2δλραβ

)
= −1

2
Fλρδ

λρ
αβ . (5.10)
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From part (a) we know that δλραβ = 0 unless (λ, ρ) = (α, β) or (λ, ρ) = (β, α).
Thus we find

∗∗Fαβ = −1

2
Fλρδ

λρ
αβ = −1

2
(Fαβ − Fβα) = −1

2
(Fαβ + Fαβ)

= −Fαβ , (5.11)

where we have used that F is antisymmetric, hence Fαβ = −Fβα.

Finally, for the 1-index antisymmetric tensor B we find

∗∗Bα =
1

3!
∗Bµνλεµνλα =

1

3!
∗Bµνλε

µνλ
α =

1

3!
Bρερµνλε

µνλ
α

=
1

3!
Bρε

ρµνλεµνλα = − 1

3!
Bρε

ρµνλεαµνλ = −1

6
Bρ
(
−2δρµαµ

)
=

1

3
Bρδ

ρµ
αµ . (5.12)

Note that δρµαµ = 0 if ρ 6= α because in that case the two sets of indices are
always different. Thus δρµαµ is only non-zero if ρ = α, in that case we find

δρµαµ = δρ0ρ0 + δρ1ρ1 + δρ2ρ2 + δρ3ρ3 = 3, (5.13)

because ρ will be 0, 1, 2, or 3. Thus we found that

δρµαµ = 3δρα , (5.14)

where δρα is the usual Kronecker delta. Thus (5.12) becomes

∗∗Bα =
1

3
Bρδ

ρµ
αµ =

1

3
Bρ3δ

ρ
α = Bα, (5.15)

which is what we need to show.
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