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Problem 1

Part (a)

Consider the interval between two events along a ray of light. Let ∆s2 = 0 in
the Σ frame. Then we have

0 = ηαβ∆xα∆xβ = −∆t2 + ∆x2 + ∆y2 + ∆z2

⇒ (∆x2 + ∆y2 + ∆z2)/∆t2 = 1 (1.1)

because the speed of light is 1. In a different frame, Σ̄, since the speed of light
is also 1 in this frame we similarly find

(∆x̄2 + ∆ȳ2 + ∆z̄2)/∆t̄2 = 1

⇒ ∆s̄2 = −∆t̄2 + ∆x̄2 + ∆ȳ2 + ∆z̄2 = 0 (1.2)

Thus, if ∆s2 = 0 in one frame, then it is 0 in all frames.

Part (b)

Assuming linear transformations, ∆xµ̄ = Lµ̄ν∆xν , we get,

Q = ηᾱβ̄∆xᾱ∆xβ̄ = (ηᾱβ̄L
ᾱ
µL

β̄
ν )∆xµ∆xν (1.3)

So thus Q is a quadratic form in the xα coordinate system. Now if ∆xα is on
the light cone, then we have

−∆t2 + ∆x2 + ∆y2 + ∆z2 = ∆s2 = 0 = ∆s̄2 = Q (1.4)

Part (c)

In the xα coordinates, the most general form for Q is

Q = Aij∆x
i∆xj +Bi∆x

i∆t+ c1∆t2 (1.5)

where i, j run from 1, 2, 3 and Aij , Bi, and c1 are constants to be determined.
Consider a hypersurface with t = t0 constant so then ∆t = 0. The intersection
between the light cone and this surface is a 2-sphere centered at the spatial
origin. In this case, Q = Aij∆x

i∆xj . Because this is a 2-sphere centered on
the origin, symmetry demands that Aij = c2δij , for some constant c2. Thus Q
can be written as

Q = c2(∆x2 + ∆y2 + ∆z2) + c1∆t2 +Bi∆x
i∆t. (1.6)
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Consider now the interval between two events a and b where ∆t! = 0 between a
and b. The interval between b and a should be the same as the interval between
a and b (reordering the events shouldn’t matter). Because reordering the events
involves switching the sign on ∆t, this shows that Bi = 0. Therefore

Q = c1∆t2 + c2(∆x2 + ∆y2 + ∆z2). (1.7)

Part (d)

Consider the surface with ∆y2 = ∆z2 = 0 intersecting the light cone.

Q = c1∆t2 + c2∆x2 = 0⇒ c1∆t2 = −c1∆x2 (1.8)

On the light cone, |∆x| = |∆t| and so we get c1 = −c2 and then

Q = c2ηµν∆xµ∆xν (1.9)

Part (e)

From the parts above, we have

Q = ηᾱβ̄∆xᾱ∆xβ̄ = c2ηµν∆xµ∆xν (1.10)

If we pick the transformation where we time reverse the coordinates and apply
it twice we should get the original Q.

Q = ηᾱβ̄∆xᾱ∆xβ̄ = (c2)2ηᾱβ̄∆xᾱ∆xβ̄ ⇒ |c2| = 1 (1.11)

For infinitesimal transformations, we do not expect the quantity to flip signs so
this means c2 = 1. Thus, we have shown that

ηᾱβ̄∆xᾱ∆xβ̄ = ηµν∆xµ∆xν

⇒ ∆s2 = ∆s̄2 (1.12)

Problem 2

Part (a)

Let the two frames Σ and Σ̄ be aligned at the origin when both clocks are at
0. After a time t, an observer at rest in frame Σ will see an object at rest in
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frame Σ̄ with a position x. However, the object will see itself as stationary so
then x̄ = 0. Thus our equation is then

x̄ = 0 = α10t+ α11x

⇒ x = −α10

α11
t ⇒ v = −α10

α11
(2.1)

Part (b)

For spacetime diagrams of two frames with relative velocity v between them, we
know that the angle between the t̄ and t axes is the same as the angle between
the x̄ and x axes. Thus, the slopes of the two barred axes with respect to the
unbarred axes are inverses of each other. In part(a), we considered an object on
the x̄ = 0 line which is the t̄ axis and found that it had slope v = −α10

α11
. This

implies that the x̄ axis, which is the t̄ = 0 line, has slope 1/v.

t̄ = 0 = α00t+ α01x

⇒ x = −α00

α01
t =

1

v
t (2.2)

Thus we have v = −α01

α00
. From this and the result in part (a), we have the

equations

t̄ = α00(t− vx)

x̄ = α11(x− vt) (2.3)

Part (c)

From the invariance of δs2 we have

δs2 = −t2 + x2 = −t̄2 + x̄2 (2.4)

Substituting in the results from (2.3) we get

δs2 = −α2
00(t− vx)2 + α2

11(x− vt)2

= −α2
00(t2 − 2vx+ v2x2) + α2

11(x2 − 2vx+ v2t2)

= t2(v2α2
11 − α2

00) + x2(α2
11 − α2

00v
2) + 2vxt(−α2

11 + α2
00) (2.5)

Now we can equate terms of appropriate powers of x and t. Starting with the
cross term, we get

0 = 2vxt(−α2
11 + α2

00)⇒ α2
11 = α2

00 (2.6)
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so now we have,

t2 = t2α2
00(v2 − 1), x2 = x2α2

00(1− v2)

⇒ α2
00 =

1

1− v2
= α11 (2.7)

If we were to choose the negative root, that would correspond to flipping the
direction of the axis between the frames so we pick the positive root. Thus
α00 = α11 = 1√

1−v2 .

Problem 3

Part (a)

A vector ~v is spacelike if and only if ηµνv
µvν > 0. We find

ηµν(Aµ +Bµ)(Aν +Bν) = ηµνA
µAν + ηµνA

µBν + ηµνB
µAν + ηµνB

µBν

= ηµνA
µAν + 2ηµνA

µBν + ηµνB
µBν , (3.1)

because the metric ηµν is symmetric (i.e. ηµν = ηνµ). Since ~A and ~B are space-
like, we have ηµνA

µAν > 0 and ηµνB
µBν > 0. And we also have ηµνA

µBν = 0,

because ~A and ~B are orthogonal. Thus we find that

ηµνA
µAν + 2ηµνA

µBν + ηµνB
µBν > 0, (3.2)

and so by (3.1) we have shown that ~A+ ~B is spacelike.

Part (b)

Recall that for a vector ~v, we have

ηµνv
µvν = −(v0)2 + (v1)2 + (v2)2 + (v3)2 = −(v0)2 + ‖

˜
v‖2, (3.3)

where ‖
˜
v‖ is the usual Euclidean norm of the 3-vector

˜
v. Let ~N be a null vector,

thus

0 = ηµνN
µNν = −(N0)2 + ‖

˜
N‖2

⇔ (N0)2 = ‖
˜
N‖2

⇔ |N0| = ‖
˜
N‖. (3.4)

And let ~T be a timelike vector, hence

0 > ηµνT
µT ν = −(T 0)2 + ‖

˜
T‖2

⇔ (T 0)2 > ‖
˜
T‖2

⇔ |T 0| > ‖
˜
T‖. (3.5)
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Now suppose that ~N and ~T are orthogonal. It follows that

0 = ηµνN
µT ν = −N0T 0 +N1T 1 +N2T 2 +N3T 3 = −N0T 0 +

˜
N ·

˜
T. (3.6)

From the above we get

|
˜
N ·

˜
T | = |N0T 0| = |N0||T 0| > ‖

˜
N‖‖

˜
T‖, (3.7)

where we used (3.4) and (3.5). Since
˜
N and

˜
T are ordinary 3-vectors, we can

use the Cauchy–Schwarz inequality, which states that

‖
˜
N‖‖

˜
T‖ ≥ |

˜
N ·

˜
T |. (3.8)

Combining this with (3.7) yields

|
˜
N ·

˜
T | > |

˜
N ·

˜
T |, (3.9)

which is a contradiction and thus our assumption that ~N and ~T are orthogonal
must be wrong.

Part (c)

Given a null vector ~k, without loss of generality, we can choose a coordinate
system such that

~k = t̂+ x̂. (3.10)

Now let ~v = At̂+Bx̂+ Cŷ +Dẑ be a vector orthogonal to ~k, so

0 = ηµνk
µvν = −A+B, (3.11)

hence A = B. If ~v is not spacelike, then we have

0 ≥ ηµνvµvν = −A2 +B2 + C2 +D2 = C2 +D2, (3.12)

because A = B. Thus it follows that C = D = 0. And therefore

~v = A(t̂+ x̂) = A~k, (3.13)

and so we have shown that any non-spacelike vector orthogonal to the null vector
~k is a multiple of ~k.

Problem 4

First consider frame 1. In frame 1, the 4-velocity of frame 1 is just uᾱ1 = (1,
˜
0)

and the 4-velocity of frame 2 (as measured in frame 1) is uᾱ2 = γ(1,
˜
v), where
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γ = (1 − v2)−1/2 and v = ‖
˜
v‖ is the speed of frame 2 with respect to frame

1. Since ~u1 and ~u2 are 4-vectors, their dot product ~u1 · ~u2 = −γ is Lorentz
invariant.

So now we consider some general frame where frame 1 and 2 have 4-velocities
uα1 = γ1(1,

˜
v1) and uα2 = γ2(1,

˜
v2), respectively. Where we used γi = (1−v2

i )−1/2

and vi = ‖
˜
vi‖ for i = 1, 2. Using the invariance of ~u1 · ~u2 we now find

− γ = ~u1 · ~u2 = γ1γ2(−1 +
˜
v1 ·

˜
v2)

⇔ γ2 = γ2
1γ

2
2(1−

˜
v1 ·

˜
v2)2

⇔ 1

1− v2
=

(1−
˜
v1 ·

˜
v2)2

(1− v2
1)(1− v2

2)
. (4.1)

Solving for v2 (recall that v is the magnitude of the relative velocity between
the two frames) yields

v2 = 1− (1− v2
1)(1− v2

2)

(1−
˜
v1 ·

˜
v2)2

=
(1−

˜
v1 ·

˜
v2)2 − (1− v2

1)(1− v2
2)

(1−
˜
v1 ·

˜
v2)2

=
1− 2

˜
v1 ·

˜
v2 + (

˜
v1 ·

˜
v2)2 − 1 + v2

1 + v2
2 − v2

1v
2
2

(1−
˜
v1 ·

˜
v2)2

=
‖
˜
v1 −

˜
v2‖2 + (

˜
v1 ·

˜
v2)2 − v2

1v
2
2

(1−
˜
v1 ·

˜
v2)2

. (4.2)

Now recall Lagrange’s identity in 3 dimension:

‖
˜
a×

˜
b‖2 = ‖

˜
a‖2‖

˜
b‖2 − (

˜
a ·

˜
b)2. (4.3)

Using this identity, we can write (4.2) as

v2 =
‖
˜
v1 −

˜
v2‖2 − ‖

˜
v1 ×

˜
v2‖2

(1−
˜
v1 ·

˜
v2)2

, (4.4)

since vi = ‖
˜
vi‖. Thus we have what we need to show.

Problem 5

Part (a)

Without loss of generality, take all motions to be in the x-direction. We have
the following equations as constraints for the 4-velocity ~u and 4-acceleration ~a,

~u · ~u = −1 = −(ut)2 + (ux)2

~u · ~a = 0 = −atut + axux

~a · ~a = g2 = −(at)2 + (ax)2 (5.1)
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From these we can obtain the following relations,

at =
ux

ut
a1 (5.2)

g2 = (ax)2(1− (
ux

ut
)2) (5.3)

−1 = −(ut)2(1− (
ux

ut
)2) (5.4)

Plugging (5.3) into (5.4) gives us g2 = (ax)2/(ut)2 which can then be used in
(5.2) to yield,

ax = gut, at = gux (5.5)

Now we can differentiate with respect to the proper time, τ ,

gux = at =
dut

dτ
=
dax

dτ

1

g
=

1

g

d2ux

dτ2

⇒ d2ux

dτ2
= g2ux (5.6)

The solution to this differential equation is ux = A cosh gτ +B sinh gτ . The
initial conditions are ux(t) = 0⇒ A = 0 and dux

dτ (0) = g ⇒ B = 1. Then, using
the properties of the hyperbolic functions and ~u · ~u = −1, we get,

ux = sinh gτ , ut = cosh gτ (5.7)

To get the equations of motion for x and t, we can integrate these equations.
With conditions that x = t = 0 when τ = 0 (and plugging back in relevant
factors of c),

x = c2g−1(cosh
gτ

c
− 1), t = cg−1 sinh

gτ

c
(5.8)

Thus, 30 years on earth gives a proper time of τ = c
g sinh−1 gt

c ≈ 4.1yr. Plug
that into the equation for x to get a distance of x ≈ 29ly.

To get the distance as viewed by the observer on the rocket, plug τ = 30yr
into the equation for x and we find x ≈ 5.3× 1012ly.

Part (b)

Traveling halfway corresponds to x = 15000ly. Invert the equation for x to get

τ = cg−1 cosh−1(xgc−2 + 1) ≈ 10.309yr (5.9)

Plugging this in for the equation for t(τ) gives us t 1
2
≈ 15001 y for half the trip

and thus t ≈ 30002 y for the entire trip.
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Part (c)

Let the mass of the rocket ship be M . The change in mass-energy of the rocket
matches the energy radiated away so d(Mut) = −dErad. Because the energy
radiated away is in the form of photons, dErad = dPrad which is equal to the
momentum change in the rocket. Thus we have,

d(Mut) = −dP = −d(Mux)

(dM)ut +M(dut) = −(dM)ux −M(dux)

dM

M
= −d(ut + ux)

(ut + ux)

⇒ lnM/M0 = − ln (ut + ux)

⇒ M =
M0

(ut + ux)
(5.10)

From (5.7), we get

M =
M0

(ut + ux)
= M0e

−gτ (5.11)

Plugging in τ = 10.3yr for half the trip gives us M 1
2
≈ M0

30000 . Thus, for a full
trip we find,

Mfinal ≈ 10−9M0 (5.12)

Problem 6

Part (a)

The observer is at rest in the observer’s rest frame, hence uα = (1,
˜
0). Let

pα = (p0,
˜
p) in the observer’s rest frame. Then we have

pα(3) = (p0,
˜
p) + (−p0 + 0)(1,

˜
0) = (p0,

˜
p) + (−p0,

˜
p) = (0,

˜
p). (6.1)

So the time component of ~p(3) is indeed zero in the observer’s rest frame and
the spatial components are

˜
p, which is the 3-vector part of ~p in the observer’s

rest frame and thus this is the 3-momentum of the particle as measured by the
observer.
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Part (b)

We have shown in part (a) that for a single particle with 4-momentum ~pi, we
have ~pi + (~pi · ~ucm)~ucm = (0,

˜
pi), where

˜
pi is the 3-momentum of particle i

measured in the rest frame of the observer with 4-velocity ~ucm. The total 4-
momentum of the system of particles is simply the sum of the 4-momenta of the
individual particles, thus we have

~p =
∑
i

~pi, (6.2)

and so

~p+ (~p · ~ucm)~ucm =
∑
i

~pi +

[(∑
i

~pi

)
· ~ucm

]
~ucm =

∑
i

~pi +

[∑
i

~pi · ~ucm

]
~ucm

=
∑
i

~pi +

[∑
i

(~pi · ~ucm)~ucm

]
=
∑
i

[~pi + (~pi · ~ucm)~ucm]

=
∑
i

(0,
˜
pi) =

(
0,
∑
i ˜
pi

)
= (0,

˜
0), (6.3)

since the frame with 4-velocity ~ucm is by definition that frame where the total
3-momentum of the system of particles is zero, hence where

∑
i
˜
pi =

˜
0.

Since ~p and ~ucm are 4-vectors, ~p · ~ucm is a Lorentz-invariant scalar (i.e. it
is the same in every Lorentz frame). If we now transform to another Lorentz
frame, we get

pµ̄ = Λµ̄νp
ν

uµ̄cm = Λµ̄νu
ν
cm, (6.4)

and thus we obtain

pµ̄ + (~p · ~ucm)uµ̄cm = Λµ̄ν(pν + (~p · ~ucm)uνcm) = Λµ̄ν(~0) = ~0, (6.5)

and so (6.3) holds in every Lorentz frame.

Part (c)

Since Etot and
˜
ptot are the energy and 3-momentum of the system of particles

measured in the lab frame, we have that

pαlab = (Etot,
˜
ptot) (6.6)

is the 4-momentum of the system measured in the lab frame. Let the 4-velocity
of center-of-momentum frame measured in the lab frame be

uαcm,lab = γ(1,
˜
vcm,lab). (6.7)
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We have shown in part (b) that ~p+ (~p · ~ucm)~ucm = 0 in every Lorentz frame, so
in particular, this also holds in the lab frame, which gives

0 = Etot + (~plab · ~ucm,lab)γ (6.8)

0 =
˜
ptot + (~plab · ~ucm,lab)γ

˜
vcm. (6.9)

From (6.8) we get

~plab · ~ucm,lab = −Etot

γ
, (6.10)

and then using this in (6.9) we find

˜
vcm = − ˜

ptot

(~plab · ~ucm,lab)γ
= ˜
ptot

Etot
, (6.11)

which is what we need to show.
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