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Problem 1

Part (a)

Consider the interval between two events along a ray of light. Let As? = 0 in
the ¥ frame. Then we have

0 = oAz Az’ = —At? + Az? + Ay? + A2?
= (A2 + A2+ A% /A2 =1 (1.1)

because the speed of light is 1. In a different frame, ¥, since the speed of light
is also 1 in this frame we similarly find

(AZ* + Ay® + AZ?) /AP =1
= AF=-AP+AP + AP +AZ2 =0 (1.2)

Thus, if As? = 0 in one frame, then it is 0 in all frames. O

Part (b)

Assuming linear transformations, Az” = LEAx”, we get,

Q= nd[;AxanB = (n@BLZ‘Lg)Aa:”Ax” (1.3)

So thus @ is a quadratic form in the ¢ coordinate system. Now if Az® is on
the light cone, then we have

AP+ A AP+ A=A =0=AF =Q (1.4)

O

Part (c)
In the #* coordinates, the most general form for @) is

where 7, j run from 1,2,3 and A;;, B;, and ¢; are constants to be determined.
Consider a hypersurface with ¢t = ¢y constant so then At = 0. The intersection
between the light cone and this surface is a 2-sphere centered at the spatial
origin. In this case, Q = A;;Az’AzI. Because this is a 2-sphere centered on
the origin, symmetry demands that A;; = c20;;, for some constant c. Thus @
can be written as

Q= CQ(A$2 + Ay? + AzQ) + 1 At? + B; Az At. (1.6)
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Consider now the interval between two events a and b where At! = 0 between a
and b. The interval between b and a should be the same as the interval between
a and b (reordering the events shouldn’t matter). Because reordering the events
involves switching the sign on At, this shows that B; = 0. Therefore

Q = 1 A + cp(Az? + Ay? + AZ?). (1.7)

O

Part (d)
Consider the surface with Ay? = Az? = 0 intersecting the light cone.

Q = 1 At? 4+ coAz? = 0 = 1 At? = —¢1 Ax? (1.8)
On the light cone, |Az| = |At| and so we get ¢; = —co and then

Q = 0277/WAIMA$V (19)

Part (e)
From the parts above, we have
Q= n&BAx&A:rB = conp Azt Ax” (1.10)

If we pick the transformation where we time reverse the coordinates and apply
it twice we should get the original Q.

Q= n&ﬁ-Axa‘AxB = (Cg)Qn&EAJ}&AJ}'B = ea] =1 (1.11)

For infinitesimal transformations, we do not expect the quantity to flip signs so
this means cs = 1. Thus, we have shown that

naBAx&AxB = N Azt Az”
= As® = A& (1.12)

Problem 2

Part (a)

Let the two frames ¥ and ¥ be aligned at the origin when both clocks are at
0. After a time ¢, an observer at rest in frame ¥ will see an object at rest in
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frame ¥ with a position . However, the object will see itself as stationary so
then £ = 0. Thus our equation is then

T =0=aiot + a1z
o a1

= z=—"2t = p=--"1 (2.1)
a11 a11

Part (b)

For spacetime diagrams of two frames with relative velocity v between them, we
know that the angle between the # and ¢ axes is the same as the angle between
the  and x axes. Thus, the slopes of the two barred axes with respect to the
unbarred axes are inverses of each other. In part(a), we considered an object on
the Z = 0 line which is the  axis an(i found that it had slope v = —g—ﬁ. This
implies that the Z axis, which is the ¢ = 0 line, has slope 1/v.

t=0= Qgot + ag1x

1
= p=-—0_ = (2.2)
a1 v
Thus we have v = —g—g;. From this and the result in part (a), we have the
equations
t = ago(t — vx)
z = aji(z — ot) (2.3)
O
Part (c)

From the invariance of §s? we have
652 = —t? + 22 = 12 + 7* (2.4)

Substituting in the results from (2.3 we get

852 = —ady(t —vz)? + i, (z — vt)?
= —a2)(t* — 2vz +v22?) + o3y (2% — 20z + v*t?)
= t*(v®ad) — agy) + 2% (af; — afgv®) + 2vxt(—af; + afy) (2.5)

Now we can equate terms of appropriate powers of x and ¢. Starting with the
cross term, we get

0 = 2uzt(—ai, +ady) = of, = ad, (2.6)
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so now we have,
t?2 = t2ad,(v? — 1), 22 = 2%a3,(1 —v?)
1
1—v2
If we were to choose the negative root, that would correspond to flipping the
direction of the axis between the frames so we pick the positive root. Thus

= 01(2)0 = = 11 (27)

Qoo = 011 = 4—03- O
Problem 3
Part (a)
A vector ¥ is spacelike if and only if n,,v*v” > 0. We find
Nuw (A" + B*)(AY + BY) = 1, A AY + 1, A* BY + 0, B* A” + 1,, B*B”
= NuA*A” + 2n,, A¥BY + 1, B*B", (3.1)

because the metric 7, is symmetric (i.e. 77,, = 1,,). Since A and B are space-
like, we have 7, A*A” > 0 and 7,, B*B” > 0. And we also have 7, A*B” = 0,
because A and B are orthogonal. Thus we find that

M A AY 4 21, A*BY + 1, B*B” > 0, (3.2)

and so by (3.1)) we have shown that A + B is spacelike. O

Part (b)

Recall that for a vector ¥, we have
Moo = —(0°)? + (v1)? + (v*)? + (%) = =(°)? + |lo]”,  (3.3)

where ||v|| is the usual Euclidean norm of the 3-vector v. Let N be a null vector,
thus

0 =7, N'N" = —(N°)* + | N]*
& (N9 = ||
& IN%| =Nl (34)
And let T be a timelike vector, hence
0> 1, THT" = —(T°)* + |IT|*
& (192> |7°
& [T°> |71 (3.5)
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Now suppose that N and T are orthogonal. It follows that
0 =1 N'T" = —N°T° + N'T' + N?T2? + N373 = -N°T° + N -T. (3.6)
From the above we get
[N T = IN"T°| = [NO||T° > IV IIIZ, (3.7)

where we used (3.4) and (3.5). Since N and T are ordinary 3-vectors, we can
use the Cauchy—Schwarz inequality, which states that

INIITN =1 - T (3.8)

Combining this with (3.7)) yields

|NV-T|> [N -TJ, (3.9)
which is a contradiction and thus our assumption that N and T are orthogonal
must be wrong. O
Part (c)

Given a null vector E, without loss of generality, we can choose a coordinate
system such that

k=1+2. (3.10)
Now let 7 = At + Bi + C4 + D2 be a vector orthogonal to E, SO
0 =nu k' =—-A+ B, (3.11)
hence A = B. If ¥ is not spacelike, then we have
0> nuv'v” = —A* + B2+ C? + D* = C* + D?, (3.12)
because A = B. Thus it follows that C = D = 0. And therefore
7= Al + &) = Ak, (3.13)

and so we have shown that any non-spacelike vector orthogonal to the null vector
k is a multiple of k. O

Problem 4

First consider frame 1. In frame 1, the 4-velocity of frame 1 is just u$ = (1,0)
and the 4-velocity of frame 2 (as measured in frame 1) is u§ = (1, v), where
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v = (1-=v%)"Y2 and v = ||Jv|| is the speed of frame 2 with respect to frame
1. Since u; and iy are 4-vectors, their dot product w; - io = —< is Lorentz
invariant.

So now we consider some general frame where frame 1 and 2 have 4-velocities
u$ =v1(1,v1) and u§ = Y(1,vz), respectively. Where we used y; = (1—v?)~1/2
and v; = ||v;|| for i =1, 2. Using the invariance of @ - @z we now find

—y =1 -ty =nv2(—1+v1-v2)
2 2.2 2
& v =771 — v ve)
1 (1 —w1-v2)?

TR T ) —u) (“4.1)

Solving for v? (recall that v is the magnitude of the relative velocity between
the two frames) yields

(1-0?)A—v3)  (I-wi-v2)*—(1—-0v])(1—23)
(I—wv-v2)? (1 —v1-v2)?

1 —=201 -wa + (v1 - v2)® = 1 +0f + 03 — vjv3

a (1 —v1-02)?

lor = vl 4 (v - 2)? — viv3

v=1-

- (L—v1-v2)? 4.2)
Now recall Lagrange’s identity in 3 dimension:
lla < blI* = llal*[b* - (a - b)*. (4.3)
Using this identity, we can write as
2 llon = 22|” — flvr X v (4.4)
(1 —v1-22)? ’
since v; = ||v;||. Thus we have what we need to show. O

Problem 5

Part (a)

Without loss of generality, take all motions to be in the x-direction. We have
the following equations as constraints for the 4-velocity « and 4-acceleration @,

T d=—1= (ut)2_|_(uz)2
@ -d=0=—au+a*u®
i-d=g°=—(a")’+(a")? (5.1)
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From these we can obtain the following relations,

at = Eal (5.2)
¢ = (@71~ (%)) (53)
=W () (54)

Plugging (5.3)) into (5.4) gives us g2 = (a*)?/(u')? which can then be used in
(52 to yield,

a® =gu', a' =gu (5.5)

Now we can differentiate with respect to the proper time, 7,

¢ du' da®1  1d*u”

e e =
d*u® .

The solution to this differential equation is u* = A cosh g7 + Bsinh gr. The
initial conditions are u®(t) =0 = A = 0 and %= (0) = g = B = 1. Then, using
the properties of the hyperbolic functions and @ - @ = —1, we get,

u” = sinh g7, u' = cosh g7 (5.7)

To get the equations of motion for z and ¢, we can integrate these equations.
With conditions that & = ¢ = 0 when 7 = 0 (and plugging back in relevant
factors of ¢),

r = g !(cosh 9T _ 1), t=cg 'sinh 9T (5.8)
c c

Thus, 30 years on earth gives a proper time of 7 = < sinh™* %t

that into the equation for = to get a distance of x = 291y.

~ 4.1yr. Plug

To get the distance as viewed by the observer on the rocket, plug 7 = 30yr
into the equation for z and we find  ~ 5.3 x 10'ly. O

Part (b)
Traveling halfway corresponds to = = 15000ly. Invert the equation for = to get
7 =cg L eosh ™ (zge™? + 1) ~ 10.309yr (5.9)

Plugging this in for the equation for ¢(7) gives us t1 ~ 15001 y for half the trip
and thus ¢ ~ 30002 y for the entire trip. O
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Part (c)

Let the mass of the rocket ship be M. The change in mass-energy of the rocket
matches the energy radiated away so d(Mu!') = —dF,qq. Because the energy
radiated away is in the form of photons, dF,.q = dP.q which is equal to the
momentum change in the rocket. Thus we have,

d(Mut) = —dP = —d(Mu®)
(dM)u' + M (du') = —(dM)u® — M (du®)
aM  d(u' +u”)

M (ut +u®)
= InM/My = —In(u"+ u")
M,
= M=—2_ (5.10)
(u+ )
From (5.7)), we get
My
M=—""__ — My 97 5.11
(ut + u®) 0¢ ( )
Plugging in 7 = 10.3yr for half the trip gives us M% ~ 3%‘60. Thus, for a full
trip we find,
M finar = 1072 My (5.12)
O
Problem 6
Part (a)

The observer is at rest in the observer’s rest frame, hence u® = (1,0). Let
p* = (p°, p) in the observer’s rest frame. Then we have

Py = @°,p) + (=p" +0)(1,0) = (0°,p) + (—p°,p) = (0,p).  (6.1)

So the time component of i3y is indeed zero in the observer’s rest frame and
the spatial components are p, which is the 3-vector part of P’ in the observer’s
rest frame and thus this is the 3-momentum of the particle as measured by the
observer. O
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Part (b)

We have shown in part (a) that for a single particle with 4-momentum p;, we
have p; + (i + Uem)Tem = (0, pl) where p; is the 3-momentum of particle i
measured in the rest frame of the observer with 4- velocity Uem. The total 4-

momentum of the system of particles is simply the sum of the 4-momenta of the
individual particles, thus we have

p= Zp (6.2)

and so

Pt (0 tlom ) tom = sz (Zm) -ﬁcm] dom = D _Bi+ | D P -acml Tem
= Zpl Z e ucm] Z [Bi + (i * tem)ficm)
= _(0.pi) = (0,2132') =(0,0), (6.3)

since the frame with 4-velocity wcp, is by definition that frame where the total
3-momentum of the system of particles is zero, hence where ), pi =0.

Since p and .y are 4-vectors, p'- @y s a Lorentz-invariant scalar (i.e. it
is the same in every Lorentz frame). If we now transform to another Lorentz
frame, we get

Pl =A% p¥
Ut = A s, (6.4)
and thus we obtain
P (5 e )uby = A (0 + (5 em)ul,) = AP, (0) = 0, (6.5)
and so holds in every Lorentz frame. O

Part (c)

Since Fiot and Ptot are the energy and 3-momentum of the system of particles
measured in the lab frame, we have that

Plab = (E'ots Prot) (6.6)

is the 4-momentum of the system measured in the lab frame. Let the 4-velocity
of center-of-momentum frame measured in the lab frame be

ugm,lab = 7(179Cm,1ab)~ (67)
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We have shown in part (b) that P+ (§ @em )Uem = 0 in every Lorentz frame, so
in particular, this also holds in the lab frame, which gives

0= Fiot + (ﬁ'lab . ﬁcm,lab)’y (68)
0= Ptot + (ﬁiab N ﬁcm,lab)rypcm- (69)
From we get
L E,
Plab * Ucm,lab = — ’ty t7 (610)

and then using this in we find

Ptot _ Ptot
— — - 3
(plab : ucm,lab)’y Etot

(6.11)

VUem = —

which is what we need to show. ]
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