Physics 236a assignment, Week 7:

(November 12, 2015. Due on November 19, 2015)

1. Einstein tensor [10 points]

- (a) Given some time coordinate, show that the components of the Einstein tensor with at least one time index, $G^{\mu 0}$, involves only first time derivatives of the metric but not second time derivatives of the metric. (This means that the time components of Einstein's equation $G^{\mu\nu} = 8\pi T^{\mu\nu}$ are constraint equations like the Maxwell $\nabla \cdot E$ and $\nabla \cdot B$ equations, and constrain parts of the metric at one particular instant in time).
- (b) Show that the components of the Einstein tensor with all spatial indices G^{ij} involve second time derivatives of the metric. (This means that the spatial components of Einstein's equation $G^{\mu\nu} = 8\pi T^{\mu\nu}$ are *evolution equations* like the Maxwell curl equations, and govern how the metric evolves in time).

2. Euler equations [10 points]

The stress-energy tensor for a perfect fluid is

$$T_{\mu\nu} = (p+\rho)u_{\mu}u_{\nu} + pg_{\mu\nu},$$
(1)

where ρ and p are the energy density and pressure in the rest frame of the fluid, and u_{μ} is the 4-velocity of the fluid.

Derive the Euler equation

$$(p+\rho)\nabla_{\vec{u}}\vec{u} = -\nabla p - \vec{u}\nabla_{\vec{u}}p.$$
(2)

3. Raychaudhuri's Equation [25 points]

(a) Suppose that \vec{u} is a vector field describing a family of timelike world lines. Show that $\nabla \vec{u}$ can be decomposed as

$$u_{\alpha;\beta} = \omega_{\alpha\beta} + \sigma_{\alpha\beta} + \frac{1}{3}\theta P_{\alpha\beta} - a_{\alpha}u_{\beta}, \qquad (3)$$

where \vec{a} is the 4-acceleration, θ is the *expansion* of the world lines

$$\theta = u^{\alpha}{}_{;\alpha},\tag{4}$$

 $\omega_{\alpha\beta}$ is the rotation 2-form

$$\omega_{\alpha\beta} = \frac{1}{2} \left(u_{\alpha;\mu} P^{\mu}{}_{\beta} - u_{\beta;\mu} P^{\mu}{}_{\alpha} \right), \qquad (5)$$

and $\sigma_{\alpha\beta}$ is the *shear tensor*

$$\sigma_{\alpha\beta} = \frac{1}{2} \left(u_{\alpha;\mu} P^{\mu}{}_{\beta} + u_{\beta;\mu} P^{\mu}{}_{\alpha} \right) - \frac{1}{3} \theta P_{\alpha\beta}.$$
(6)

Here $P_{\alpha\beta} = g_{\alpha\beta} + u_{\alpha}u_{\beta}$ is the projection tensor that projects a vector onto the 3-surface perpendicular to \vec{u} .

(b) Derive the Raychaudhuri equation

$$\frac{d\theta}{d\tau} = a^{\alpha}{}_{;\alpha} + \omega_{\alpha\beta}\omega^{\alpha\beta} - \sigma_{\alpha\beta}\sigma^{\alpha\beta} - \frac{1}{3}\theta^2 - R_{\alpha\beta}u^{\alpha}u^{\beta}.$$
 (7)

(c) A vector field \vec{v} is called *hypersurface orthogonal* if there exists a family of 3-dimensional surfaces such that \vec{v} is orthogonal to those surfaces. Show that if \vec{v} is hypersurface orthogonal, then $v_{[\gamma}v_{\alpha;\beta]} = 0$. (Hint: assume the hypersurfaces are parameterized by f =constant, where f is some scalar function. Then v_{α} is proportional to $f_{;\alpha}$, or in other words, $v_{\alpha} = hf_{;\alpha}$, where h is another scalar function.) (d) Suppose that the worldlines are geodesics, and that \vec{u} is hypersurface orthogonal. Suppose also that the *strong energy* condition holds:

$$T_{\mu\nu}u^{\mu}u^{\nu} \ge -\frac{1}{2}T \tag{8}$$

for all stress-energy tensors $T_{\mu\nu}$ and for all timelike u^{μ} . Show that if θ is negative on any of the geodesics, then θ goes to $-\infty$ in a finite proper time. (Hint: use $u^{\gamma}u_{[\gamma}u_{\alpha;\beta]} =$ 0 in Eq. (3) to derive a condition on $\omega_{\alpha\beta}$ for when \vec{u} is hypersurface orthogonal.) This result is a key ingredient in theorems that predict the formation of singularities in GR.

4. Necessity of Einstein tensor in field equations [10 points] Consider a modified form of the Einstein field equations

$$R_{\mu\nu} - ag_{\mu\nu}R = 8\pi T_{\mu\nu},\tag{9}$$

where a is some constant.

- (a) For now, assume that $T^{\mu\nu}$ does not satisfy $T^{\mu\nu}{}_{;\nu} = 0$. Instead, derive an equation for $T^{\mu\nu}{}_{;\nu}$ using Eq. (9).
- (b) Assume a perfect fluid with density ρ and negligible pressure, and show that unless a = 1/2, the result of part 4a yields the incorrect Newtonian limit.

5. Tidal forces [10 points]

Examine the geodesic deviation equation in the Newtonian limit (small velocities, small $\Gamma^{\gamma}{}_{\alpha\beta}$), and compare with a purely Newtonian calculation of the acceleration of nearby test particles in a gravitational field. Show that in the Newtonian limit,

$$R_{j0k0} = \frac{\partial^2 \Phi}{\partial x^k \partial x^j},\tag{10}$$

where Φ is the Newtonian gravitational potential.