
Physics 236a assignment, Week 6:
(November 5, 2015. Due on November 12, 2015)

1. A 2-sphere [10 points]

Consider a sphere with fixed radius r. This is a 2-dimensional
manifold, and in spherical coordinates θ, φ, the metric is

ds2 = r2(dθ2 + sin2 θ dφ2). (1)

(a) Compute all the connection coefficients Γγαβ.

(b) Write down the geodesic equation, and show that geodesics
are great circles.

(c) Compute all components of the Riemann tensor.

2. Gravitational redshift [10 points]

The metric outside the sun is to a very good approximation

ds2 = −(1− 2M/r) dt2 + (1 + 2M/r)(dx2 + dy2 + dz2), (2)

where M is the mass of the sun, and r2 = x2 +y2 +z2. We choose
units such that G = c = 1. Consider a photon traveling along
a geodesic near the sun. The geodesic equation for a photon is
∇~p ~p = 0, where ~p = d/dλ is the photon 4-momentum and is
also the tangent to the photon’s world line. Here λ is an affine
parameter.

(a) Use the geodesic equation to write out dpα/dλ (note the
lower index) in terms of the connection coefficients (don’t
evaluate the connection coefficients yet).

(b) Show that for the metric in Eq. (2), p0 is constant along the
photon’s worldline.

(c) Is p0 also constant along the photon’s worldline?
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(d) An atom is at rest (meaning that its coordinates x, y, z re-
main constant) at the surface of the sun. If the atom has
4-velocity ~ue, what is the component u0

e?

(e) A photon is emitted by the atom in part 2d, and the wave-
length of the photon in the rest frame of the atom is λe.
The same photon is received by an observer at rest (again,
meaning x, y, z of the observer remain fixed) far from the
sun, and is measured by this observer to have wavelength
λr. The redshift of the photon is defined by

z =
λr − λe
λe

. (3)

Show that z = M/R+O((M/R)2) where R is the radius of
the sun, so that z ∼ 2× 10−6.

3. Commutation of 2nd derivatives [10 points]

Given the relations for commuting 2nd covariant derivatives for
vectors and one forms,

vα;µν − vα;νµ = Rα
λνµv

λ, (4)

ωα;µν − ωα;νµ = −Rλ
ανµωλ, (5)

show that T αβ;µν − T αβ;νµ = Rα
λνµT

λ
β − Rλ

βνµT
α
λ for the rank

2 tensor T .

4. Coriolis force [15 points]

(This problem looks really long, but most of it is explanation.)
Assume an observer with 4-velocity ~u is accelerating and also
rotating. Rotation means that he does not Fermi-Walker trans-
port his orthonormal tetrad; instead the rule for transport of his
tetrad is

∇~u~eα = −~eβΩβ
α, (6)
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where
Ωµν = aµuν − uµaν + uλωβε

λβµν. (7)

The last term of Eq. (7) was called ωµν in class, and was shown
to be antisymmetric, but here we write this last term in terms
of a quantity ωβ, which can be interpreted as a rotation vector.
If this last term were zero, then Eqs. (6) and (7) would reduce
to Fermi-Walker transport. Note that as in class, the observer
chooses his timelike basis vector to be his 4-velocity, ~e0 = ~u, and
he chooses all his basis vectors to be orthonormal ~eα · ~eβ = ηαβ.

(a) Some of the connection coefficients on the observer’s world
line can be computed from Eqs. (6) and (7). Show that

Γi00 = ai Γ0
00 = 0 (8)

Γ0
i0 = ai Γij0 = −ωkε0kij. (9)

(b) Suppose the observer chooses coordinates near his world line
as follows: at each point P on his world line, he sends out
spatial geodesics in a pattern like a sea urchin. If one of
these spatial geodesics has tangent ~n at P , then he labels
points along that spatial geodesic using coordinates

x0 = τ (his proper time) (10)

xi = sni where s is proper distance along geodesic. (11)

In a small enough neighborhood around P (small so that
geodesics don’t cross each other), all points can be labeled
in this way. Show that the geodesic equation d2xα/ds2 = . . .
for these geodesics implies that at P , Γ0

jk = Γijk = 0.

(c) Now suppose that the observer watches the motion of a
freely falling particle that passes through the observer’s ori-
gin. Suppose that the ordinary 3-velocity of the particle, as
it passes the observer’s origin, is

˜
v = (dxi/dx0)~ei. (12)
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Show that the ordinary acceleration of the particle, as mea-
sured by the observer, is

d2xi

dτ 2 ~ei = −
˜
a− 2

˜
ω ×

˜
v + 2(

˜
a ·

˜
v)

˜
v. (13)

The first term is just (minus) the acceleration of the observer
as expected, the second term is the Coriolis acceleration
(and thus justifies the interpretation of ωβ in Eq. (7)), and
the third term is a special relativistic correction.

5. Gravitational torque on an extended body [15 points] A
nonspherical extended spinning body moving along a geodesic
will experience a torque in a nonuniform external gravitational
field. We will derive an expression for this torque, and the rate
of change of the spin of the body.

(a) Work in a local Lorentz frame comoving with the center of
mass of the body. In this frame, compute the acceleration of
a mass element at position xi, relative to the mass element
at the origin, caused by geodesic deviation.

(b) By integrating over mass elements, compute the total torque
on the body in terms of ρ, the energy density of the body.
Assume that the Riemann tensor is constant over the body.
Show that this torque is given by

τi = −εi`jt`kRj
0k0, (14)

where

t`k =

∫
ρ

(
x`xk − 1

3
r2δ`k

)
d3x (15)

is the reduced quadrupole moment tensor.

(c) If Si are components of the spin vector of the body in the
local Lorentz frame, the above results allow us to write

dSi/dt = −εi`jt`kRj
0k0. (16)
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Define a spin 4-vector Sµ such that in the LLF, the spatial
components are just Si and the time component is zero. In
other words, if ~u is the 4-velocity of the center of mass of the
body, then Sµuµ = 0. Similarly define the 4-d quadrupole
moment tensor tαβ so that in the LLF its spatial components
are given by Eq. (15) and its time components are zero, so
that tαβuβ = 0. Rewrite Eq. (16) in terms of 4-dimensional
quantities in the LLF, and get

DSν

dτ
= ενβαµuµu

σuλtβηR
η
σαλ. (17)

This is a tensor equation, so if true in the LLF, it will be
true in any frame. This is the effect responsible for the
“precession of the equinoxes”, discovered by Hipparchus in
150 B.C., in which the Earth’s axis precesses relative to
distant stars with a period of about 26,000 years.
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