Physics 236a assignment, Week 2:
(October 8, 2015. Due on October 15, 2015)

1. Equation of motion for a spin in a magnetic field. [10
points]

We will obtain the relativistic generalization of the nonrelativistic
(i.e. rest frame) equation of motion for the spin s of a particle of
mass m, charge ¢, in a uniform B field:

ds  gq (1)

where ¢ is the Landé g factor, and x is the usual 3-vector cross
product.

First, construct a spin 4-vector S which, by definition, reduces
to S = (0, s) in the particle rest frame.

Next, write
dsS”
-
where F'“g are components of the electromagnetic tensor, @ is
the 4-velocity of the particle, and A; and A, are scalars to be
determined.

= A F357 + Aqu®, (2)

(a) Evaluate S - @ and d/dr(S - @).
(b) Determine A; and As.

(c) Determine the time rate of change of the helicity s- v in a
pure B field (i.e. in a frame where the electric field £ = 0.
(Hint, let § = (s°,5) and expand S - @ to evaluate the
helicity.) Comment on the result for a particle with g = 2.

2. Projection tensor. [10 points| Given a particle with 4-velocity
i, define the projection tensor P by

Pop = Gap + Ualp. (3)



(a) For an arbitrary vector ¢, define v, = P(¥), and show that
U is orthogonal to .

(b) Show that P(¢,) = ¢,. Thus P is the unique projection
tensor that projects projects an arbitrary vector ¢ into a
3-surface orthogonal to .

(c¢) Given an arbitrary but non-null vector ¢, construct the pro-
jection tensor that projects an arbitrary vector ¢ into a 3-
surface orthogonal to ¢.

(d) Given a null vector k, show that there is no unique pro-
jection tensor that projects an arbitrary vector ¢ into a 3-
surface orthogonal to k.

3. Curvilinear coordinates in Euclidean space [10 points| Work
in 3-dimensional Euclidean space. Suppose we have a Cartesian
coordinate system, with coordinates (z,y, z), the usual coordi-
nate basis vectors (€, €, €>), and the usual coordinate basis 1-

forms (dz, dy, dz).

(a) First define three vector fields €, €y, and €y as follows:
Suppose that the entire space is filled with curves hav-
ing 6 = const, ¢ = const and parameterized by r, where
(7,0, ¢) are the usual spherical coordinates. For each point
in space (except the origin), there is one and only one such
curve passing through it. Define €. as the tangent vector
to that curve, and write down the expansion of €, in terms
of (€, €y, €,) and (r,0,¢). Similarly, define € as tangent
vectors of curves parameterized by € and having » = const
and ¢ = const, and define €, as tangent vectors of curves
parameterized by ¢ and having r = const and # = const.
Write down €p and €, in terms of (€, €, €.) and (r, 6, ¢).

(b) Consider r as a function of x,y, z, and write down the gradi-
ent dr in terms of the basis one-forms (dx, dy, dz). Similarly,



consider # and ¢ as functions of x,y, z, and write down the
gradients d¢ and df in terms of (dx dy, dz).

(c) Show that (dr,df, d¢) are basis one-forms that are dual to
the basis vectors (€&, €y, €;).

(d) The metric components in the Cartesian basis are the com-
ponents of the Kroneker delta. Write down the components
of the metric in the spherical coordinate basis of part 3c.
Also write down the full expression for the metric tensor g
as a combination of tensor products of dr, df, and d¢. Note
that even though this is still a simple Euchdean space, the
flat metric looks complicated when expressed in terms of a
complicated basis.

(e) The basis of of part 3c is a coordinate basis. Show that
by rescaling (€, €y, €,) at each point, we can define a new
non-coordinate basis, (€, €y, €, ¢3)7 such that the metric com-
ponents in this basis become the Kroneker delta. A basis
in which the metric components are the Kroneker delta in a
Fuclidean geometry or the Minkowski metric in a Lorentzian
geometry is called an orthonormal basis.

4. Index notation. [10 points]
(a) Let A,, be an antisymmetric tensor and let S, be a sym-

metric tensor. Show that A, 5" =

(b) Let A,, be an antisymmetric tensor and let S, be a sym-
metric tensor. Show that for an arbitrary tensor V,,,,

1
VP = (V= V) A, )

and

VS, = - (VI + V") S, (5)

N | —



(c¢) Given that basis vectors and basis one-forms transform from
the z* frame to the z# frame according to

€ = Npey, W = Aﬁuau7 (6)

show that the two transformation matrices A#; and A#, are
inverses of each other (when multiplied in either order), i.e.,
A AR, = 68 and A9, AR, = 67. Also show that components
of a tensor transform like

T3 = AN 3N, T, (7)
(d) In class, we defined g*’ as the matrix inverse of g,g:

9apg”? = 6. (8)

Show that ¢’ can be obtained by “raising indices” from
Jap, and that g,s can be obtained by “lowering indices”
from g*’. Also show that g% = §%.

5. Levi-civita tensor. [15 points]

(a) One can construct several permuation tensors from the Levi-
Civita tensor:

5aﬁvw)\ = _eaﬁwew/\p’
5“%,, = —%eaﬁweuwp. 9)
Show that
+1 if a7 is an even permutation of uvA
50‘67/1”/\ = ¢ -1if afvy is an odd permutation of puvA

0 otherwise
(10)
and
+1 if af is an even permutation of uv
67, = ¢ -1if a3 is an odd permutation of pv (11)
0 otherwise



(b) The dual *T" of an antisymmetric tensor 7" is defined for 1,
2, and 3-index antisymmetric tensors by

1 1
oy = T €uapr Fop = 57" ap, Ba = 5B e
(12)
Show that when you apply the dual operation twice,
o afy — Jafy, **Faﬁ = —Lap, B, = B,. (13)



