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Problem 1

Part (a)

The redshift factor between an observer at radius r in the Schwarzchild metric
to an observer at infinity is given by

dt 1

e 1.1

dr 1—-2M/r (1.1)
An observer measures the time dilation of Miller’s planet to be

dt _ Tyears
dr  lhour

= 7% 365 24 = 61320 (1.2)

Solving for the radius gives r = (2 + €)M for a very small ¢ ~ 10710, Since this
is much smaller than 1, » < 3M which is the smallest possible circular orbit in
Schwarzchild. So the black hole cannot be in a circular orbit in Schwarzschild.

Part (b)

The expression for the time coordinate of an orbiting body in in the Kerr metric
is

dt  —2MraL + E[(r? 4+ a?)S + 2Mra? sin® 0]

— = . 1.3
dr AY (1.3)
For circular, corotating orbits,
- r3/2 — 9Mr1/2 4 aM1/?
b= r3/4(r3/2 = 3Mr1/2 + 2aM1/2)1/2
~ MY2(r2 — 92aMM2p1/2 4 g2
i (r a /% 4+ a®) (1.4)

= r3/4(r3/2 — 3Mr1/2 + 2aMY/2)1/2

Plug these into the expression for j—i. Use the approximations for the radius of
the ISCO, 7 =~ M (1 +4'/3¢) corresponding to a spin of a ~ M (1 — €*). Expand
the expression in powers of ¢ and solve for its value. See the mathematica

notebook attached for an example of this. The resulting value for the spin is
roughly a ~ M (1 — 1.33564 x 10714).
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Part (c)
To show that the basis one-forms given match the Kerr metric, simply compute

d82 :n,;,;&}ﬂ@f’

2 )y
sin”0 ((r2 + a2)de — adt)” + ~dr? + 26>

A
dt — asin® 0dg)? + A
(1.5)

:_E(

Part (d)

Both of the basis vectors and one-forms can be represented by a metric which
transforms from the coordinate basis to the hatted basis, €5 = A%é, and P =

/\g(bﬁ . Here, finding the orthonormal vector basis corresponding to the given

&P is equivalent to inverting the matrix for the one-forms transposed so that
AgT = A2"1. Then the hatted basis vectors are given by

it (1.6)

N VNV > '

. A

& =\/ya (1.7)

2t L (1.8)

€5 =—=€ :

2 \/E 2

asinf 1

& = — & — & 1.9

N s L (1.9)
(1.10)

Part (e)

To compute the vector i, start by considering its one-form alternative, @ =
—E@% + L&®. When changing basis, transforming components of a one-form
is the same as transforming the basis vectors so us = A%u,. Thus, to get the
components of the 4-velocity in the hatted basis, just use the transformation
matrix found from the part above to perform the computation. After including
the fact that for circular, equatorial orbits that sinf = 1 and ¥ = r2,

Ug :qug + U3Ag =—-F (707“:'/_&@) +L (7“\?5)
Uy :qug + ugAg =-E <_a) ~-L (1) (1.11)

r r
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To convert this one-form into a vector, simply multiply by the flat metric to get

E(r? +a®) —alL aE — L
U= € + €3 1.12
A 0 ro3 (1.12)

Part (f)

Look in the attached script to see the actual computations. The orthonormality
of XQ = € is straightforward because it is an orthonormal basis vector and the
only X which contains the 2-vector. Next up, X@ = 4. Now, the expressions
for E and L need to be substituted in, but doing so and computing the @ - @
does indeed give the expected value of —1 as any good 4-velocity should. So
far, so good. To show orthonormality of )\1 and )\3, it is necessary to show that
A-A = B-B = 1. This is in the attached notebook; running through the
numbers for A and again making all of the necessary substitutions does give
A? = 1. Similarly for B? = 1 but only when the correct B is used, obviously.
After that, show that - B = 0 and viola. Everything basically falls through
from there.

Part (g)
Tidal forces in GR are computed using the geodesic deviation equation,
D3n% 5 -
7D7’2 = R ﬁﬁﬁn’y (113)

Stretching/squeezing occurs in every direction, as can be seen from all the
components of the Riemann tensor. Since for tidal forces, stretching occurs
along the radial direction out from the black hole, we only need to look at the
radial direction for the planet. If you look at the other directions, you will
find there is a negative sign corresponding to compression. In the \; basis, the
direction corresponding to radial, which is only in the €; direction, which rotates
between A7 and A3z determined by the parameter ¥(7). For simplicity, pick ¥
such that cos W = 1. Thus, the A is entirely radial and no other Az contains
any radial dependence. For 7, pick it strictly in the radial (A7) direction with a
length corresponding to the radius of the earth. (You can leave W arbitrary if
you wish, but then your 7 will have a corresponding ¥ dependence in both the
A1 and A3 directions).

DQni _ _

From the previous parts of the problem, we see that the spin is large, so assume
that a ~ M. Similarly, for a circular orbit for that high of a spin, we can assume
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that » ~ M. In this limit, it turns out that E ~ 1/\/3 and L ~ 2M/\/§7 SO
K ~ M?/3. Then the geodesic deviation equation becomes

D2ni B B
oz = ~Rwion' — Riggon” (1.15)
1 3 1 3
~ (4cos® U — 1)mnl +4sin\IJcos\Ian3, (1.16)
4cos? U — 14 4sinWcos ¥
~ M2 Tearth (117)
D2n3 _ _
oz = ~Rawon” — Rapion’ (1.18)
1 3 1 3
~ (4sin® ¥ — 1)Wn3 +4sin\I/cos\IJWn1, (1.19)
4sin® ¥ — 1 + 4sin ¥ cos U
~ e Tearth; (120)
D2n§ _
Doz = —Hamn” (1.21)
_9 .
= Wn% (1.22)
—2
~ Wreartb (123)

The maximum tidal force occurs when 4cos? ¥ — 1 + 4sin U cos ¥ is a max-
imum or when 4sin?¥ — 1 + 4sinWcos¥ is a maximum. This occurs at
U = +7/8,+37/8, and for these angles the maximum tidal force is :;'/[—Sgrearth.
Substituting in all the dimensionful constants and the radius of the earth, set-
ting the maximum tidal force to to 9.8m/sz, and solving for M, gives a black
hole mass on the order of Mgy ~ 3 x 108M@.
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