Solutions Ph 236b – Week 3

Kevin Barkett, Belinda Pang, and Mark Scheel

California Institute of Technology

January 27, 2016

Contents

Problem 1 ... 2
Part (a) .. 2
Part (b) .. 2
Part (c) .. 2
Part (d) .. 3
Part (e) .. 3
Problem 2 ... 3
Part (a) .. 3
Part (b) .. 4
Part (c) .. 4
Problem 3 ... 5
Part (a) .. 5
Part (b) .. 5
Part (c) .. 7
Part (d) .. 7
Problem 1

Part (a)

The momentum of the particle is

\[p^\mu = \frac{dx^\mu}{d\lambda} = \frac{\partial H}{\partial \pi^\mu} = g^{\mu\nu} (\pi_\nu - eA_\nu) \] \hfill (1.1)

\[= \pi^\mu - eA^\mu \] \hfill (1.2)

Part (b)

The equation of motion for a charged particle with the 4-vector \(p^\mu \) in an electromagnetic field is given by the Lorentz force equation

\[p^\alpha p^\mu \equiv eF^{\mu\alpha}p_\alpha \] \hfill (1.3)

Part (c)

We can verify the answer from Part (b) using Hamilton’s equations of motion. Eq. (3) gives

\[\frac{d\pi^\mu}{d\lambda} = \frac{\partial H}{\partial p^\mu} = \frac{1}{2} p_\alpha p_\beta g^{\lambda\alpha} g^{\sigma\beta} g_{\lambda\sigma,\mu} + e g^{\alpha\beta} p_\alpha (A_\beta)_\mu \] \hfill (1.4)

But \(g_{\lambda\sigma} = 2\Gamma_{(\lambda\sigma)\mu} \) and \(A_\beta,\mu = A_{\mu,\beta} + F_{\mu\beta} \), so we have

\[\frac{d\pi^\mu}{d\lambda} = p_\alpha p_\beta g^{\lambda\alpha} g^{\sigma\beta} \Gamma_{(\lambda\sigma)\mu} + e g^{\alpha\beta} \left(F_{\mu(\beta} P_{\alpha)} + A_{\mu, (\beta} P_{\alpha)} \right) \] \hfill (1.5)

\[= \frac{dp_\mu}{d\lambda} + e \frac{dA_\mu}{d\lambda} \] \hfill (1.6)

We note that \(A_{\mu, (\beta} P_{\alpha)} = \frac{dA_\mu}{d\lambda} \) and

\[p^\alpha p_{\mu,\alpha} = p^\alpha p_{\mu,\alpha} - \Gamma^\lambda_{\mu\alpha} p_\lambda \] \hfill (1.7)

So finally Eq (1.5) becomes

\[p^\alpha p^\mu \equiv eF^{\mu\alpha} p_\alpha \] \hfill (1.8)

which is the result of part (1b)

Kevin Barkett, Belinda Pang, and Mark Scheel January 27, 2016
Part (d)

We know that since \(\frac{\partial H}{\partial \phi} = \frac{\partial H}{\partial t} = 0 \), this implies
\[
\frac{d\pi_\phi}{d\lambda} = \frac{d\pi_t}{d\lambda} = 0 \quad (1.9)
\]
and so \(\pi_\phi \) and \(\pi_t \) are conserved. But
\[
\pi_t = p_t + eA_t, \quad A_t = -\frac{Q}{r} \quad (1.10)
\]
\[
= p_t - \frac{eQ}{r} = -E \quad (1.11)
\]
and
\[
\pi_\phi = p_\phi + eA_\phi, \quad A_\phi = 0 \quad (1.12)
\]
\[
= p_\phi = L \quad (1.13)
\]
so \(E \) and \(L \) are conserved.

Part (e)

We can derive Eq (6) in the problem set from the fact that the particle rest mass is conserved:
\[
-\mu^2 = g_{\alpha\beta}p^\alpha p^\beta \quad (1.14)
\]
\[
= \left(\frac{dr}{d\lambda} \right)^2 g_{rr} + (p_0)^2 g^{00} + \frac{(p_\phi)^2}{r^2} \quad (1.15)
\]
\[
= \left(\frac{dr}{d\lambda} \right)^2 \frac{1}{f(r)} \left(\frac{eQ}{r} - E \right)^2 \frac{1}{f(r)} + \frac{L^2}{r^2} \quad (1.16)
\]
where
\[
f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} \quad (1.17)
\]
and \(g_{rr} = -g^{00} = \frac{1}{f(r)} \). Rearranging will give you Eq (6).

Problem 2

Part (a)

Go to the local Lorentz frame comoving with the surface of the star so that \(\vec{u} = (1, 0), \vec{p} = (E, \vec{p}), \vec{n} = (0, \eta) \). Now \(|\vec{u}| = 1 \) and \(|\vec{p}| = E = -\vec{p} \cdot \vec{u} \). Then
\[
\cos \theta = \frac{\vec{n} \cdot \vec{p}}{|\vec{n}||\vec{p}|} = \frac{-\vec{n} \cdot \vec{p}}{|\vec{n}||\vec{p}|} \quad (2.1)
\]
Since this final quantity is a scalar, it can be computed in any frame.
Part (b)

Without loss of generality, assume $\theta = \pi/2$, $p_\theta = 0$. For a photon,

$$\vec{p} \cdot \vec{p} = -\frac{1}{\alpha} (p_0)^2 + \alpha (p_r)^2 + \frac{1}{r} (p_\phi)^2$$

(2.2)

where $\alpha = 1 - 2M/r$. Since $p_0 = -E$ and $p_\phi = L$ and labeling $b = L/E$, then

$$p_r = \frac{E}{\alpha} \left(1 - \frac{b^2}{r^2} \right)^{1/2}$$

(2.3)

Now let $v_s = \frac{dr}{dt} = \frac{u_r}{u_0}$. Then

$$\vec{u} \cdot \vec{n} = 0 = -u_0 n^0 \alpha + n^r u^r/\alpha \Rightarrow n^0 = n^r v_s/\alpha^2.$$

Now compute the other relevant quantities

$$\vec{p} \cdot \vec{n} = -En^0 + p_r n^r = \frac{u^r E}{\alpha^2} \left[-v_s + \alpha \left(1 - \frac{b^2}{r^2} \alpha \right)^{1/2} \right]$$

(2.4)

$$\vec{p} \cdot \vec{u} = -Eu^0 + p_r u^r = \frac{u_0 E}{\alpha^2} \left[\alpha - v_s \left(1 - \frac{b^2}{r^2} \alpha \right)^{1/2} \right]$$

(2.5)

To find the relationship between u^0 and n^r, use

$$\vec{n} \cdot \vec{n} = 1 = (n^r)^2 \left(1 - \frac{v_s}{\alpha^3} \right) \Rightarrow (n^r)^2 = \frac{\alpha^3}{\alpha^2 - v_s^2}$$

$$\vec{u} \cdot \vec{u} = -1 = -(u^0)^2 \left(\alpha - \frac{v_s^2}{\alpha} \right) \Rightarrow (u^0)^2 = \frac{\alpha}{\alpha^2 - v_s^2}$$

and combining these two yields

$$\frac{n^r}{u^0 \alpha} = 1 \quad (2.6)$$

Finally, all the parts necessary to compute $\cos \theta$ are in the previous 3 numbered equations above (2.4-2.6).

$$\cos \theta = -\frac{\vec{n} \cdot \vec{p}}{\vec{p} \cdot \vec{u}} = \frac{\alpha \left(1 - \frac{v_s^2}{\alpha^2} \right)^{1/2} - v_s}{\alpha - v_s \left(1 - \frac{v_s^2}{\alpha^2} \right)^{1/2}}$$

(2.7)

Part (c)

For a photon in a circular orbit, $p_r = 0 \Rightarrow \cos \theta = -\frac{v_s}{\alpha}$. So for $r = 3M$, $\cos \theta = -3v_s$. For infalling surface, $v_s < 0$ so $\cos \theta > 0$. The photon must be emitted outwards. Notice for $|v_s| > 1/3$, $|\cos \theta| > 1$. However, a coordinate stationary observer measures the speed of the surface to be

$$\hat{v}_s = \frac{u_r}{u_0} = \frac{u^r}{\alpha u^0} = \frac{v_s}{\alpha}$$

(2.8)

For $r = 3M$, $\hat{v}_s = 3v_s$. Therefore, $|v_s|$ cannot be $> 1/3$ or else the observer sees the surface move faster than light.
Problem 3

Part (a)

Recall that for radial infall with an exterior Schwarzschild metric, that

\[R(\eta) = \frac{R_0}{2} (1 + \cos \eta) \]
\[\tau(\eta) = \left(\frac{R_0^3}{8M} \right)^{1/2} (\eta + \sin \eta) \]

(3.1)

where the collapse begins at \(\eta = 0 \) with \(\tau = 0 \) and \(R = R_0 \) and ends with \(\eta = \pi, R = 0, \) and \(\pi \frac{R_0^3}{8M} = \tau_{\text{max}}. \) For homogeneous density inside \(R, \) the "mass-energy interior" to a circumferential radius \(r \) is

\[m(r) = \int_0^r \rho 4\pi r^2 dr = \frac{4}{3} \pi r^3 \rho \]

(3.2)

giving the relation

\[F_i = \left(\frac{r_i(\tau)}{R(\tau)} \right)^3 \]

(3.3)

where \(F_i \) is the fraction of mass contained within a radius \(r_i \) so then

\[r_i(\eta) = \frac{F_i^{1/3}}{2} R_0 (1 + \cos \eta) \]

(3.4)

See Figure 1 for a spacetime diagram illustrating this and the other parts of the problem.

Part (b)

Inside the matter, recall from class that

\[a(\eta) = \frac{1}{2} a_{\text{max}} (1 + \cos \eta), \]
\[\tau(\eta) = \frac{1}{2} a_{\text{max}} (\eta + \sin \eta). \]

(3.5)

A radially outgoing photon must obey \(ds^2 = 0 \Rightarrow d\tau = a(\tau) d\chi. \) But from the equations above, \(d\tau = \frac{1}{2} a_{\text{max}} (1 + \cos \eta) d\eta = a d\eta \) so in terms of \(\eta \) the photon's equation of motion is simply

\[\frac{d\chi}{d\eta} = 1. \]

(3.6)
If a photon is emitted at $\eta = \eta_e, \chi = \chi_e$, then its trajectory is $\chi = \chi_e + (\eta - \eta_e)$. The circumferential radius, which is equal to the areal radius, is $r = a \sin \chi$, or

$$r(\eta) = \frac{1}{2} a_{\max}(1 + \cos \eta) \sin(\chi_e + \eta - \eta_e).$$

(3.7)

The area of a spherical pulse of light is $4\pi r^2$, so the portion of the region of trapped surfaces that lies inside of the matter is given by the values of η_e, χ_e satisfying

$$\frac{d}{d\eta} \left(4\pi r^2 \right) \bigg|_{\eta=\eta_e} \leq 0 \Rightarrow \frac{dr}{d\eta} \bigg|_{\eta=\eta_e} \leq 0$$

(3.8)

Plugging in the expression for $r(\eta)$ yields

$$\left[-\frac{1}{2} a_{\max} \sin \eta \sin(\chi_e + \eta - \eta_e) + \frac{1}{2} a_{\max}(1 + \cos \eta) \cos(\chi_e + \eta - \eta_e) \right] \bigg|_{\eta=\eta_e} \leq 0$$

$$-\sin \eta_e \sin \chi_e + (1 + \cos \eta_e) \cos \chi_e \leq 0$$

$$\cos(\chi_e + \eta_e) + \cos \chi_e \leq 0$$

$$\cos(\chi_e + \eta_e) \leq \cos(\pi - \chi_e)$$

$$\chi_e + \eta_e \geq \pi - \chi_e$$

$$\eta_e \geq \pi - 2\chi_e.$$

(3.9)

Note the sign: inside the star, trapped surfaces exist outside and to the future of the curve $\eta_e + 2\chi_e = \pi$. To be inside the star we must have $\chi \leq \chi_0$, where χ_0 is the χ coordinate of the surface of the star, which was calculated in class to satisfy $R_0 = a_{\max} \sin \chi_0$ and $M = \frac{1}{2} a_{\max} \sin^3 \chi_0$. Therefore, the earliest value of η at which a trapped surface exists is

$$\eta_e = \pi - 2\sin^{-1} \left(\frac{2M}{R_0} \right)^{1/2} \equiv \eta_{AH}.$$

(3.10)

Note that at $\eta = \eta_{AH}$, the surface of the star is at $r = 2M$. Therefore, inside the star, for $\eta < \eta_{AH}$ there is not a trapped surface, and for $\eta > \eta_{AH}$ the region of trapped surfaces is outside and to the future of the curve $\eta + 2\chi = \pi$.

So far we have said nothing about the region of trapped surfaces outside the star. There, we have the Schwarzschild metric. In outgoing Eddington-Finkelstein coordinates the equation of motion for outgoing radial photon is $\frac{dy}{dx} = 0$ where $u = t - r - 2M \ln |r/2M - 1|$. So for $r \leq 2M$

$$\frac{dt}{dr} - 1 + \frac{1}{1 - r/2M} = 0$$

$$\frac{dr}{dt} = \frac{2M}{r} (r/2M - 1)$$

(3.11)
Thus, \(\frac{dr}{dt} \leq 0 \) whenever \(r \leq 2M \), that is, everywhere outside the star and inside \(r \leq 2M \) is trapped.

The apparent horizon is the outermost boundary of trapped surfaces. For \(\eta < \eta_{AH} \) there are no trapped surfaces and thus no apparent horizon. For \(\eta > \eta_{AH} \) (at which point the radius of the surface of the star is \(2M \)), trapped surfaces exist between \(r = 2M \) and the curve \(\eta + 2\chi = \pi \) inside the star. The outermost trapped surface, or the apparent horizon, is at \(r = 2M \).

Part (c)

The event horizon is the trajectory of an outgoing photon that barely reaches the surface of the matter when it reaches \(r = 2M \). Inside of the matter, use the fact that for outgoing photons \(\frac{d\chi}{d\eta} = 1 \) and that the surface hits \(r = 2M \) at \(\eta = \eta_{AH} \), to see that

\[
\chi_H = \chi_0 + \eta - \eta_{AH} \tag{3.12}
\]

This is only true for \(\eta \leq \eta_{AH} \). There is no event horizon for

\[
\eta < \eta_{AH} - \chi_0 \equiv \eta_H \tag{3.13}
\]

so the event horizon between \(\eta_H < \eta < \eta_{AH} \) is given by

\[
r_H = \frac{1}{2} a_{max} (1 + \cos \eta) \sin(\chi_0 + \eta - \eta_{AH}) \tag{3.14}
\]

For \(\eta > \eta_{AH} \), the Schwarzschild metric has an event horizon at \(r = 2M \).

Part (d)

For the case where \(R_o = 5M \), the apparent and event horizons start at \(\tau_{AH}/\tau_{max} = 0.8760, \tau_{H}/\tau_{max} = 0.6280 \).

<table>
<thead>
<tr>
<th>(\tau/\tau_{max})</th>
<th>(\eta)</th>
<th>(r_{1/4}/M)</th>
<th>(r_{1/2}/M)</th>
<th>(R/M)</th>
<th>(r_{AH}/M)</th>
<th>(r_{H}/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>3.1498</td>
<td>3.9686</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0.2</td>
<td>.3168</td>
<td>3.0714</td>
<td>3.8699</td>
<td>4.8756</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0.4</td>
<td>.6508</td>
<td>2.8279</td>
<td>3.5630</td>
<td>4.4890</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0.6</td>
<td>1.029</td>
<td>2.3877</td>
<td>3.0084</td>
<td>3.7903</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0.8</td>
<td>1.515</td>
<td>1.6630</td>
<td>2.0954</td>
<td>2.6399</td>
<td>—</td>
<td>0.8421</td>
</tr>
<tr>
<td>1.0</td>
<td>3.142</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Kevin Barkett, Belinda Pang, and Mark Scheel January 27, 2016
Figure 1: Spacetime diagram of Oppenheimer-Snyder collapse.