
Solutions Ph 236b – Week 3 Page 1 of 8

Solutions Ph 236b – Week 3

Kevin Barkett, Belinda Pang, and Mark Scheel

California Institute of Technology

January 27, 2016

Contents

Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Part (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Part (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Kevin Barkett, Belinda Pang, and Mark Scheel January 27, 2016



Solutions Ph 236b – Week 3 Page 2 of 8

Problem 1

Part (a)

The momentum of the particle is

pµ =
dxµ

dλ
=
∂H

∂πµ
= gµν (πν − eAν) (1.1)

=πµ − eAµ (1.2)

Part (b)

The equation of motion for a charged particle with the 4-vector pµ in an elec-
tromagnetic field is given by the Lorentz force equation

pαpµ;α = eFµαpα (1.3)

Part (c)

We can verify the answer from Part (b) using Hamilton’s equations of motion.
Eq. (3) gives

dπµ
dλ

= − ∂H
∂xµ

=
1

2
pαpβg

λαgσβgλσ,µ +egαβp(αAβ),µ (1.4)

But gλσ = 2Γ(λσ)µ and Aβ,µ = Aµ,β + Fµβ , so we have

dπµ
dλ

= pαpβg
λαgσβΓ(λσ)µ + egαβ

(
Fµ(βPα) +Aµ,(βPα)

)
(1.5)

=
dpµ
dλ

+ e
dAµ
dλ

(1.6)

We note that Aµ,(βPα) =
dAµ
dλ and

pαpµ;α = pαpµ,α − Γλµαpλ (1.7)

So finally Eq (1.5) becomes

pαpµ;α = eFµαpα (1.8)

which is the result of part (1b)
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Part (d)

We know that since ∂H
∂φ = ∂H

∂t = 0, this implies

dπφ
dλ

=
dπt
dλ

= 0 (1.9)

and so πφ and πt are conserved. But

πt = pt + eAt, At = −Q
r

(1.10)

= pt −
eQ

r
= −E (1.11)

and

πφ = pφ + eAφ, Aφ = 0 (1.12)

= pφ = L (1.13)

so E and L are conserved.

Part (e)

We can derive Eq (6) in the problem set from the fact that the particle rest
mass is conserved:

−µ2 = gαβp
αpβ (1.14)

=

(
dr

dλ

)2

grr + (p0)2g00 +
(pφ)2

r2
(1.15)

=

(
dr

dλ

)2
1

f(r)
−
(
eQ

r
− E

)2
1

f(r)
+
L2

r2
(1.16)

where

f(r) = 1− 2M

r
+
Q2

r2
(1.17)

and grr = −g00 = 1
f(r) . Rearranging will give you Eq (6).

Problem 2

Part (a)

Go to the local Lorentz frame comoving with the surface of the star so that
~u = (1,

˜
0), ~p = (E,

˜
p), ~n = (0,

˜
n). Now |

˜
n| = 1 and |

˜
p| = E = −~p · u Then

cos θ = ˜
n ·

˜
p

|
˜
n||

˜
p|

=
~n · ~p
|
˜
n||

˜
p|

= −~n · ~p
~p · u

(2.1)

Since this final quantity is a scalar, it can be computed in any frame.
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Part (b)

Without loss of generality, assume θ = π/2, pθ = 0. For a photon,

~p · ~p = 0 =
−1

α
(p0)2 + α(pr)

2 +
1

r
(pφ)2 (2.2)

where α = 1− 2M/r. Since p0 = −E and pφ = L and labeling b = L/E, then

pr =
E

α

(
1− b2

r2
α

)1/2

(2.3)

Now let vs = dr
dt = ur/u0. Then ~u ·~n = 0 = −u0n0α+nrur/α⇒ n0 = nrvs/α

2.
Now compute the other relevant quantities

~p · ~n = −En0 + prn
r =

nrE

α2

[
−vs + α

(
1− b2

r2
α

)1/2
]

(2.4)

~p · ~u = −Eu0 + pru
r =

u0E

α2

[
α− vs

(
1− b2

r2
α

)1/2
]

(2.5)

To find the relationship between u0 and nr, use

~n · ~n = 1 = (nr)2
(

1

α
− vs
α3

)
⇒ (nr)2 =

α3

α2 − v2s

~u · ~u = −1 = −(u0)2
(
α− v2s

α

)
⇒ (u0)2 =

α

α2 − v2s
and combining these two yields

nr

u0α
= 1 (2.6)

Finally, all the parts necessary to compute cos θ are in the previous 3 numbered
equations above (2.4-2.6).

cos θ = −~n · ~p
~p · u

=
α
(

1− b2

r2α
)1/2

− vs

α− vs
(
1− b2

r2α
)1/2 (2.7)

Part (c)

For a photon in a circular orbit, pr = 0 ⇒ cos θ = −vsα . So for r = 3M ,
cos θ = −3vs. For infalling surface, vs < 0 so cos θ > 0. The photon must be
emitted outwards. Notice for |vs| > 1/3, | cos θ| > 1. However, a coordinate
stationary observer measures the speed of the surface to be

v̂s =
ur̂

u0̂
=

ur

αu0
=
vs
α

(2.8)

For r = 3M, v̂s = 3vs. Therefore, |vs| cannot be > 1/3 or else the observer sees
the surface move faster than light.
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Problem 3

Part (a)

Recall that for radial infall with an exterior Schwarzschild metric, that

R(η) =
R0

2
(1 + cos η)

τ(η) =

(
R3

0

8M

)1/2

(η + sin η) (3.1)

where the collapse begins at η = 0 with τ = 0 and R = R0 and ends with

η = π,R = 0, and π
R3

0

8M = τmax. For homogeneous density inside R, the ”mass-
energy interior” to a circumferential radius r is

m(r) =

∫ r

0

ρ4πr2dr =
4

3
πr3ρ (3.2)

giving the relation

Fi =

(
ri(τ)

R(τ)

)3

(3.3)

where Fi is the fraction of mass contained witin a radius ri so then

ri(η) =
F

1/3
i

2
R0(1 + cos η) (3.4)

See Figure 1 for a spacetime diagram illustrating this and the other parts of
the problem.

Part (b)

Inside the matter, recall from class that

a(η) =
1

2
amax(1 + cos η),

τ(η) =
1

2
amax(η + sin η). (3.5)

A radially outgoing photon must obey ds2 = 0 ⇒ dτ = a(τ)dχ. But from the
equations above, dτ = 1

2amax(1 + cos η)dη = adη so in terms of η the photon’s
equation of motion is simply

dχ

dη
= 1. (3.6)
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If a photon is emitted at η = ηe, χ = χe, then its trajectory is χ = χe+(η−ηe).
The circumferential radius, which is equal to the areal radius, is r = a sinχ, or

r(η) =
1

2
amax(1 + cos η) sin(χe + η − ηe). (3.7)

The area of a spherical pulse of light is 4πr2, so the portion of the region of
trapped surfaces that lies inside of the matter is given by the values of ηe, χe
satisfying

d

dη
(4πr2)

∣∣∣∣
η=ηe

≤ 0⇒ dr

dη

∣∣∣∣
η=ηe

≤ 0 (3.8)

Plugging in the expression for r(η) yields[
−1

2
amax sin η sin(χe + η − ηe) +

1

2
amax(1 + cos η) cos(χe + η − ηe)

] ∣∣∣∣
η=ηe

≤ 0

− sin ηe sinχe + (1 + cos ηe) cosχe ≤ 0

cos(χe + ηe) + cosχe ≤ 0

cos(χe + ηe) ≤ cos(π − χe)
χe + ηe ≥ π − χe

ηe ≥ π − 2χe.
(3.9)

Note the sign: inside the star, trapped surfaces exist outside and to the future
of the curve ηe+ 2χe = π. To be inside the star we must have χ ≤ χo, where χ0

is the χ coordinate of the surface of the star, which was calculated in class to
satisfy Ro = amax sinχo and M = 1

2amax sin3 χo. Therefore, the earliest value
of η at which a trapped surface exists is

ηe = π − 2 sin−1

(
2M

Ro

)1/2

≡ ηAH . (3.10)

Note that at η = ηAH , the surface of the star is at r = 2M . Therefore, inside
the star, for η < ηAH there is not a trapped surface, and for η > ηAH the region
of trapped surfaces is outside and to the future of the curve η + 2χ = π.

So far we have said nothing about the region of trapped surfaces outside
the star. There, we have the Schwarzchild metric. In outgoing Eddington-
Finkelstein coordinates the equation of motion for outgoing radial photon is
d
˜
u
dr = 0 where

˜
u = t− r − 2M ln |r/2M − 1|. So for r ≤ 2M

dt

dr
− 1 +

1

1− r/2M
= 0

dr

dt
=

2M

r
(r/2M − 1)

(3.11)
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Thus, drdt ≤ 0 whenever r ≤ 2M , that is, everywhere outside the star and inside
r ≤ 2M is trapped.

The apparent horizon is the outermost boundary of trapped surfaces. For
η < ηAH there are no trapped surfaces and thus no apparent horizon. For
η > ηAH (at which point the radius of the surface of the star is 2M), trapped
surfaces exist between r = 2M and the curve η + 2χ = π inside the star. The
outermost trapped surface, or the apparent horizon, is at r = 2M .

Part (c)

The event horizon is the trajectory of an outgoing photon that barely reaches
the surface of the matter when it reaches r = 2M . Inside of the matter, use
the fact that for outgoing photons dχ

dη = 1 and that the surface hits r = 2M at
η = ηAH , to see that

χH = χo + η − ηAH (3.12)

This is only true for η ≤ ηAH . There is no event horizon for

η < ηAH − χ0 ≡ ηH (3.13)

so the event horizon between ηH < η < ηAH is given by

rH =
1

2
amax(1 + cos η) sin(χo + η − ηAH) (3.14)

For η > ηAH , the Schwarzschild metric has an event horizon at r = 2M .

Part (d)

For the case whereRo = 5M , the apparent and event horizons start at τAH/τmax =
0.8760, τH/τmax = 0.6280.

τ/τmax η r1/4/M r1/2/M R/M rAH/M rH/M
0.0 0 3.1498 3.9686 5.0 — —
0.2 .3168 3.0714 3.8699 4.8756 — —
0.4 .6508 2.8279 3.5630 4.4890 — —
0.6 1.029 2.3877 3.0084 3.7903 — —
0.8 1.515 1.6630 2.0954 2.6399 — 0.8421
1.0 3.142 0 0 0 2.0 2.0
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Figure 1: Spacetime diagram of Oppenheimer-Snyder collapse.
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