# Solutions Ph 236b – Week 3

Kevin Barkett, Belinda Pang, and Mark Scheel

# California Institute of Technology

# January 27, 2016

## Contents

| Problem 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
|-----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|
| Part (a)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
| Part (b)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
| Part (c)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
| Part (d)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 |
| Part (e)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 |
| Problem 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 |
| Part (a)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 |
| Part (b)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 |
| Part (c)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 |
| Problem 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |
| Part (a)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |
| Part (b)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |
| Part (c)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 7 |
| Part (d)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |

## Problem 1

#### Part (a)

The momentum of the particle is

$$p^{\mu} = \frac{dx^{\mu}}{d\lambda} = \frac{\partial H}{\partial \pi_{\mu}} = g^{\mu\nu} \left( \pi_{\nu} - eA_{\nu} \right) \tag{1.1}$$

$$=\pi^{\mu} - eA^{\mu} \tag{1.2}$$

#### Part (b)

The equation of motion for a charged particle with the 4-vector  $p^{\mu}$  in an electromagnetic field is given by the Lorentz force equation

$$p^{\alpha}p^{\mu}_{:\alpha} = eF^{\mu\alpha}p_{\alpha} \tag{1.3}$$

## Part (c)

We can verify the answer from Part (b) using Hamilton's equations of motion. Eq. (3) gives

$$\frac{d\pi_{\mu}}{d\lambda} = -\frac{\partial H}{\partial x^{\mu}} = \frac{1}{2} p_{\alpha} p_{\beta} g^{\lambda \alpha} g^{\sigma \beta} g_{\lambda \sigma, \mu} + e g^{\alpha \beta} p_{(\alpha} A_{\beta), \mu}$$
 (1.4)

But  $g_{\lambda\sigma}=2\Gamma_{(\lambda\sigma)\mu}$  and  $A_{\beta,\mu}=A_{\mu,\beta}+F_{\mu\beta},$  so we have

$$\frac{d\pi_{\mu}}{d\lambda} = p_{\alpha}p_{\beta}g^{\lambda\alpha}g^{\sigma\beta}\Gamma_{(\lambda\sigma)\mu} + eg^{\alpha\beta}\left(F_{\mu(\beta}P_{\alpha)} + A_{\mu,(\beta}P_{\alpha)}\right)$$
(1.5)

$$= \frac{dp_{\mu}}{d\lambda} + e^{\frac{dA_{\mu}}{d\lambda}} \tag{1.6}$$

We note that  $A_{\mu,(\beta}P_{\alpha)} = \frac{dA_{\mu}}{d\lambda}$  and

$$p^{\alpha}p_{\mu;\alpha} = p^{\alpha}p_{\mu,\alpha} - \Gamma^{\lambda}_{\mu\alpha}p_{\lambda} \tag{1.7}$$

So finally Eq (1.5) becomes

$$p^{\alpha}p^{\mu}_{:\alpha} = eF^{\mu\alpha}p_{\alpha} \tag{1.8}$$

which is the result of part (1b)

## Part (d)

We know that since  $\frac{\partial H}{\partial \phi} = \frac{\partial H}{\partial t} = 0$ , this implies

$$\frac{d\pi_{\phi}}{d\lambda} = \frac{d\pi_t}{d\lambda} = 0 \tag{1.9}$$

and so  $\pi_{\phi}$  and  $\pi_{t}$  are conserved. But

$$\pi_t = p_t + eA_t, \quad A_t = -\frac{Q}{r}$$
 (1.10)

$$=p_t - \frac{eQ}{r} = -E \tag{1.11}$$

and

$$\pi_{\phi} = p_{\phi} + eA_{\phi}, \quad A_{\phi} = 0 \tag{1.12}$$

$$= p_{\phi} = L \tag{1.13}$$

so E and L are conserved.

## Part (e)

We can derive Eq (6) in the problem set from the fact that the particle rest mass is conserved:

$$-\mu^2 = g_{\alpha\beta} p^{\alpha} p^{\beta} \tag{1.14}$$

$$= \left(\frac{dr}{d\lambda}\right)^2 g_{rr} + (p_0)^2 g^{00} + \frac{(p_\phi)^2}{r^2}$$
 (1.15)

$$= \left(\frac{dr}{d\lambda}\right)^2 \frac{1}{f(r)} - \left(\frac{eQ}{r} - E\right)^2 \frac{1}{f(r)} + \frac{L^2}{r^2} \tag{1.16}$$

where

$$f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} \tag{1.17}$$

and  $g_{rr} = -g^{00} = \frac{1}{f(r)}$ . Rearranging will give you Eq (6).

# Problem 2

## Part (a)

Go to the local Lorentz frame comoving with the surface of the star so that  $\vec{u}=(1,0), \vec{p}=(E,p), \vec{n}=(0,p)$ . Now  $|\vec{p}|=1$  and  $|p|=E=-\vec{p}\cdot u$  Then

$$\cos \theta = \frac{\underline{n} \cdot \underline{p}}{|\underline{n}||\underline{p}|} = \frac{\underline{\vec{n}} \cdot \underline{\vec{p}}}{|\underline{n}||\underline{p}|} = -\frac{\underline{\vec{n}} \cdot \underline{\vec{p}}}{\underline{\vec{p}} \cdot \underline{u}}$$
(2.1)

Since this final quantity is a scalar, it can be computed in any frame.

## Part (b)

Without loss of generality, assume  $\theta = \pi/2, p_{\theta} = 0$ . For a photon,

$$\vec{p} \cdot \vec{p} = 0 = \frac{-1}{\alpha} (p_0)^2 + \alpha (p_r)^2 + \frac{1}{r} (p_\phi)^2$$
 (2.2)

where  $\alpha = 1 - 2M/r$ . Since  $p_0 = -E$  and  $p_{\phi} = L$  and labeling b = L/E, then

$$p_r = \frac{E}{\alpha} \left( 1 - \frac{b^2}{r^2} \alpha \right)^{1/2} \tag{2.3}$$

Now let  $v_s = \frac{dr}{dt} = u^r/u^0$ . Then  $\vec{u} \cdot \vec{n} = 0 = -u^0 n^0 \alpha + n^r u^r/\alpha \Rightarrow n^0 = n^r v_s/\alpha^2$ . Now compute the other relevant quantities

$$\vec{p} \cdot \vec{n} = -En^0 + p_r n^r = \frac{n^r E}{\alpha^2} \left[ -v_s + \alpha \left( 1 - \frac{b^2}{r^2} \alpha \right)^{1/2} \right]$$
 (2.4)

$$\vec{p} \cdot \vec{u} = -Eu^0 + p_r u^r = \frac{u^0 E}{\alpha^2} \left[ \alpha - v_s \left( 1 - \frac{b^2}{r^2} \alpha \right)^{1/2} \right]$$
 (2.5)

To find the relationship between  $u^0$  and  $n^r$ , use

$$\vec{n} \cdot \vec{n} = 1 = (n^r)^2 \left(\frac{1}{\alpha} - \frac{v_s}{\alpha^3}\right) \Rightarrow (n^r)^2 = \frac{\alpha^3}{\alpha^2 - v_s^2}$$
$$\vec{u} \cdot \vec{u} = -1 = -(u^0)^2 \left(\alpha - \frac{v_s^2}{\alpha}\right) \Rightarrow (u^0)^2 = \frac{\alpha}{\alpha^2 - v_s^2}$$

and combining these two yields

$$\frac{n^r}{u^0\alpha} = 1\tag{2.6}$$

Finally, all the parts necessary to compute  $\cos \theta$  are in the previous 3 numbered equations above (2.4-2.6).

$$\cos \theta = -\frac{\vec{n} \cdot \vec{p}}{\vec{p} \cdot u} = \frac{\alpha \left(1 - \frac{b^2}{r^2} \alpha\right)^{1/2} - v_s}{\alpha - v_s \left(1 - \frac{b^2}{r^2} \alpha\right)^{1/2}}$$
(2.7)

## Part (c)

For a photon in a circular orbit,  $p_r=0\Rightarrow\cos\theta=-\frac{v_s}{\alpha}$ . So for r=3M,  $\cos\theta=-3v_s$ . For infalling surface,  $v_s<0$  so  $\cos\theta>0$ . The photon must be emitted outwards. Notice for  $|v_s|>1/3, |\cos\theta|>1$ . However, a coordinate stationary observer measures the speed of the surface to be

$$\hat{v}_s = \frac{u^{\hat{r}}}{u^{\hat{0}}} = \frac{u^r}{\alpha u^0} = \frac{v_s}{\alpha} \tag{2.8}$$

For r = 3M,  $\hat{v}_s = 3v_s$ . Therefore,  $|v_s|$  cannot be > 1/3 or else the observer sees the surface move faster than light.

## Problem 3

## Part (a)

Recall that for radial infall with an exterior Schwarzschild metric, that

$$R(\eta) = \frac{R_0}{2} (1 + \cos \eta)$$

$$\tau(\eta) = \left(\frac{R_0^3}{8M}\right)^{1/2} (\eta + \sin \eta)$$
(3.1)

where the collapse begins at  $\eta=0$  with  $\tau=0$  and  $R=R_0$  and ends with  $\eta=\pi, R=0$ , and  $\pi\frac{R_0^3}{8M}=\tau_{max}$ . For homogeneous density inside R, the "mass-energy interior" to a circumferential radius r is

$$m(r) = \int_0^r \rho 4\pi r^2 dr = \frac{4}{3}\pi r^3 \rho \tag{3.2}$$

giving the relation

$$F_i = \left(\frac{r_i(\tau)}{R(\tau)}\right)^3 \tag{3.3}$$

where  $F_i$  is the fraction of mass contained witin a radius  $r_i$  so then

$$r_i(\eta) = \frac{F_i^{1/3}}{2} R_0 (1 + \cos \eta) \tag{3.4}$$

See Figure 1 for a spacetime diagram illustrating this and the other parts of the problem.

#### Part (b)

Inside the matter, recall from class that

$$a(\eta) = \frac{1}{2} a_{max} (1 + \cos \eta),$$
  

$$\tau(\eta) = \frac{1}{2} a_{max} (\eta + \sin \eta).$$
(3.5)

A radially outgoing photon must obey  $ds^2 = 0 \Rightarrow d\tau = a(\tau)d\chi$ . But from the equations above,  $d\tau = \frac{1}{2}a_{max}(1+\cos\eta)d\eta = ad\eta$  so in terms of  $\eta$  the photon's equation of motion is simply

$$\frac{d\chi}{d\eta} = 1. (3.6)$$

If a photon is emitted at  $\eta = \eta_e$ ,  $\chi = \chi_e$ , then its trajectory is  $\chi = \chi_e + (\eta - \eta_e)$ . The circumferential radius, which is equal to the areal radius, is  $r = a \sin \chi$ , or

$$r(\eta) = \frac{1}{2} a_{max} (1 + \cos \eta) \sin(\chi_e + \eta - \eta_e).$$
 (3.7)

The area of a spherical pulse of light is  $4\pi r^2$ , so the portion of the region of trapped surfaces that lies inside of the matter is given by the values of  $\eta_e, \chi_e$  satisfying

$$\left. \frac{d}{d\eta} (4\pi r^2) \right|_{\eta = \eta_e} \le 0 \Rightarrow \left. \frac{dr}{d\eta} \right|_{\eta = \eta_e} \le 0 \tag{3.8}$$

Plugging in the expression for  $r(\eta)$  yields

$$\left[ -\frac{1}{2} a_{max} \sin \eta \sin(\chi_e + \eta - \eta_e) + \frac{1}{2} a_{max} (1 + \cos \eta) \cos(\chi_e + \eta - \eta_e) \right] \Big|_{\eta = \eta_e} \le 0$$

$$-\sin \eta_e \sin \chi_e + (1 + \cos \eta_e) \cos \chi_e \le 0$$

$$\cos(\chi_e + \eta_e) + \cos \chi_e \le 0$$

$$\cos(\chi_e + \eta_e) \le \cos(\pi - \chi_e)$$

$$\chi_e + \eta_e \ge \pi - \chi_e$$

$$\eta_e \ge \pi - 2\chi_e.$$
(3.9)

Note the sign: inside the star, trapped surfaces exist outside and to the future of the curve  $\eta_e + 2\chi_e = \pi$ . To be inside the star we must have  $\chi \leq \chi_o$ , where  $\chi_0$  is the  $\chi$  coordinate of the surface of the star, which was calculated in class to satisfy  $R_o = a_{max} \sin \chi_o$  and  $M = \frac{1}{2} a_{max} \sin^3 \chi_o$ . Therefore, the earliest value of  $\eta$  at which a trapped surface exists is

$$\eta_e = \pi - 2\sin^{-1}\left(\frac{2M}{R_o}\right)^{1/2} \equiv \eta_{AH}.$$
(3.10)

Note that at  $\eta = \eta_{AH}$ , the surface of the star is at r = 2M. Therefore, inside the star, for  $\eta < \eta_{AH}$  there is not a trapped surface, and for  $\eta > \eta_{AH}$  the region of trapped surfaces is *outside* and *to the future of* the curve  $\eta + 2\chi = \pi$ .

So far we have said nothing about the region of trapped surfaces outside the star. There, we have the Schwarzchild metric. In outgoing Eddington-Finkelstein coordinates the equation of motion for outgoing radial photon is  $\frac{d u}{d r} = 0$  where  $u = t - r - 2M \ln |r/2M - 1|$ . So for  $r \leq 2M$ 

$$\frac{dt}{dr} - 1 + \frac{1}{1 - r/2M} = 0$$

$$\frac{dr}{dt} = \frac{2M}{r} (r/2M - 1)$$
(3.11)

Thus,  $\frac{dr}{dt} \leq 0$  whenever  $r \leq 2M$ , that is, everywhere *outside* the star and inside  $r \leq 2M$  is trapped.

The apparent horizon is the outermost boundary of trapped surfaces. For  $\eta < \eta_{AH}$  there are no trapped surfaces and thus no apparent horizon. For  $\eta > \eta_{AH}$  (at which point the radius of the surface of the star is 2M), trapped surfaces exist between r=2M and the curve  $\eta + 2\chi = \pi$  inside the star. The outermost trapped surface, or the apparent horizon, is at r=2M.

## Part (c)

The event horizon is the trajectory of an outgoing photon that barely reaches the surface of the matter when it reaches r=2M. Inside of the matter, use the fact that for outgoing photons  $\frac{d\chi}{d\eta}=1$  and that the surface hits r=2M at  $\eta=\eta_{AH}$ , to see that

$$\chi_H = \chi_o + \eta - \eta_{AH} \tag{3.12}$$

This is only true for  $\eta \leq \eta_{AH}$ . There is no event horizon for

$$\eta < \eta_{AH} - \chi_0 \equiv \eta_H \tag{3.13}$$

so the event horizon between  $\eta_H < \eta < \eta_{AH}$  is given by

$$r_{H} = \frac{1}{2} a_{max} (1 + \cos \eta) \sin(\chi_{o} + \eta - \eta_{AH})$$
 (3.14)

For  $\eta > \eta_{AH}$ , the Schwarzschild metric has an event horizon at r=2M.

#### Part (d)

For the case where  $R_o = 5M$ , the apparent and event horizons start at  $\tau_{AH}/\tau_{max} = 0.8760$ ,  $\tau_H/\tau_{max} = 0.6280$ .

| $	au/	au_{max}$ | $\eta$ | $r_{1/4}/M$ | $r_{1/2}/M$ | R/M    | $r_{AH}/M$ | $r_H/M$ |
|-----------------|--------|-------------|-------------|--------|------------|---------|
| 0.0             | 0      | 3.1498      | 3.9686      | 5.0    | _          | _       |
| 0.2             | .3168  | 3.0714      | 3.8699      | 4.8756 | _          |         |
| 0.4             | .6508  | 2.8279      | 3.5630      | 4.4890 | _          |         |
| 0.6             | 1.029  | 2.3877      | 3.0084      | 3.7903 | _          |         |
| 0.8             | 1.515  | 1.6630      | 2.0954      | 2.6399 | _          | 0.8421  |
| 1.0             | 3.142  | 0           | 0           | 0      | 2.0        | 2.0     |



 ${\bf Figure~1:~~Spacetime~diagram~of~Oppenheimer-Snyder~collapse.}$