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Problem 1
Part (a)
The momentum of the particle is
dz*  OH
= o =9 (e —ed) (1)
=7t — e A" (1.2)

Part (b)

The equation of motion for a charged particle with the 4-vector p* in an elec-
tromagnetic field is given by the Lorentz force equation

pple, = el"p, (1.3)

Part (c)
We can verify the answer from Part (b) using Hamilton’s equations of motion.
Eq. (3) gives

dr, _ _OH _ 1

- - AajoB abp A 1.4
™ 9ui — 3PaPB9 97 oo e Padp) (1.4)

But gxo = 2l (\o), and Ag , = Ay g + Flup, so we have
dm

TAH = 2aps9" 9" T royu + €97 (Fu(aPoy + Ay (s Fa)) (1.5)
dp, dA,
_ dpy 1.
FN) (1.6)
A,

We note that A, sP,) = —* and

pap#;oz = pap#,a - Fﬁapk (1'7)
So finally Eq (1.5)) becomes
pply, = eF"p,, (1.8)

which is the result of part (1b)
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Part (d)
We know that since %—g = %—If = 0, this implies
dry  dm
e -t 1.
A A 0 (1.9)
and so m4 and 7, are conserved. But
_ _Q
T = pe + €Ay, At——7 (1.10)
=p— «Q_ -K (1.11)
r
and
T :p¢+6A¢, A¢ =0 (112)
=pg=1L (1.13)

so E and L are conserved.

Part (e)

We can derive Eq (6) in the problem set from the fact that the particle rest
mass is conserved:

1 = gapp®p® (1.14)
2 2
= <3;> Grr + (pO)QQOO + (1;%) (115)
ar\® 1 eQ ! L?

(&) 7 (T8 e 0w

where

2M 2
flr)=1- T+% (1.17)
00 1

and g, = —¢g"° = 7 Rearranging will give you Eq (6).

Problem 2

Part (a)
Go to the local Lorentz frame comoving with the surface of the star so that
i=(1,0),p=(E,p),i=(0,n). Now |n|=1and [p| = E = —p’- u Then
n- g7.0 7.0
cosHZNPznpz—T_l,p (2.1)
[nllpl  [nllpl pu

Since this final quantity is a scalar, it can be computed in any frame.
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Part (b)
Without loss of generality, assume 6 = 7/2, pg = 0. For a photon,
- o — 1
P-p=0=—(p)" +aP)* + —(ps)’ (2:2)
where o =1 —2M/r. Since po = —F and py = L and labeling b = L/E, then
B B2\ /2
Now let v, = 9 = v /u®. Then @ 7 =0 = —u’n®a+n"u"/a = n® = n"v,/a?.

Now compute the other relevant quantities

b2 1/2
—vs+ (1 - 7’ZOz) (2.4)

op b2 1/2
il = —FEu’ 4 pu” = ua—z [a — v (1 - r2a> (2.5)

To find the relationship between u° and n", use

T

—

p-ii=—FEn’ +pn" =

a?

a? —v?
v? a
ioi=-1=—()2(a-2) = @0)2=_%
a-U (u”) <a oz) (u”) o 02
and combining these two yields
n'r
=1 2.6
o (2.6)

Finally, all the parts necessary to compute cos 6 are in the previous 3 numbered
equations above (2.4-2.6).

7.5 all-za — Vs
0050:77_{ b_ SV (2.7)
p-u afvs(lflr%a)
Part (c)
For a photon in a circular orbit, p, = 0 = cosf) = —%. So for r = 3M,
cos) = —3v,. For infalling surface, vs < 0 so cosf > 0. The photon must be

emitted outwards. Notice for |vg| > 1/3,|cosé| > 1. However, a coordinate
stationary observer measures the speed of the surface to be
u” Vg

w0 o« (2:8)
For r = 3M, b5 = 3vs. Therefore, |vs| cannot be > 1/3 or else the observer sees
the surface move faster than light.
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Problem 3

Part (a)

Recall that for radial infall with an exterior Schwarzschild metric, that
R
R(n) =70(1 + cosn)

Rg 1/2
o =(g1) s (3.1)
where the collapse begins at n = 0 with 7 = 0 and R = Ry and ends with

RS e
n=m,R=0, and g% = Tynas. For homogeneous density inside R, the "mass-
energy interior” to a circumferential radius r is

T 4 .
m(r) :/0 pArrdr = gwrdp (3.2)

giving the relation

Fo— ri(7) ’ (3.3)
" \R(1) '
where F; is the fraction of mass contained witin a radius r; so then
1/3

ri(n) = i2 Ro(1 + cosn) (3.4)

See Figure [1] for a spacetime diagram illustrating this and the other parts of
the problem.

Part (b)

Inside the matter, recall from class that

1
a(n) :gamam(l + cos 1),
1 .
7(n) :gamaz(n + sinn). (3.5)

A radially outgoing photon must obey ds? = 0 = dr = a(7)dy. But from the
equations above, dr = %amam(l + cosn)dn = adn so in terms of 7 the photon’s
equation of motion is simply

d
dy _,

i (3.6)
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If a photon is emitted at 7 = 7., x = Xe, then its trajectory is x = xe + (7 —17).
The circumferential radius, which is equal to the areal radius, is r = asin y, or

1

7‘(77) = Qamax(l + cos 77) Sin(Xe +n— 7]6)' (3'7)

The area of a spherical pulse of light is 4772, so the portion of the region of

trapped surfaces that lies inside of the matter is given by the values of 7., xe
satisfying

g():>ﬁ

< .
- 0 (3.8)

d
— (47rr2)
dn n=ne

N="Ne

Plugging in the expression for r(n) yields

<0
n="mne

2

1 . . 1
— 5 0maz sinnsin(xe + 17 — Ne) + = Amaz (1 + cosn) cos(xe + 1 — Ne)

—sinmne sin xe + (1 4 cosne) cos xe < 0
cos(Xe + Me) + cosxe <0

cos(Xe + 7e) < cos(m — xe)

Xe t7e 2 T — Xe

776 Z ™ — 2Xe~
(3.9)

Note the sign: inside the star, trapped surfaces exist outside and to the future
of the curve 7, +2x. = w. To be inside the star we must have y < x,, where xq
is the x coordinate of the surface of the star, which was calculated in class to
satisfy R, = Gmag Sin X, and M = %amam sin® Xo- Therefore, the earliest value
of n at which a trapped surface exists is

o\ /2
Ne =7 —2sin 1 ( > =naH. (3.10)
R,
Note that at n = nag, the surface of the star is at r = 2M. Therefore, inside
the star, for 7 < napg there is not a trapped surface, and for n > g4y the region
of trapped surfaces is outside and to the future of the curve n + 2y = 7.

So far we have said nothing about the region of trapped surfaces outside
the star. There, we have the Schwarzchild metric. In outgoing Eddington-
Finkelstein coordinates the equation of motion for outgoing radial photon is
44 — 0 where w =t —r — 2M In |r/2M —1|. So for r < 2M

dr
dt 1
e
dr Jr1—1“/2M 0
dr  2M
S (r2M -1
il O )

(3.11)
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Thus, % < 0 whenever » < 2M, that is, everywhere outside the star and inside

r < 2M is trapped.

The apparent horizon is the outermost boundary of trapped surfaces. For
1N < nag there are no trapped surfaces and thus no apparent horizon. For
1 > napg (at which point the radius of the surface of the star is 2M), trapped
surfaces exist between r = 2M and the curve n 4+ 2y = 7 inside the star. The
outermost trapped surface, or the apparent horizon, is at r = 2M.

Part (c)

The event horizon is the trajectory of an outgoing photon that barely reaches
the surface of the matter when it reaches r = 2M. Inside of the matter, use
the fact that for outgoing photons % = 1 and that the surface hits r = 2M at
1N = NamH, to see that

XH = Xo TN —1NAH (3.12)
This is only true for 7 < napg. There is no event horizon for
N <NAH — X0 = NH (3.13)

so the event horizon between ng <1 < nag is given by

1
rH = iamal(l—kcosn) sin(xo + 1 — Nan) (3.14)

For n > napg, the Schwarzschild metric has an event horizon at r = 2M.
Part (d)

For the case where R, = 5M, the apparent and event horizons start at Tag /Timaz =
0.8760, T /Tmaz = 0.6280.

7—/7_mar Ui T1 4/M 71 2/M R/M TAH/M TH/M
0.0 0 3.1498 3.9686 5.0 — —
0.2 3168 | 3.0714 | 3.8699 | 4.8756 | — —
0.4 .6508 | 2.8279 | 3.5630 | 4.4890 | — —
0.6 1.029 | 2.3877 | 3.0084 | 3.7903 | — —
0.8 1.515 | 1.6630 2.0954 2.6399 | — 0.8421
1.0 3.142 | 0 0 0 2.0 2.0
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Figure 1: Spacetime diagram of Oppenheimer-Snyder collapse.
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