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Problem 1

Part (a)

Since ρ0 is the rest mass density, and the mass is completely dominated by
neutrons, ρ0 = mnn where mn is the rest mass of a single neutron and n is the
number density. Since the neutron gas is non-relativistic, each neutron’s energy
is dominated by its rest mass so then ρ = ρ0 ⇒ ρ = mnn. The problem gives
that P = KρΓ

0 . Therefore, P (n) = K(mnn)Γ.

Part (b)

The equation of state and the Newtonian equations of stellar structure and are

dm

dr
=4πr2ρ0

dP

dr
=− Gm

r2
ρ0

P =KρΓ
0 (1.1)

where dimensionful constants have been included, Γ = 5/3 and K = 5.3802 ×
109cgs units. Define the following quantities for ease of computation:

ρ̃0 =
ρ0

1015g/cm
3

P̃ =
P

5.3802× 1034dyn/cm
2

m̃ =
m

M�

r̃ =
r

10km
(1.2)

Using these definitions, the equations above become

dm̃

dr̃
= 6.318r̃2ρ̃0 (1.3)

dP̃

dr̃
= −2.4666

m̃

r̃2
ρ̃0 (1.4)

ρ̃0 = P̃ 1/Γ (1.5)

In order to perform the integration, initial conditions must be determined.
Choose an initial central density ρc. To avoid the issue of the 1/r̃2 divergence
at r̃ = 0, choose the conditions at r̃ = ∆r̃ to be

m̃(∆r̃) =2.106∆r̃3ρ̃c

P̃ (∆r̃) =P̃c = (ρ̃c)
5/3 (1.6)
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The last equation comes from the fact that m̃→ 4π
3 ρ̃cr̃

3 as the radius approaches

the origin and therefore dP̃
dr̃ → 0; thus the difference between P̃ (∆r̃) and P̃c

is second order in ∆r̃ and can be neglected for the initial conditions. The
integration is continued until P̃ = 0.

See the example script at the end of this solution for an example of the
integration. Note that the exact values will depend on the scheme used but all
results should approximate the ones output by the attached script.

(i)

See Figs. 1–3 for the mass and radius profiles.

Figure 1: Mass vs central density.

(ii)

Looking at Figs. 1 and 2, both the Newtonian graphs straight lines are on log
scale implying that there is a power law relationship between the mass and
radius. This can be seen from Fig. 3. One can estimate the exponent by two
points on the curves, or by doing a fit. The result is

⇒M ∝ R−3 (1.7)
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Figure 2: Radius vs central density.

(iii)

For all values of ρc, the Newtonian equations give that dM
dρc

> 0. This implies
that all configurations are radially stable.

(iv)

Because the relation between mass, radius, and central density are all power
laws, there is no maximum to the possible mass of these Newtonian neutron
stars and no maximum to the central density.

Part (c)

The first law of thermodynamics, (assuming no entropy terms because of adia-
baticity), from the class notes is

d
( ρ
n

)
=− Pd

(
1

n

)
(1.8)
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Figure 3: Mass vs Radius.

which can be rewritten in terms of ρ0 by using the relation ρ0 = mnn so then

d

(
ρ

ρ0

)
=− Pd

(
1

ρ0

)
(1.9)

Integrate the expression, choosing the constant of integration so that the ex-
pression reduces to ρ = ρ0 in the limit of no pressure (all of the energy is in the
rest mass term)

ρ =ρ0 +
KρΓ

0

Γ− 1

ρ =ρ0 +
3

2
P (1.10)

This equation is the last equation needed to evolve the relativistic equations of
stellar structure.
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Part (d)

The relativistic equations of stellar structure are

dm

dr
=4πr2ρ

dP

dr
=− Gm

r2
ρ

(
1 +

P

ρc2

)(
1 +

4πPr3

mc2

)
/

(
1− 2Gm

rc2

)
(1.11)

Note that here ρ is used instead of ρ0 and that all of the dimensionful constants
have been included. Again, choose dimensionless variables as before, adding
a new dimensionless variable ρ̃ = ρ

1015g/cm3 for the energy density. Then the

relevant equations to integrate are

dm̃

dr̃
=6.318r̃2ρ̃

dP̃

dr̃
=− 2.4666

m̃

r̃2
ρ̃

(
1 + .59864

P̃

ρ̃

)(
1 + .3782

P̃ r̃3

m̃

)
/

(
1− .2953

m̃

r̃

)
ρ̃0 =P̃ 1/Γ

ρ̃ =ρ̃0 + 0.089796P̃ (1.12)

The method of calculation the initial and termination conditions are done in the
same manner as the Newtonian case and the attached script has an example.

(i)

See Figs. 1–3 for the mass and radius profiles.

(ii)

Only the configurations with dM
dρc

> 0 are radially stable. Looking at the table
printed out from the script, the maximum occurs around ρc,max = 4.2245 ×
1015g/cm

2
so all configurations below this are stable.

(iii)

The maximum stable mass is found at ρc,max which according to the table is
approximately 0.784908M�.

(iv)

The maximum redshift of a photon emitted from the surface is

zmax =

(
1− 2mmax

Rmax

)−1/2

− 1 (1.13)

Putting in values of mmax ≈ .8M� and Rmax ≈ 8.5km gives a value for zmax ≈
.18
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Problem 2

Part (a)

Because the particle is being held by the string, it is not in free-fall. Rather the
string is exerting a force on the particle which has a 4-acceleration given by

~a = ∇~u~u

aβ = uαuβ;α = uα(uβ,α + Γβδαu
δ) (2.1)

Because the particle is held stationary, it’s 4-velocity must be ~u = (u0,
˜
0) since

its spatial coordinates are not moving. Therefore,

~u · ~u = −1 = −u0

(
1− 2M

r

)
u0 =

(
1− 2M

r

)−1/2

(2.2)

Now ~a · ~u = 0⇒ a0 = 0. The acceleration is then

ai =uα(uβ,α + Γβδαu
δ)

=Γi00u
02

=Γi00

(
1− 2M

r

)−1

(2.3)

Since using a coordinate basis and assuming a static metric (gµν,0 = 0)

Γi00 =
1

2
giµ(2gµ0,0 − g00,µ)

=− 1

2
giµg00,µ

=− 1

2
girg00,r

Γr00 =− 1

2
grrg00,r =

M

r2

(
1− 2M

r

)
(2.4)

Γθ00 =Γφ00 = 0 (2.5)

Thus, the acceleration is ~a = (0, mr2 , 0, 0). But the ”measured Newtonian accel-
eration in the local frame of the particle” is given by the invariant quantity

aNewt = |~a · ~a| = arg 1/2
rr =

M

r2

1

(1− 2M/r)1/2

⇒ F = maNewt =
Mm

r2

1

(1− 2M/r)1/2
(2.6)
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Part (b)

Imagine that the distant observer pulls on the string for a proper distance d`obs.
He does work on the system, δWobs = Fobsd`obs. Meanwhile, the string pulls
on the particle, doing work δWpart = Fd`obs as measured locally (the proper
distance move must be the same, assuming the string did not stretch). Energy
conservation demands that the work done by the distant observer must be equal
to the work done on the particle by the string, after correcting for gravitational
redshift factor (1− 2M/r)1/2.

δWobs(1− 2M/robs)
1/2 =δWpart(1− 2M/r)1/2

δFobsd`obs(1− 2M/robs)
1/2 =Fd`part(1− 2M/r)1/2

Fobs =F (1− 2M/r)1/2(1− 2M/robs)
−1/2

Fobs =
Mm

r2
(1− 2M/robs)

−1/2 (2.7)

In the limit where the observer and the particle are at the same place, r = robs,
the original formula for the force in part (a) is recovered.

Part (c)

Take the expression just found for Fobs and take the limit as robs =∞. Then the
force is F = Mm

r2 , which is just the Newtonian expression for the gravitational
force acting between two masses.

Example python script for problem 1

from __future__ import division

print ’Table of values for Newtonian neutron stars’

print ’rho0_c\t\tR (km)\t\tM (solar masses)’

rho0_c = [1.e-4,1.e-3,1.e-2,.1,1.0,10.,100.]

M_Newton = []

R_Newton = []

#Choosing a smaller delta_r value should result in more accurate reslts

delta_r = .001

# Build a number of stars with different central densities

for i in range(len(rho0_c)):

# Set up initial conditions

Kevin Barkett and Mark Scheel January 20, 2016



Ph 236 – Solutions Ph 236b – Week 2 Page 9 of 11

r_new = delta_r

m_new = 2.106*rho0_c[i]*(r_new**3)

P_new = pow(rho0_c[i],5./3.)

rho0_new = rho0_c[i]

# Use simple Euler integration to bulid the star

while P_new>0:

# Update the old steps

m_old = m_new

P_old = P_new

rho0_old = rho0_new

r_old = r_new

# Step forward in radius by one interval

r_new = r_old+delta_r

m_new = m_old + 2.106*rho0_old*(r_new**3-r_old**3)

P_new = P_old + 2.4666*rho0_old*m_old*(1./r_new - 1./r_old)

rho0_new = pow(abs(P_new),3./5.)

# Done with loop.

# Use simple linear interpolation to find where exactly P=0 (i.e. star surface)

frac = -P_old/(P_new-P_old) # How far along the last interval P=0

R_Newton.append(r_old+frac*delta_r ) # Value of Radius and mass at surface

M_Newton.append(m_old+frac*(m_new-m_old))

# Rescale these quantities for simplicity of the plot

rho0_c[i] = rho0_c[i]*10**15

R_Newton[i] = R_Newton[i]*10

print ’{}\t\t{:.6f}\t{:.6f}’.format(rho0_c[i],R_Newton[i],M_Newton[i])

print ’\n\n’

####################

print ’Table of values for relativistic neutron stars\n’

print ’rho0_c\t\tR (km)\t\tM (solar masses)\trho_c’

rho0_C = [1.e-4,1.e-3,1.e-2,.1,.5,1.,2.,3.,3.2,3.4,3.5,3.6,3.7,3.8,4.,4.5,5.,6.,10.,20.,50.,75.,100.]

rho_C = []

M_GR = []

R_GR = []

#Choosing a smaller delta_r value should result in more accurate reslts

delta_r = .001
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# Build a number of stars with different central densities

for i in range(len(rho0_C)):

# Set up initial conditions

rho0_new = rho0_C[i]

P_new = pow(rho0_C[i],5./3.)

rho_new = rho0_new + .089796*P_new

r_new = delta_r

m_new = 2.106*rho_new*(r_new**3)

rho_C.append(rho0_new + .089796*P_new)

# Use simple Euler integration to bulid the star

while P_new>0:

# Update the old steps

m_old = m_new

P_old = P_new

rho_old = rho_new

rho0_old = rho0_new

r_old = r_new

# Step forward in radius by one interval

r_new = r_old+delta_r

m_new = m_old + 2.106*rho_old*(r_new**3-r_old**3)

P_new = P_old + (2.4666*rho_old*m_old*(1./r_new-1./r_old)) * (1.+.059864*P_old/rho_old) * (1.+.3782*P_old*r_old**3/m_old) / (1.-.2953*m_old/r_old)

rho0_new = pow(abs(P_new),3./5.)

rho_new = rho0_new + .089796*P_new

# Use simple linear interpolation to find where P=0 (i.e. star surface)

frac = -P_old/(P_new-P_old) # How far along the last interval P=0

R_GR.append( r_old+frac*delta_r )

M_GR.append( m_old+frac*(m_new-m_old) )

# Rescale these quantities for simplicity in the plots.

rho0_C[i] = rho0_C[i]*10**15

rho_C[i] = rho_C[i]*10**15

R_GR[i] = R_GR[i]*10

print ’{}\t\t{:.6f}\t{:.6f}\t\t{:01.6g}’.format(rho0_C[i],R_GR[i],M_GR[i],rho_C[i])

# Plot Mass and Radius as a function of central density

"""

import pylab as plt

import matplotlib
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plt.close(’all’)

matplotlib.rcParams.update({’font.size’:20})

plt.figure(1);

plt.axes([0.15,0.15,0.8,0.8])

plt.loglog(rho0_c,M_Newton,’r’,label=’Newtonian’)

plt.loglog(rho0_C,M_GR,’b’,label=’Relativistic’)

plt.legend()

plt.xlabel(’rho_0 (g/cm^3)’)

plt.ylabel(’M (solar masses)’)

plt.figure(2);

plt.axes([0.15,0.15,0.8,0.8])

plt.loglog(rho0_c,R_Newton,’r’,label=’Newtonian’)

plt.loglog(rho0_C,R_GR,’b’,label=’Relativistic’)

plt.xlabel(’rho_0 (g/cm^3)’)

plt.ylabel(’R (km)’)

plt.legend()

plt.figure(3);

plt.axes([0.15,0.15,0.8,0.8])

plt.loglog(R_Newton,M_Newton,’r’,label=’Newtonian’)

plt.loglog(R_GR,M_GR,’b’,label=’Relativistic’)

plt.ylabel(’M (solar masses)’)

plt.xlabel(’R (km)’)

plt.legend()

plt.show()

"""

# maximum occurs for rho0_C ~ 3.5e+15, M ~ 0.784908

print ’The end’
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