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Problem 1

Part (a)
The stress-energy tensor for a perfect fluid is given by
T°F = (P + p)u®u” + Pg®?, (1.1)

and perturbations are of the form P = Py + 6P,p = po + dp,u’ = (1,v;).
Now look at the different components of TO‘B; 5 = 0 to get an equation of the
perturbation variables (to 1st order). For the case oo = 0:

(P + p)uu” 5+ (P + p)gu’u® + (P + p)u’ gu” + Ppg™ + Pg” ; =0

(6P +0p),0 + (Po+ po)v'; —0Po =0

_ (6
v, =V-u= —%(Po +p0)"t (1.2)

For o = j (where j =1,2,3):
(P—l—p)ujuﬁ;ﬁ + (P—i—p)uj;ﬁuﬁ + (P + p).puiu® + Pgg®® —l—ngB;ﬁ =0

(P+p)ul g+ Py =0
dv  V(6P)

—=—-———"— (13
ot (PO + p())_l ( )
Part (b)
Taking the equations of motion from above and combining them gives
0 v
a(v ) =V ot
o () 1 v(oP)
Z (22 p -V
8t< g (Fo+ro) VB
3*(9p) 2
— = =V*(0P). 1.4
P v (sp) (14)
Let v2 = %—1; |G Substituting 6P = %—}; ’85p = v2dp into the differential equation
yields
1 9%(dp)
2
- = =0. 1.
VE00) ~ 3 g = (15)

This is just the wave equation where the constant coefficient is related to the
sound speed. The perturbations travel at a speed vs.
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Problem 2

Part (a)

Comparing the two froms for the metric, there are two equations which relate
the Schwarzchild and isotropic coordinates:

e dr? = di?,
r? =e2hi2, (2.1)
Dividing these two equations by each other and taking the square root leaves

dr dr
AZ =2, 2.2
€ r T ( )

Integrate this equation to get 7 in terms of r and A,

7= Cexp (/ e:dr> , (2.3)

Where C' is a constant of integration. Since 7 is in terms of » and A, y can now
be expressed as e = r? /i,

Part (b)

In vacuum, e = (1 — 2M/r)~/2. Toss this into the integral for 7 so that

r=con (| i)
= O(Vr+Vr—2Mp, (2.4)

assuming r > 2M. This expression can be inverted to get

(7/C+2M)*> 7

F0 "0 (142MC/F)>. (2.5)

T =
Impose the condition that » = 7 as they both grow to infinity to set the constant

of integration C' = 1/4 leaving

r=7(1+ M/2F)?,
e = (1+ M/2r)*. (2.6)

Kevin Barkett and Mark Scheel January 19, 2016



Solutions Ph 236b — Week 1 Page 4 of 7

Part (c)

Looking at the metric for isotropic coordinates, for a constant ¢t and 7, the area
element is given by e?*72dQ?. Integrate over the angular coordinates to get the
area of the sphere,

A =e?i? / sy’

=(1+ M/27)*7 / df sin Od¢

=477 (1 + M/27)* (2.7)

Part (d)

In constructing the embedding diagram, note that from Part (b) that the map-
ping from r to 7 is double-valued and that the coordinate 7 only describes the
region for r > 2M. So an embedding diagram for a surface of constant ¢ requires

that
dz\?
ds® =dz? + dr® + r2d¢® = |1+ (dr) & + 126
=(1 = 2M/r)"tdr® + r?d¢? (2.8)
which has a solution of
2 = [8M(r — 2M)]!/? (2.9)

So the diagram in the r — z plane is a sideways parabola opening to the right,
with 7 = M/2 at z = 0. As r goes to infinity, the top half of the parabola is
where T goes to infinity and the bottom half is where 7 goes to 0. Thus 7 > M/2
represents our universe, i.e. region I of the Kruskal diagram of a Schwarzschild
black hole, and 7 < M/2 represents the “other universe”, i.e. region III of the
Kruskal diagram.

Kevin Barkett and Mark Scheel January 19, 2016



Solutions Ph 236b — Week 1 Page 5 of 7

Problem 3

Part (a)

Substitute the expression for the phase space distribution function into each of
the expressions so

8 PF

n :ﬁ/ p2dp (3.1

0

8 PF

P=13 /O (p* +m*)?p*dp (3.2)
81 /PF 3

=— vp°dp (3.3)

3n3 J,

Part (b)

Given that the rest mass of the fermions is much less than the Fermi momentum
pr, then neglecting the rest mass gives the approximations that (p?+m?)%/2 ~ p
and v &~ 1. Substituting that above into the integrals for P and p,

8 [PF o 87

= dp = —pt
P h3 0 p-ap 4h3pF
&t [PF 8T
P:3h3/0 Pdp = P (34

From here, notice that then P(p) = §.

Part (c)

From the results of Problem 1b above, the sound speed is given by v? = %—IZ.
Since

220!

the sound speed, vy = 1/1/3.

Part (d)

Consider the two equations of stellar structure discussed in class,
d
d—T =4mr?p (3.6)
AP —(P + p)(4nr3P +m)
— = (3.7)
dr r(r — 2m)
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Throw the suggested solution of m(r) = 3r/14 into the first equation to get
p(r) = (3/14)(4mr?) ™" (3.8)

Now plug in the equation of state found in part b, P = p/3, into the second
structure equation
d 4p(4mr3p/3
dp _ 4p(4mrip/3 +m) (3.9)
dr r(r —2m)
Mix in the equations for m(r) and p(r) to and simplify to show that they do
indeed statisfy the equations of stellar structure.

Part (e)

From the previous part, p(r) = (3/14)(47r?)~! and the equation of state is
P(r) = (1/14)(4nr?*)~1. To get n(r), consider the integrals from part (a) for
this case.

8t [PF 81 4
- dp =
n=yg | Pdp= vk

8w [PF 8
p :ﬁ/o pidp = vk (310)
Eliminating pr and solving for n(r) gives
st [ 4h3p\**
=— 3.11
) = 3 (%2 (3.11)
and finally, substituting in for p reduces the result to
8r (4n® 3 1\**" K
= _3/27 _— = —
) =S <8w 14 477) 732’ (3:12)
where
_ B (4h73 1 v (3.13)
~ 3n3 \ 87 144w '
is a constant.
Part (f)
The total number of particles inside radius r is
N(r) :/ n(r)d(proper volume)
0
:/ n(r)edmridr
0
:#r?’/? (3.14)
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where
e =g, =0 —2m(r)/r)"t =7/4 (3.15)

Thus the total number of particles NV is finite for all r.

Part (g)
The 3-geometry of a ¢t =constant hypersurface has a metric

ds® = gppdr® + r2dQ? = (7/4)dr® + r*dQ? (3.16)
so then the embedding equation for constant 6, ¢ is

ds* = (7/4)dr* = dr® + dz*
= z==£(3/4)Y?r (3.17)

Thus, the embedding diagram will be two lines with slopes of +(3/4)'/? that
intersect at r =0

Problem 4

The line element of Schwarzchild metric is
ds®> = —e2®dt? + (1 — 2m(r)/r) " Ldr? + r2dQ? (4.1)

From this line element, the measured area of a sphere of coordinate radius r is
A(r) = 4mr?. The gradient of a scalar is a 1-form

VA(r) = dA = Smrdr (4.2)
From this, create an invarient quantity, namely
dA - dA = 16xr2dr - dr = 167%r2(1 — 2m)/r)

4 167 A
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