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Problem 1

Part (a)

The stress-energy tensor for a perfect fluid is given by

Tαβ = (P + ρ)uαuβ + Pgαβ , (1.1)

and perturbations are of the form P = P0 + δP, ρ = ρ0 + δρ, ui = (1, vi).

Now look at the different components of Tαβ;β = 0 to get an equation of the
perturbation variables (to 1st order). For the case α = 0:

(P + ρ)u0uβ;β + (P + ρ);βu
0uβ + (P + ρ)u0

;βu
β + P;βg

αβ + Pg0β
;β = 0

(δP + δρ);0 + (P0 + ρ0)vi;i − δP;0 = 0

vi;i = ∇ ·
˜
v = −∂(δρ)

∂t
(P0 + ρ0)−1. (1.2)

For α = j (where j = 1, 2, 3):

(P + ρ)ujuβ;β + (P + ρ)uj;βu
β + (P + ρ);βu

juβ + P;βg
αβ + Pgjβ;β = 0

(P + ρ)uj;0 + P;j = 0

∂
˜
v

∂t
= − ∇(δP )

(P0 + ρ0)−1
. (1.3)

Part (b)

Taking the equations of motion from above and combining them gives

∂

∂t
(∇ ·

˜
v) =∇ · ∂˜

v

∂t
∂

∂t

(
−∂(δρ)

∂t
(P0 + ρ0)−1

)
=∇ ·

(
− ∇(δP )

(P0 + ρ0)−1

)
∂2(δρ)

∂t2
=∇2(δP ). (1.4)

Let v2
s = ∂P

∂ρ

∣∣
s
. Substituting δP = ∂P

∂ρ

∣∣
s
δρ = v2

sδρ into the differential equation
yields

∇2(δρ)− 1

v2
s

∂2(δρ)

∂t2
= 0. (1.5)

This is just the wave equation where the constant coefficient is related to the
sound speed. The perturbations travel at a speed vs.
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Problem 2

Part (a)

Comparing the two froms for the metric, there are two equations which relate
the Schwarzchild and isotropic coordinates:

e2Λdr2 =e2µdr̄2,

r2 =e2µr̄2. (2.1)

Dividing these two equations by each other and taking the square root leaves

eΛ dr

r
=
dr̄

r̄
. (2.2)

Integrate this equation to get r̄ in terms of r and Λ,

r̄ = C exp

(∫
eΛ

r
dr

)
, (2.3)

Where C is a constant of integration. Since r̄ is in terms of r and Λ, µ can now
be expressed as e2µ = r2/r̄2.

Part (b)

In vacuum, eΛ = (1− 2M/r)−1/2. Toss this into the integral for r̄ so that

r̄ = C exp

(∫
dr

(r2 − 2Mr)1/2

)
= C(

√
r +
√
r − 2M)2, (2.4)

assuming r ≥ 2M . This expression can be inverted to get

r =
(r̄/C + 2M)2

4r̄/C
=

r̄

4C
(1 + 2MC/r̄)

2
. (2.5)

Impose the condition that r = r̄ as they both grow to infinity to set the constant
of integration C = 1/4 leaving

r = r̄(1 +M/2r̄)2,

e2µ = (1 +M/2r̄)4. (2.6)
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Part (c)

Looking at the metric for isotropic coordinates, for a constant t and r̄, the area
element is given by e2µr̄2dΩ2. Integrate over the angular coordinates to get the
area of the sphere,

A =e2µr̄2

∫
dΩ2

=(1 +M/2r̄)4r̄2

∫
dθ sin θdφ

=4πr̄2(1 +M/2r̄)4 (2.7)

Part (d)

In constructing the embedding diagram, note that from Part (b) that the map-
ping from r to r̄ is double-valued and that the coordinate r̄ only describes the
region for r ≥ 2M . So an embedding diagram for a surface of constant t requires
that

ds2 =dz2 + dr2 + r2dφ2 =

[
1 +

(
dz

dr

)2
]
dr2 + r2φ2

=(1− 2M/r)−1dr2 + r2dφ2 (2.8)

which has a solution of

z = [8M(r − 2M)]1/2 (2.9)

So the diagram in the r − z plane is a sideways parabola opening to the right,
with r̄ = M/2 at z = 0. As r goes to infinity, the top half of the parabola is
where r̄ goes to infinity and the bottom half is where r̄ goes to 0. Thus r̄ > M/2
represents our universe, i.e. region I of the Kruskal diagram of a Schwarzschild
black hole, and r̄ < M/2 represents the “other universe”, i.e. region III of the
Kruskal diagram.
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Problem 3

Part (a)

Substitute the expression for the phase space distribution function into each of
the expressions so

n =
8π

h3

∫ pF

0

p2dp (3.1)

ρ =
8π

h3

∫ pF

0

(p2 +m2)1/2p2dp (3.2)

P =
8π

3h3

∫ pF

0

vp3dp (3.3)

Part (b)

Given that the rest mass of the fermions is much less than the Fermi momentum
pF , then neglecting the rest mass gives the approximations that (p2+m2)1/2 ≈ p
and v ≈ 1. Substituting that above into the integrals for P and ρ,

ρ =
8π

h3

∫ pF

0

p3dp =
8π

4h3
p4
F

P =
8π

3h3

∫ pF

0

p3dp =
8π

12h3
p4
F (3.4)

From here, notice that then P (ρ) = ρ
3 .

Part (c)

From the results of Problem 1b above, the sound speed is given by v2
s = ∂P

∂ρ .
Since

∂P

∂ρ
=

∂

∂ρ

(ρ
3

)
=

1

3
(3.5)

the sound speed, vs =
√

1/3.

Part (d)

Consider the two equations of stellar structure discussed in class,

dm

dr
=4πr2ρ (3.6)

dP

dr
=
−(P + ρ)(4πr3P +m)

r(r − 2m)
(3.7)
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Throw the suggested solution of m(r) = 3r/14 into the first equation to get

ρ(r) = (3/14)(4πr2)−1 (3.8)

Now plug in the equation of state found in part b, P = ρ/3, into the second
structure equation

dρ

dr
= −4ρ(4πr3ρ/3 +m)

r(r − 2m)
(3.9)

Mix in the equations for m(r) and ρ(r) to and simplify to show that they do
indeed statisfy the equations of stellar structure.

Part (e)

From the previous part, ρ(r) = (3/14)(4πr2)−1 and the equation of state is
P (r) = (1/14)(4πr2)−1. To get n(r), consider the integrals from part (a) for
this case.

n =
8π

h3

∫ pF

0

p2dp =
8π

3h3
p3
F

p =
8π

h3

∫ pF

0

p3dp =
8π

4h3
p4
F (3.10)

Eliminating pF and solving for n(r) gives

n(r) =
8π

3h3

(
4h3ρ

8π

)3/4

(3.11)

and finally, substituting in for ρ reduces the result to

n(r) = r−3/2 8π

3h3

(
4h3

8π

3

14

1

4π

)3/4

=
K

r3/2
, (3.12)

where

K =
8π

3h3

(
4h3

8π

3

14

1

4π

)3/4

(3.13)

is a constant.

Part (f)

The total number of particles inside radius r is

N(r) =

∫ r

0

n(r)d(proper volume)

=

∫ r

0

n(r)eΛ4πr2dr

=
14πK

3
r3/2 (3.14)
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where

e2Λ = grr = (1− 2m(r)/r)−1 = 7/4 (3.15)

Thus the total number of particles N is finite for all r.

Part (g)

The 3-geometry of a t =constant hypersurface has a metric

ds2 = grrdr
2 + r2dΩ2 = (7/4)dr2 + r2dΩ2 (3.16)

so then the embedding equation for constant θ, φ is

ds2 = (7/4)dr2 = dr2 + dz2

⇒ z = ±(3/4)1/2r (3.17)

Thus, the embedding diagram will be two lines with slopes of ±(3/4)1/2 that
intersect at r = 0

Problem 4

The line element of Schwarzchild metric is

ds2 = −e2Φdt2 + (1− 2m(r)/r)−1dr2 + r2dΩ2 (4.1)

From this line element, the measured area of a sphere of coordinate radius r is
A(r) = 4πr2. The gradient of a scalar is a 1-form

∇A(r) ≡ d̃A = 8πrd̃r (4.2)

From this, create an invarient quantity, namely

d̃A · d̃A = 16π2r2d̃r · d̃r = 16π2r2(1− 2m/r)

⇒ m(r) =
(A/π)1/2

4

(
1− d̃A · d̃A

16πA

)
(4.3)
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