Physics 236b assignment, Week 9:

(March 3, 2016. Due on March 10, 2016)

1. Scalar waves in curved spacetime [25 points]

The wave equation for a scalar field ϕ reads $g^{ab}\nabla_a\nabla_b\phi = 0$, where ∇_a is a 4-d covariant derivative.

Assume a metric in 3+1 form

$$ds^{2} = -\alpha^{2}dt^{2} + \gamma_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt).$$

$$(1)$$

(a) Define

$$\Pi \equiv -\frac{1}{\alpha} \mathcal{L}_{\alpha n} \phi, \qquad (2)$$

$$\Phi_a \equiv D_a \phi, \tag{3}$$

so in components

$$\Pi = -\frac{1}{\alpha} \left(\partial_0 - \beta^i \partial_i \right) \phi, \tag{4}$$

$$\Phi_k = \partial_k \phi, \tag{5}$$

and show that the scalar wave equation can be written in the form

$$(\partial_0 - \mathcal{L}_\beta)\Pi + \alpha \gamma^{ij} \partial_i \Phi_j = \alpha \left(K\Pi - \Phi^k \partial_k \ln \alpha + \Phi_k \Gamma^{kj}{}_j \right),$$
(6)

where ∂_a is an ordinary partial derivative, K is the trace of the extrinsic curvature, and Γ^k_{ij} is the 3-dimensional connection compatable with the 3-metric γ_{ij} .

Hint: while this can be done by computing the 4-d Christoffel symbols from Eq. (1), the calculation has far fewer terms if you instead compute $\mathcal{L}_{\alpha n}\Pi$ (which equals $(\partial_0 - \mathcal{L}_\beta)\Pi$) in terms of objects like D_a , n_a , $\gamma_a{}^b$, K_{ab} , etc, and only specialize to a basis at the end. (b) Show that

$$(\partial_0 - \mathcal{L}_\beta)\Phi_i + \alpha \partial_i \Pi = -\Pi \partial_i \alpha. \tag{7}$$

(c) Equations (6), (7), and (4) make up a system of 1st order partial differential equations for the 5 variables Π , Φ_i , and ϕ , assuming that the metric quantities (γ_{ij} , K_{ij} , α , β^i , and their derivatives) are known. This system can be written in the form

$$\partial_0 u^a + A^{ia}{}_b \partial_i u^b = B^a, \tag{8}$$

where u^a is a column vector containing ϕ , Π , Φ_x , Φ_y , Φ_z , and the indices a and b index this column vector and are not tensor indices. The matrices $A^{ia}{}_b$ and the column vector B^a can depend on u^a but not on derivatives of u^a .

Given a unit vector ξ_i , find the characteristic fields and characteristic speeds, in terms of ξ_i , Π , Φ_i , ϕ , β^i , α , and γ_{ij} . There should be five characteristic fields and five corresponding characteristic speeds. (In class I used n_i instead of ξ_i for the spatial unit vector that defines characteristic fields and characteristic speeds. Here I'm using ξ_i to avoid confusion with the timelike normal to the slice n^a .)

- (d) Show that the system of equations in part 1c is strongly hyperbolic.
- (e) Show that the system of equations in part 1c is symmetric hyperbolic, by explicitly constructing a positive definite symmetrizer S_{ab} such that $S_{ac}A^{ic}{}_{b}$ is symmetric in a and b.
- (f) Suppose that $\gamma_{ij} = \delta_{ij}$, $K_{ij} = 0$, $\alpha = 1$, and $\beta^i = (2, 0, 0)$. This represents a flat metric in a moving coordinate system. Suppose that you were to solve the system of equations from part 1c inside a box aligned with the x, y, z coordinates. What quantities require boundary conditions on the positive x face of the box? The negative x face? The positive z face?

2. Constraint damping for scalar waves [15 points]

(a) Equation (5) can be thought of as a constraint that must be satisfied at the initial time, and during the evolution. Let

$$C_i \equiv \partial_i \phi - \Phi_i,\tag{9}$$

$$C_{ij} \equiv \partial_{[i} \Phi_{j]}.$$
 (10)

Then $C_i = 0$ is equivalent to Equation (5), and $C_{ij} = 0$ must be true if $C_i = 0$. Treating C_i and C_{ij} as independent variables, use Equations (6), (7), and (4) to write down evolution equations for C_i and C_{ij} . Show from these evolution equations that if $C_i = 0$ and $C_{ij} = 0$ initially, then $C_i = 0$ and $C_{ij} = 0$ for all time. However, if C_i or C_{ij} are nonzero (say because of numerical error), they will in general remain nonzero.

(b) Modify Eq. (7) as follows:

$$(\partial_0 - \mathcal{L}_\beta)\Phi_i + \partial_i \Pi = -\Pi \partial_k \alpha + \eta \alpha C_i.$$
(11)

Here we have added a constraint to the right-hand side of the equation, with a constant coefficient η . We are free to do this because any solution of Eq. (11) that satisfies $C_i = 0$ also satisfies Eq. (7). Using Eq. (11), construct the evolution equations for C_i and C_{ij} . Show that with the new evolution equations, if C_i or C_{ij} are nonzero, they will be damped to zero with a timescale $\alpha \eta$, if $\eta > 0$.

3. Generalized Harmonic formulation [10 points]

Here we will derive some generalized harmonic results stated in class but not proven.

(a) Show that $\nabla_{\alpha} \nabla^{\alpha} x^{\beta} = -\Gamma^{\beta}{}_{\alpha\gamma} g^{\alpha\gamma}$, where ∇_{α} and $\Gamma^{\alpha}{}_{\beta\gamma}$ are the 4-d covariant derivative and connection compatable with the 4-metric $g_{\alpha\beta}$. Note that x^{β} is to be regarded as a set of 4

scalar functions (coordinates) labeled by the index β ; x^{β} is not a vector.

(b) Given the ADM metric, Eq. (1), and assuming generalized harmonic coordinates $\nabla_{\alpha} \nabla^{\alpha} x^{\beta} = H^{\beta}$, show that

$$\partial_0 \alpha - \beta^k \partial_k \alpha = -\alpha (H_0 - \beta^i H_i + \alpha K), \qquad (12)$$

$$\partial_0 \beta^i - \beta^k \partial_k \beta^i = \alpha^2 \gamma^{ij} (H_j + \gamma^{kl} \Gamma_{jkl} - \partial_j \ln \alpha), \qquad (13)$$

where Γ_{jkl} is the *three-dimensional* connection compatable with the 3-metric γ_{ij} , and K is the trace of the extrinsic curvature.

(c) If n^{α} is the timelike normal, so that the components of n^{α} are $(1, \beta^i)/\alpha$, show that

$$n^{\alpha}H_{\alpha} = n^{\alpha}\partial_{\alpha}\ln\left(\frac{\gamma^{1/2}}{\alpha}\right) - \frac{1}{\alpha}\partial_{k}\beta^{k}.$$
 (14)

This equation motivates the choice of time coordinate in the damped harmonic gauge.

4. **BSSN relations** [10 points]

(a) The BSSN system defines $\bar{\gamma}_{ij} = e^{-4\phi}\gamma_{ij}$ where γ_{ij} is the 3-metric and ϕ is the conformal factor. Show that if we demand $\bar{\gamma} = 1$ (where $\bar{\gamma}$ is the determinant of $\bar{\gamma}_{ij}$), then

$$\phi = \frac{1}{12} \ln \gamma, \tag{15}$$

where γ is the determinant of γ_{ij} .

(b) Using the ADM evolution equations, derive the BSSN evolution equations for the conformal factor and the conformal metric

$$\partial_t \phi - \beta^i \partial_i \phi = \frac{1}{6} \partial_i \beta^i - \frac{1}{6} \alpha K, \tag{16}$$

$$\partial_t \bar{\gamma}_{ij} - \beta^k \partial_k \bar{\gamma}_{ij} = -2\alpha \bar{A}_{ij} + 2\bar{\gamma}_{k(i)} \partial_{j)} \beta^k - \frac{2}{3} \bar{\gamma}_{ij} \partial_k \beta^k, \quad (17)$$

Where \bar{A}_{ij} is defined such that

$$K_{ij} = e^{4\phi} \left(\bar{A}_{ij} + \frac{1}{3} \bar{\gamma}_{ij} K \right).$$
(18)