
Physics 236b assignment, Week 8:
(Feb 25, 2016. Due on March 4, 2016)

1. Warp drive [20 points]

Consider the metric

ds2 = −dt2 + (dx− vs(t)f(rs)dt)
2 + dy2 + dz2, (1)

where

xs(t) = an arbitrary function of coordinate time, (2)

vs(t) =
dxs
dt
, (3)

rs(t) =
(
(x− xs(t))2 + y2 + z2)1/2

, (4)

f(rs) =
tanh (σ(rs +R))− tanh (σ(rs −R))

2 tanh(σR)
, (5)

(6)

and where R and σ are constants. The function fs(r) describes a
spherical “warp bubble” of coordinate radius R that moves with
coordinate velocity vs(t). Notice that vs(t) is the derivative of an
arbitrary function, so it could be larger than the speed of light.
The constant σ determines the width of the warp bubble. For
σ →∞, f(rs) is 1 inside rs = R and 0 outside rs = R; for large
but finite σ there is a region around rs = R where f(rs) changes
rapidly from 1 to zero.

(a) Compute the 3-dimensional metric, the lapse function, the
shift vector, and the extrinsic curvature for this spacetime,
for slices of constant t.

(b) What is the normal vector ~n to the hypersurfaces of constant
t?
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(c) Show that all observers who have 4-velocity ~u = ~n travel
along geodesics.

(d) Show that spacetime is flat outside the warp bubble, so that
distant observers see the warp bubble move at speed vs(t).

(e) Now consider a spaceship at the center of the warp bubble,
i.e. at x(t) = xs(t). Show that this spaceship moves along
a geodesic, and experiences no time dilation with respect to
distant observers.

Notice that one could set vs(t) to zero at early times (so that
the metric is flat everywhere), then gradually ramp it up to
arbitrarily large values, and then return vs to zero at late
times (so that the metric is flat again). Thus, the spaceship
could travel a large distance in flat space at an essentially
arbitrary speed, even though the spaceship’s proper accel-
eration is always zero.

(f) Now the catch: If this metric satisfies Einstein’s equations,
there must be a T µν that generates the required curvature.
Compute the energy density T µνnµnν observed by someone
whose four-velocity is equal to the hypersurface normal ~n.
Comment on the result.

2. Lie derivative of tensor density [15 points]

(a) Show that
Lv
√
γ =
√
γDav

a (7)

where γab is a spatial metric, γ is its determinant, va is some
vector field, and Da is the covariant derivative compatable
with γab. Note that even though

√
γ doesn’t have indices,

it is not a scalar. Hint: Use δ ln detA = Tr(A−1δA).

(b) Show that
Lαn ln

√
γ = −αK, (8)
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where n is the normal to a 3-dimensional slice, γij is the
3-metric, α is the lapse, and K is the trace of the extrinsic
curvature.

3. Conformal decomposition [20 points]

Suppose γab = ψ4γ̄ab, where γab is the 3-dimensional metric, ψ
is a function called the conformal factor, and γ̄ab is called the
conformal 3-metric.

(a) Show that the Ricci tensor Rab of the 3-metric γab is related
to the Ricci scalar R̄ab of the conformal 3-metric γ̄ab by

Rab =R̄ab

− 2D̄aD̄b lnψ − 2γ̄abγ̄
cdD̄cD̄d lnψ

+ 4D̄a lnψD̄b lnψ − 4γ̄abγ̄
cdD̄c lnψD̄d lnψ, (9)

where D̄a is the spatial covariant derivative compatable with
the conformal metric γ̄ab.

(b) Show that the Ricci scalar R of the 3-metric γab is related
to the Ricci scalar R̄ of the conformal 3-metric γ̄ab by

R = ψ−4R̄− 8ψ−5γ̄abD̄aD̄bψ. (10)

(c) Suppose that γab is conformally flat, which means that γ̄ab =
δab, the flat (spatial) metric. Write the Hamiltonian con-
straint as a differential equation for the conformal factor ψ.

4. Conformally-flat static spacetime [15 points]

Consider a static, asymptotically-flat vacuum spacetime with a
conformally flat spatial metric γij = ψ4δij. (See problem 3c).
A spatial slice is called time-symmetric if Kij = 0 Assume for
simplicity that the spatial slices are all time-symmetric.
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(a) Use the Hamiltonian constraint to show that

ψ = 1 + k/r, (11)

where k is a constant and r is the radial coordinate.

(b) Use the evolution equation for the trace of the extrinsic
curvature to find that the lapse function satisfies

α2 =
(1− k/r)2

(1 + k/r)2 (12)

(c) Show that this spacetime is Schwarzschild (but not in the
usual coordinates). Find the usual Schwarzschild radial co-
ordinate rs in terms of r, and find the Schwarzschild mass
M in terms of k.
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