
Physics 236b assignment, Week 4:
(Jan 28, 2016. Due on Feb 4, 2016)

1. Miller’s Planet [60 points]

(Don’t be afraid to use tools like Mathematica for this problem.)

In the 2014 movie Interstellar, a planet orbits around a black
hole, and is close enough to the black hole so that 1 hour spent
on the planet equals 7 years at infinity.

(a) Show that if the black hole is Schwarzschild, the orbit can-
not be circular.

(b) If the planet is in a stable circular equatorial orbit, what is
the minimum possible value of the black hole spin? Hint:
From your answer to part 1a, it should be clear that the
spin needs to be quite close to extremal (and therefore the
innermost stable orbit needs to be quite close to the hori-
zon); therefore, it would be helpful to assume a = M(1−ε3)
for small ε and then solve for ε.

(c) Show that the basis one-forms

ω̃0̂ = (∆/Σ)1/2(dt− a sin2 θdφ), (1)

ω̃1̂ = (∆/Σ)−1/2dr, (2)

ω̃2̂ = Σ1/2dθ, (3)

ω̃3̂ = (sin θ/Σ1/2)
(
a dt− (r2 + a2)dφ

)
, (4)

form an orthonormal basis for the Kerr metric. That is, the

Kerr metric becomes ds2 = ηα̂β̂ω̃
α̂ω̃β̂.

(d) Find ~eα̂, the orthonormal vector basis corresponding to ω̃β̂,

(i.e. 〈~eα̂, ω̃β̂〉 = δβ̂α̂).
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(e) If ~u is the 4-velocity of the planet, which is in a circular
equatorial orbit about the black hole, show that

~u = (r−1∆−1/2)
(
Ẽ(r2 + a2)− aL̃

)
~e0̂ + (1/r)(aẼ − L̃)~e3̂,

(5)
where Ẽ is the conserved energy per unit mass of the particle
−pt/m, and L̃ is the conserved angular momentum per unit
mass of the particle pφ/m.

(f) Consider the vectors

~λ0̄ = ~u, (6)

~λ1̄ = A cos Ψ−B sin Ψ, (7)

~λ2̄ = ~e2̂, (8)

~λ3̄ = A sin Ψ +B cos Ψ, (9)

where

A =
Ẽ(r2 + a2)− aL̃√

∆(r2 +K)
~e1̂, (10)

B = K1/2 Ẽ(r2 + a2)− aL̃
r
√

∆(r2 +K)
~e0̂ +

(r2 +K)1/2(aẼ − L̃)

rK1/2 ~e3̂,

(11)

K = (aẼ − L̃)2, (12)

and where Ψ is an angle.

Show that (~λ0̄, ~λ1̄, ~λ2̄, ~λ3̄) also form an orthonormal basis.

Note that ~λ1̄ and ~λ3̄ rotate in the “r−φ” plane in the frame
of the planet if the angle Ψ changes. Also (you don’t need
to show this; it is difficult and tedious) if the angle Ψ obeys

dΨ

dτ
= (r2 +K)−1K1/2

(
Ẽ − a/(aẼ − L̃)

)
, (13)
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then it turns out that all of the ~λᾱ are parallel transported
along ~u. Thus (~λ0̄, ~λ1̄, ~λ2̄, ~λ3̄) corresponds to the local Lorentz
frame of the planet.

Why do we care about the orthonormal basis (~λ0̄, ~λ1̄, ~λ2̄, ~λ3̄)?
We care because it simplifies the next part of the problem.
In J.-A. Marck, Proc. R. Soc. Lond. A 385, 431 (1983) it
was shown that that the components of the Riemann tensor
in the basis (~λ0̄, ~λ1̄, ~λ2̄, ~λ3̄) take a particularly simple form:

R0̄1̄0̄1̄ =

(
1− 3

r2 +K

r2 cos2 Ψ

)
M

r3 , (14)

R0̄2̄0̄2̄ =

(
1 + 3

K

r2

)
M

r3 , (15)

R0̄3̄0̄3̄ =

(
1− 3

r2 +K

r2 sin2 Ψ

)
M

r3 , (16)

R0̄1̄0̄3̄ = −3

(
r2 +K

r2

)
M

r3 sin Ψ cos Ψ. (17)

We will use this for the next part of the problem.

(g) Assume the planet has the same size and mass as Earth.
Someone on the surface of the planet will feel the (Newto-
nian) gravitational acceleration g = 9.8 m/s2 downward, but
will also feel a tidal force from the black hole that (for some
observers) will point upward. If this tidal force is greater
than g, then the planet will be ripped apart. What is the
minimum mass of the black hole such that the planet re-
mains intact? Assume the basis and Riemann tensor from
the previous part of the problem.
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