
Mathematical Techniques
Numerical Techniques

Operator analysis of geometric data structures

Wojciech Czaja

Reduced Order Modeling in General Relativity
Pasadena, June 6, 2013

Wojciech Czaja Operator analysis of geometric data structures



Mathematical Techniques
Numerical Techniques

Joint work with:

University of Maryland: J. J. Benedetto, A. Cloninger, J. A.
Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A. Halevy, B.
Manning, T. McCullough, V. Rajapakse

National Cancer Institute: Y. Pommier, W. Reinhold, B. Zeeberg

Remote Sensing Laboratory: M. L. McLane

Wojciech Czaja Operator analysis of geometric data structures



Mathematical Techniques
Numerical Techniques

Outline

1 Mathematical Techniques

2 Numerical Techniques

Wojciech Czaja Operator analysis of geometric data structures



Mathematical Techniques
Numerical Techniques

Outline

1 Mathematical Techniques

2 Numerical Techniques

Wojciech Czaja Operator analysis of geometric data structures



Mathematical Techniques
Numerical Techniques

Introduction

There is an abundance of available data. This data is often large,
high-dimensional, noisy, and complex, e.g., gravitational waves.
Typical problems associated with such data are to cluster,
classify, or segment it; and to detect anomalies or embedded
targets.
Our proposed approach to deal with these problems is by
combining techniques from harmonic analysis and machine
learning:

Harmonic Analysis is the branch of mathematics that studies the
representation of functions and signals.
Machine Learning is the branch of computer science concerned
with algorithms that allow machines to infer rules from data.
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Data Organization and Manifold Learning

There are many techniques for Data Organization and Manifold
Learning, e.g., Principal Component Analysis (PCA), Locally
Linear Embedding (LLE), Isomap, genetic algorithms, and neural
networks.
We are interested in a subfamily of these techniques known as
Kernel Eigenmap Methods. These include Kernel PCA, LLE,
Hessian LLE (HLLE), and Laplacian Eigenmaps.
Kernel eigenmap methods require two steps. Given data space
X of N vectors in RD.

1 Construction of an N × N symmetric, positive semi-definite kernel,
K , from these N data points in RD .

2 Diagonalization of K , and then choosing d ≤ D significant
eigenmaps of K . These become our new coordinates, and
accomplish, e.g., better cluster separation, dimensionality
reduction.

We are particularly interested in diffusion kernels K , which are
defined by means of transition matrices.
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Kernel Eigenmap Methods for Dimension Reduction -
Kernel Construction

Kernel eigenmap methods were introduced to address
complexities not resolvable by linear methods.
The idea behind kernel methods is to express correlations or
similarities between vectors in the data space X in terms of a
symmetric, positive semi-definite kernel function K : X × X → R.
Generally, there exists a Hilbert space K and a mapping
Φ : X → K such that

K (x , y) = 〈Φ(x),Φ(y)〉.

Then, diagonalize by the spectral theorem and choose significant
eigenmaps to obtain dimensionality reduction.
Kernels can be constructed by many kernel eigenmap methods.
These include Kernel PCA, LLE, HLLE, and Laplacian
Eigenmaps.
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Kernel Eigenmap Methods for Dimension Reduction -
Kernel Diagonalization

The second step in kernel eigenmap methods is the
diagonalization of the kernel.
Let ej , j = 1, . . . ,N, be the set of eigenvectors of the kernel
matrix K , with eigenvalues λj .
Order the eigenvalues monotonically.
Choose the top d << D significant eigenvectors to map the
original data points xi ∈ RD to (e1(i), . . . ,ed (i)) ∈ Rd ,
i = 1, . . . ,N.
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There are other alternative interpretations for the steps of our
diagram:

1 Constructions of kernels K may be independent from data and
based on principles.

2 Redundant representations, such as frames, can be used to
replace orthonormal eigendecompositions.

We need not select the target dimensionality to be lower than the
dimension of the input. This leads, to data expansion, or data
organization, rather then dimensionality reduction.

Wojciech Czaja Operator analysis of geometric data structures



Mathematical Techniques
Numerical Techniques

Operator Theory on Graphs

Presented approach leads to analysis of operators on
data-dependent structures, such as graphs or manifolds.
Locally Linear Embedding, Diffusion Maps, Diffusion Wavelets,
Laplacian Eigenmaps, Schroedinger Eigenmaps
Mathematical core:

Pick a positive semidefinite bounded operator A as the infinitesimal
generator of a semigroup of operators, etA, t > 0.
The semigroup can be identified with the Markov processes of
diffusion or random walks, as is the case, e.g., with Diffusion Maps
and Diffusion Wavelets
The infinitesimal generator and the semigroup share the common
representation, e.g., eigenbasis
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Example: Kernel PCA

Let k : RD → R satisfy k(x) = k(−x). Define

K (xm, xn) =
N∑

j=1

k(xm − xj )k(xn − xj )

A specific example of k is the Gaussian,

k(x) = e−c‖x‖2
where c > 0.

For this case, we then find a specific frame {Φm}N
m=1.

Φm(xn) = e−c(‖xm‖2+‖xn‖2)
N∑

j=1

e2cxj ·(xm+xn−xj ),

so that K (xm, xn) = 〈Φm,Φn〉.
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Laplacian Eigenmaps - Theory

M. Belkin and P. Niyogi, 2003
Points close on the manifold should remain close in Rd

Let f : RD → R represent the ideal embeding, then
|f (x)− f (y)| ≤ ‖∇f (x)‖‖x − y‖+ o(‖x − y‖)
arg min
‖f‖L2(M)

=1

∫
M ‖∇f (x)‖2 = arg min

‖f‖L2(M)
=1

∫
M∆M(f )f

Find eigenfunctions of the Laplace-Beltrami operator ∆M

Use a discrete approximation of the Laplace-Beltrami operator
Proven convergence (Belkin and Niyogi, 2003 – 2008)
Introduced as an alternative to matched filtering techniques
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Laplacian Eigenmaps - Implementation

1 Put an edge between nodes i and j if xi and xj are close.
Precisely, given a parameter k ∈ N, put an edge between nodes i
and j if xi is among the k nearest neighbors of xj or vice versa.

2 Given a parameter t > 0, if nodes i and j are connected, set

Wi,j = e−
‖xi−xj‖

2

t .
3 Set Di,i =

∑
j Wi,j , and let L = D −W . Solve Lf = λDf , under the

constraint y>Dy = Id . Let f0, f1, . . . , fd be d + 1 eigenvector
solutions corresponding to the first eigenvalues
0 = λ0 ≤ λ1 ≤ · · · ≤ λd . Discard f0 and use the next d
eigenvectors to embed in d-dimensional Euclidean space using
the map xi → (f1(i), f2(i), . . . , fd (i)).
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Swiss Roll

Figure : a) Original, b) PCA, c–f) LE, J. Shen et al., Neurocomputing, Volume
87, 2012
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Approximate Inversion of Laplacian Eigenmaps

Laplacian Eigenmaps mapping Φ : Rd → Rm is not invertible
What if a new point ψ ∈ Rm is introduced into feature space?
How do we approximately invert Φ?

Several papers (Sapiro, Schölkoph) attempt to find “approximate
preimage” of ψ for simpler maps like kernel PCA
Approach: find the data point x that minimizes embedding error,

min
x∈Rd
‖Φ(x)− ψ‖2

Laplacian Eigenmaps Inversion (with A. Cloninger)

1 Linearize Problem via Nyström extension to Φ̂(x) = V ∗W
2 Laplacian Eigenmaps construction guarantees sparsity of L, so

incorporate Compressive Sensing LASSO problem

Ŵ = arg min ‖V ∗L− ψ‖2 + τ‖L‖1

3 Recover x via relation between L̂ and ‖x − xi‖2 for the training
points xi that are nearest neighbors of x
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From Laplacian to Schroedinger Eigenmaps

Consider the following minimization problem, y ∈ Rd ,

min
y>Dy=Id

1
2

∑
i,j

‖yi − yj‖2Wi,j = min
y>Dy=E

tr(y>Ly).

Its solution is given by the d minimal non-zero eigenvalue solutions of
Lf = λDf under the constraint y>Dy = Id .

Similarly, for diagonal α · V , α > 0, consider the problem

min
y>Dy=Id

1
2

∑
i,j

‖yi−yj‖2Wi,j +α
∑

i

‖yi‖2Vi,i = min
y>Dy=E

tr(y>(L+α ·V )y),

(1)
which leads to solving equation (L + αV )f = λDf .
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Schroedinger Eigenmaps

Often we want to go from un-supervised to semi-supervised
learning
In SE, we replace L by L + V , where V is a nonnegative diagonal
matrix (the potential)
Schroedinger Eigenmaps (with Ehler, 2011) allow for the use of
labeled data
Enforce certain relations between the points
Allow us to utilize expert input or templates in otherwise fully
automated techniques such as LE.
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Properties of Schroedinger Eigenmaps

Let the data graph be connected and let V be a symmetric positive
semi-definite matrix.

Theorem (with M. Ehler)

Let the data graph be connected, let V be a symmetric positive
semi-definite, and let n ≤ dim(Null(V )). Then the minimizer of (1)
satisfies:

‖y (α)‖2
V = trace2(y (α)T

Vy (α)) ≤ C
1
α
.

In particular, if V = diag(v1, . . . , vN), then

vi‖y (α)
i ‖

2 ≤
N∑

i=1

vi‖y (α)
i ‖

2 ≤ C1
1
α
, for all i = 1, . . . ,N.
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Pointwise Convergence of SE

Given n data points x1, x2, . . . , xn sampled independently from a
uniform distribution on a smooth, compact, d-dimensional manifold
M⊂ RD, define the operator L̂t,n : C(M)→ C(M) by

L̂t,n(f )(x) =
1

(4πt)d/2t

1
n

∑
j

f (x)e−
‖x−xj‖

2

4t − 1
n

∑
j

f (xj )e−
‖x−xj‖

2

4t

 .

Let v ∈ C(M) be a potential. For x ∈M, let yn(x) = arg min
x1,x2,...,xn

‖x − xi‖

and define Vn : C(M)→ C(M) by Vnf (x) = v(yn(x))f (x).

Theorem (Pointwise Convergence, with A. Halevy)

Let α > 0, and set tn = ( 1
n )

1
d+2+α . For f ∈ C∞(M),

lim
n→∞

L̂tn,nf (x) + Vnf (x) = C∆Mf (x) + v(x)f (x) in probability.
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Spectral Convergence of SE - Theorem

Let L̂t,n be the unnormalized discrete Laplacian.

Theorem (Spectral Convergence of SE, with A. Halevy)

Let λi
t,n and ei

t,n be the ith eigenvalue and corresponding
eigenfunction of L̂t,n + Vn. Let λi and ei be the ith eigenvalue and
corresponding eigenfunction of ∆M + V. Then there exists a
sequence tn → 0 such that, in probability,

lim
n→∞

λi
tn,n = λi and lim

n→∞
‖ei

tn,n − ei‖ = 0.
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SE as Semisupervised Method
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The Schroedinger Eigenmaps with diagonal potential
V = diag(0, . . . ,0,1,0, . . . ,0) only acting in one point yi0 in the middle
of the arc for α = 0.05,0.1,0.5,5. This point is pushed to zero.
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SE as Semisupervised Method
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By applying the potential to the end points of the arc for
α = 0.01,0.05,0.1,1, we are able to control the dimension reduction
such that we obtain an almost perfect circle.
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Hyperspectral data
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(left) The Indian Pines image is a 145× 145 pixel image with 224
spectral bands. It was acquired using an AVIRIS spectrometer. (right)
The Pavia University image is a 610× 340 pixel image that contains
115 spectral bands. It was acquired using a ROSIS sensor.
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Impact of SE on Cluster analysis

Pavia University: Dimensions 4 and 5 of the LE and SE embeddings
for classes 2 (meadows), 3 (gravel), and 7 (bitumen)
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Impact of SE on Cluster analysis

Indian Pines: Dimensions 17 and 22 of the LE and SE embeddings
for classes 2 (corn 1), 3 (corn 2), and 10 (soybeen 1)
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Computational Bottleneck

1 If N is the ambient dimension, and n is the number of points, time
complexity of constructing an adjacency graph is O(DN2)

2 What can we do about D?
3 What can we do about the exponent 2?
4 What can we do about N?
5 What can we do about the computational complexity of

eigendecomposition?
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Numerical acceleration

1 Data Compression via Incoherent Random Projections
2 Fast Approximate k Nearest Neighbors algorithms
3 Quantization Landmarking
4 Randomized low-rank SVD decompositions
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1. Setting for data compression

Dataset {x1, x2, . . . , xN} in RD, sampled from a compact
K -dimensional Riemannian manifold
Assume ‖xi − xj‖ ≤ A for all i , j and some A > 0
Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λK be the first K nonzero eigenvalues
computed by LE, assumed simple, with r = mini,j |λi − λj |, and
let fj be a normalized eigenvector corresponding to λj

Use a random orthogonal projector Φ to map the points to RM .
Let f̂j be the j th eigenvector computed by LE for the projected
data set
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1. Laplacian Eigenmaps with random projections

Theorem (with A. Halevy)

Fix 0 < α < 1 and 0 < ρ < 1. If

M ≥ 4− 2 ln(1/ρ)

ε2/200 + ε3/3000
K ln(CKD/ε), where ε =

rα
4AN(N − 1)

,

then, with probability at least 1− ρ,

‖fj − f̂j‖ < α.

The constant C depends on properties of the manifold. Precisely,
C = 1900RV

τ1/3 , where R,V and 1/τ are the geodesic covering regularity,
volume, and condition number, respectively.
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1. Application: Classification of Hyperspectral Data

(a) Urban Dataset

Table : Comparison of performance on Urban

Method Time (min) Accuracy (percent)
LE 15.26 79.05
LERP 11.78 78.44
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1. Application: Classification of Hyperspectral Data

Figure : Urban class 2 (secondary road): left - LE, right - LERP
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2. Fast Approximate k Nearest Neighbors

There are many approximate nearest neighbor algorithms, e.g.,
Locality-sensitive Hashing (P. Indyk), Best Bin First (D. Lowe), or
Clustered Point Sets Search (D. Mount). We present the Divide
and Conquer method of Chen, Fang, and Saad
Divide the set of points into two overlapping subsets using
spectral bisection based on the Lanczos algorithm
Once the size of a subset is less than a threshold r , compute
using brute-force.
If a data point belongs to more than one of the subsets, its
nearest neighbors are selected from the neighbors found in each
of the subsets.
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2. Numerical Experiments: Synthetic Data

(a) Helix (b) Exact (c) Approximate

Figure : Mapping a one-dimensional helix embedded in R3. In the above
example the exponent used is approx. 1.16 (depends on the size of overlap).
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4. Robust Principle Component Analysis

Consider PCA of data, with a fraction of the entries grossly
corrupted due to, e.g., sensor malfunction on some
measurements or random pixels occluded by irrelevant data.
Candès introduced a version of PCA that eliminates such gross
corruption via compressive sensing.
Algorithm relies on using Singular Value Decompositions (SVD)
which is computationally too expensive.
Independently, Rokhlin introduced a randomized, approximate
SVD algorithm that works well when matrix is low rank.

Speed up of Robust PCA (with A. Cloninger and G. Warnell)

Under certain assumptions on corrupted entries, Rokhlin’s
randomized SVD algorithm is used to speed up Candès PCA by
several orders of magnitude without loss of precision.
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