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HF GWs: stellar masses LF GWs: massive BHs,
large separations

astrophysics populations of compact objects;
SN and GRB progenitors*

massive BH origin and 
evolution; Galactic WD-binary 
populations and  interactions

nuclear physics NS EOS, r-mode processes*

cosmology standard sirens*standard sirens*

fundamental gravity strong-field and radiation-sector dynamicsstrong-field and radiation-sector dynamics

black-hole structure tests of no-hair theorem
with EMRIs, ringdowns



p(source parameters|data) = p(d.|s.p.)× p(s.p.)�
p(d.|s.p.)× p(s.p.) d(s.p.)



p(source parameters|data) = p(d.|s.p.)× p(s.p.)�
p(d.|s.p.)× p(s.p.) d(s.p.)

posterior probability:
astrophysical insight



p(source parameters|data) = p(d.|s.p.)× p(s.p.)�
p(d.|s.p.)× p(s.p.) d(s.p.)

likelihood: prob. that
noise = signal – model

posterior probability:
astrophysical insight



p(source parameters|data) = p(d.|s.p.)× p(s.p.)�
p(d.|s.p.)× p(s.p.) d(s.p.)

likelihood: prob. that
noise = signal – model

posterior probability:
astrophysical insight

astrophysical
parameter prior



p(source parameters|data) = p(d.|s.p.)× p(s.p.)�
p(d.|s.p.)× p(s.p.) d(s.p.)

likelihood: prob. that
noise = signal – model

posterior probability:
astrophysical insight

astrophysical
parameter prior

evidence: relative prob.
that the model is right
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�
φ(x)dx → φ̂ =

1

R

�

r

φ(x (r))



accuracy depends only on variance,
not on the number of dimensions

var φ̂ =
var φ

R
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Vbox = (2π)d

Vball =
(π)d/2

Γ(n/2 + 1)

Vbox

Vball
∼ dd

π

−π
π−π

(and so are importance sampling
and rejection sampling)





Nicholas Metropolis and his
Mathematical Analyzer Numerical Integrator And Calculator





Marshall Rosenbluth and Edward Teller





Teller’s crucial suggestion: ensemble averaging...
�

φ(x)p(x)dx , with p(x) � e−E(x)/kT

⇓�
φ(x)dp(x) � 1

R

�

R

φ(x (r)) with {x (r)}P



...with samples generated by the “Metropolis” algorithm

• given x(r), propose x(r+1) by random walk
• accept it if ΔE = E(x(r+1)) – E(x(r)) < 0,

or with probability e–ΔE/kT if ΔE > 0
• if not accepted, set x(r+1) = x(r)

• the resulting detailed balance 
guarantees convergence to P
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• (Metropolis–Hastings) algorithm for any P:

• given x(r), propose x(r+1) by Q(xnext; xprev)

• accept it if
r = [P(x(r+1))/P(x(r))]·[Q(x(r); x(r+1))/Q(x(r+1); x(r))] > 1,
or with probability r if r < 1

• if not accepted, set x(r+1) = x(r)



but why does it work?
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T has a unique,
time-independent 
stationary ρ*

has a full set of eigvecs ρλ 
derived from those of
Qij = Tij

�
ρ∗j /ρ

∗
i = Qji

all initial ρ0

converge to ρ*
T nρ0 =

T n(a1ρ
∗+

�

|λ|<1

aλρ
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a1ρ
∗+

�

|λ|<1

aλλ
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• the Metropolis algorithm is very 
general and very easy to 
implement

but:
• convergence, while 

guaranteed, is hard to assess
• random-walk exploration is 

very inefficient

• the evidence/partition function 
is difficult to compute

• need (L/ε)2∼(σmax/σmin)2 steps 
to get independent sample

try:
• annealing, parallel tempering
• Hamiltonian MCMC
• affine-invariant samplers

• thermodynamic integration
• reversible-jump MCMC
• nested sampling

(M
acK

ay 2003)

Z =
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p(data|x)p(x)dx
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see bit.ly/multinest
by Farhan Feroz, Hobson, Bridges
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see dan.iel.fm/emcee
by Daniel Foreman-Mackey et al.
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Discussion

God is always in the details...
...but the transcendent is experienced, never proved

Trust no one...
...because there’s no free lunch
(not even with genetically engineered algorithms)

Parallelization is hard...
...but Gaussian integrals are easy

But harnessing the power of stochastic physical systems,
that’s just cool!
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GW science in a nutshell:
GW detection with addition, subtraction, and multiplication
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GW100916, the Big Dog

• the LVC toasted with champagne before opening 
the envelope

• unfortunately, it was a blind injection...
• ...but we found it!
• the process exercised methods, protocols,

and people
• it showed the perils of theory, experiment, software



O =
P(AG|s)

P(GR|s)
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P(AG)
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evidence (= marginal likelihood)
for AG and GR models
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x is a normal random variable with zero mean
and unit variance (a function on noise realization)

renormalized odds ratios (model priors
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for strong signals,        and        are remarkably simple functions of 
FF and SNR alone. For a fixed false-alarm rate, we then ask
what SNR yields 50%-efficient AG detection, as a function of FF 

!" !# !$ !% !& !' !( !) *

+,-./0,-,1203040)*!&
)**5***

)5***

)*

)*5***

)5***

)*

)**

-67)*

3040)*!"

SNR required for
AG detection
with 50% efficiency

number of events in a volume-
limited search to yield that 
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only very strong AG effects (FF of 0.9–0.99) would be seen in 
volume-limited searches, so GR tests may have to wait for third-
generation ground-based detectors, or for space detectors
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if model signals (GR) differ from true signals (MG) with the same parameters, 
the best-fitting template will be displaced by theoretical error, which is
SNR-independent [see Cutler & Vallisneri 2007]

an application [Vallisneri and Yunes, arXiv/1301.2627]:
“fundamental” bias versus the detection of modified gravity

manifold of true
signals

approximated 
signals

hGR(θtrue)

hAPP(θtrue)

hGR(θbest)
∆θ

δh

4

where (ā, b̄) ∈ Z, with (ā, b̄) > (−10,−15) [44].

In this paper we concentrate on phasing cor-

rections by setting α = 0 and choosing b̄ ∈
{−7,−6,−5,−4,−3,−2,−1, 1, 2}. Different values of b̄
represent different types of MG effects: b̄ = −7 cor-

responds to the leading–PN-order correction in Brans–

Dicke theory [8, 9, 14–16, 23, 45] or in Einstein–dilaton–

Gauss–Bonnet gravity [19, 46]; b̄ = −3 to the leading-

order term in a phenomenological massive graviton the-

ory [9, 11, 12, 14, 22, 25, 45], b̄ ≥ −5 (but �= −4) to

the modified-PN scheme of Refs. [4–7], and b̄ = −1 to

dynamical Chern–Simons gravity [19, 21, 47]. Notice, in

particular, that the modified-PN scheme is clearly a sub-

case of the ppE scheme. We omit b̄ = 0 because the

resulting correction would be degenerate with an arbi-

trary constant in the phase. We do not consider b̄ < −7

because the values that we study provide enough infor-

mation to observe a consistent trend as b̄ becomes more

negative. Moreover, for b̄ ≤ −7, binary pulsar observa-

tions can do a better job at constraining modified gravity

theories than GWs observations [48]. We do not consider

b̄ > 2, as this would correspond to terms of higher than

3.5 PN order, which we do not account for in the ΨGR.

B. Quantifying the bias

Let us assume that a GW detection is reported for a

dataset s that contains the waveform

hfull(
�θtr) = h(�θtr) + δh(�θtr), (8)

where �θtr is the vector of parameters that describes the

GW source and source–detector geometry, h is the ap-

proximated waveform family used to filter the data, and

δh is the unmodeled correction to h. Following Cutler

and Vallisneri [30], we compute the theoretical error δ�θth
induced by matched-filtering with h instead of hfull.

The theoretical error δ�θth is defined as the displace-

ment �θbf − �θtr between the true parameters �θtr and the

best-fit parameters �θbf that would maximize the like-

lihood in the absence of noise. When δh(�θtr) is neg-

ligibly small, �θbf = �θtr; as δh(�θtr) grows in magni-

tude, �θbf is displaced further and further away along the

parameter-space direction in which h(�θbf) can reproduce

h(�θtr) + δh(�θtr) most closely.

To leading order in δh, δ�θth is given by [30]

δ�θth = (F−1
bf )

αβ
�
h,β(

�θbf)
��δh(�θbf)

�
, (9)

where h,β = ∂h/∂θβ are partial derivatives of the wave-

form with respect to source parameters, Fαβ = (h,α|h,β)

is the Fisher matrix, here evaluated at θbf , and

(g1|g2) = 4Re

� ∞

0

g̃1
∗
(f)g̃2(f)

Sn(f)
df, (10)

is the noise-weighted signal inner product, with Sn(f)
the one-sided power spectral density of detector noise

(see, e.g., [38]). The inner product defines a signal norm
|h| by way of |h|2 = (h|h).
In Eq. (9), the waveform correction δh is projected

onto the waveform derivatives, and the projection cosines

are mapped into parameter errors by the inverse Fisher

matrix F−1, thus taking into account possible parameter

covariances. Note that the resulting δ�θth is independent

of the detection SNR, since both F and (h,β(θbf)|δh(θbf))
are quadratic in the waveform amplitude.

Equation (9) is only accurate for small δ�θth—more pre-

cisely, for perturbations small enough that h(�θbf−δ�θth) �
h(�θbf)− h,αδθαth. Cutler and Vallisneri [30] discuss more

sophisticated versions of Eq. (9) that can be applied to

larger perturbations, but in this paper we adopt the sim-

pler Eq. (9), not least because the other ingredients in

our formulation depend on δh(�θtr) being small.

C. Detecting modified gravity

Following Vallisneri [31] (see also [3]), we define a MG

correction δh to the signal h to be detectable when the

odds ratio of the Bayesian evidences for the MG and

pure-GR scenarios, used as a detection statistic, is large

enough that the false-alarm probability of favoring the

MG hypothesis when GR is in fact correct is suitably

small. More precisely, we compute the odds ratio

O =
P (MG|s)

P (GR|s)
=

P (MG)
�
p(s|�θ,�λ) p(�θ,�λ) dkθ dmλ

P (GR)
�
p(s|�θ) p(�θ) dkθ

,

(11)

where P (MG) and P (GR) are the prior probabilities that

MG and GR are correct, p(s|�θ,�λ) is the likelihood that

the detector data s contains the MG waveform h(�θ) +
δh(�θ,�λ), p(s|�θ) is the likelihood that s contains the pure-

GR waveform h(�θ), and p(�θ,�λ) = p(�θ)p(�λ) and p(�θ) are

the prior probability densities for the source parameters

�θ and the MG parameters �λ.
If the true signal is MG, using MG templates would

improve the fit to the data and increase the maximum

value attained by the MG likelihood relative to the GR

likelihood. On the other hand, the evidence for the more

complicated, higher-dimensional MG model is reduced

by the smaller prior mass within the support of the

likelihood—the mechanism by which Bayesian inference

embodies Occam’s principle of parsimony. As signals get

stronger, the improvement in the likelihood grows expo-

nentially with the (squared) detection SNR, and eventu-

ally it overcomes the effect of the priors.

Even if we fix the true signal, the odds ratio O remains

a random variable, because it depends on the realization

of detector noise, by way of the likelihoods. For suffi-

ciently large detection SNR, it can be shown [31] that

Eq. (11) becomes remarkably simple: for the cases when

the underlying signal is pure-GR or MG respectively, we
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representing modified gravity as “parametrized post-Einstein,”
we compare the MG SNRdetect  with the SNRbias where δθth > δθstat

3

Mismodeling bias is remedied by deriving ever more

accurate solutions to the field equations: for binary in-

spirals, this goal is currently pursued by pushing the

PN approximation to higher orders, and by integrating

together PN and numerical-relativity results with ana-

lytical resummation and fitting techniques, such as the

effective-one-body scheme. Instrumental bias is reduced

by careful detector modeling and characterization. As-

trophysical bias is expected to be irrelevant for most

ground-based binary observations; but even if this were

not the case, astrophysical effects should present them-

selves differently (or not at all) in observations of differ-
ent systems, whereas fundamental bias, if present, would

appear equally in all observed systems.

In this paper, we concentrate on the inspiral signals

from compact-binary coalescences. We consider inspirals

that are circular and adiabatic, with negligible spin ef-

fects, and neglect mismodeling bias by assuming the GW

emission is well-described by the restricted PN waveform

in the frequency-domain, stationary-phase approxima-

tion [38–41]. In GR, the resulting signals can be written

as

hGR(f) = AGR(f)e
iΨGR(f) , (1)

where AGR(f) = Au−7/6 [1 + · · · ] (we neglect PN ampli-

tude corrections, symbolized with ellipses in the above

equation), u = πMf is the reduced frequency, M =

η3/5M the chirp mass, η = m1m2/M2 the symmetric

mass ratio, M = m1+m2 the total mass, and f the GW

frequency. The constant amplitude A depends on the

chirp mass, the luminosity distance, and the detector’s

antenna patterns [38–41]. The quantity ΨGR(f) in Eq.

(1) is the GW phase, given in the PN approximation by

ΨGR = 2πftc − φc −
π

4

+
3u−5/3

128

�
1 +

7�

k=2

�
ψk +

1

3
ψ̄k log(u)

�
η−k/5uk/3

�
,

(2)

where the constant coefficients (ψk, ψ̄k) can be found (for

instance) in Ref. [30].

Under these assumptions, the unmodeled corrections

enumerated above can be represented by a continuous

and (in principle) predictable deformation of the GW

phase Ψ(f) and amplitude A(f). The particular defor-

mation depends on the systematic effect. For mismod-

eling, we expect corrections within the structure of the

PN series (δA ∝ f−7/6+kA/3 for the amplitude and δΨ ∝
f−5/3+kφ/3 for the phase, with integers kA, kφ > 0), be-

yond the highest known perturbative order (i.e., kA > 5

for the amplitude and kφ > 7 for the phase).

For astrophysical effects, we expect corrections to arise

almost always with “negative” PN exponents [33, 36, 37,

42]. For example, an accretion disk [42], the presence of a

third body [36], and orbital eccentricity [42] all introduce

GW phase corrections δΨ ∝ f−5/3−k�
φ , with integer k�φ >

0. Physically, this frequency-dependence corresponds to

astrophysical effects becoming less important for tighter

binaries, where strong-field effects become dominant.

Moving on to unmodeled corrections originating from

fundamental physics, the amplitude and phase deforma-

tions δA and δΨ can always be expressed as sums of fre-

quency powers, provided that δA and δΨ remain analytic
at all frequencies sampled during the inspiral:

δA = AGR(f)
K�

k=1

αku
ak , δΨ(f) =

K�

k=1

βku
bk , (3)

where (αk,βk, ak, bk) ∈ R for all k, and where we have

included the AGR prefactor in δA. We have neglected

possible logarithmic terms for simplicity, but they can

be included easily in the same fashion. This ppE model

introduces 4K new parameters in the waveform; the sim-

plest version of this model would allow only a single ex-

ponent:

δA = AGR(f)αua , δΨ(f) = β ub . (4)

Indeed, it can be shown that such a parametric defor-

mation is sufficiently general to model all known MG

corrections to the waveform to leading PN order [2, 3],

provided that the two tensor polarizations are dominant,

as in GR. Otherwise, a second term would be needed in

the phase and amplitude [43, 44].

Furthermore, a convincing argument can be made that

a and b should be restricted to a few discrete values [44].

Suppose that the adiabatic-inspiral waveform is derived

from an energy-balance equation with modified binding

energy and flux of the form

E = E0 v
2
�
1 + (· · · )PN + δE vk

�
, (5)

Ė = Ė0 v
10

�
1 + (· · · )PN + δĖ vm

�
, (6)

where v is the relative velocity of the binary components,

ellipses stand for higher-order PN terms, and E0, Ė0, δE
and δĖ are all constants that may depend on the source

parameters and on the MG coupling constants. The ex-

ponents k and m must be integers, otherwise E or Ė
would not be analytic, and we would lose the guaran-

tee that the equations have a unique solution of hyper-

bolic character by the Picard–Lindelöf theorem3. Fur-

thermore, we must have k ≥ −2 and m ≥ −10, otherwise

E and Ė would not reduce to the GR result in the weak-

field limit. These constraints lead to the deformations

δA = AGR(f)αuā/3 , δΨ(f) = β ub̄/3 , (7)

3 Given the differential equation dy/dt = f(t, y(t)), with initial
value y(t0) = y0, a unique solution exists for all t ∈ (t0−�, t0+�)
provided that f is Lipschitz continuous in y and continuous in t.
A noninteger value of k and m would lead to a differential equa-
tion with a non-Lipschitz continuous source term, with possible
loss of uniqueness.
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antenna patterns [38–41]. The quantity ΨGR(f) in Eq.

(1) is the GW phase, given in the PN approximation by

ΨGR = 2πftc − φc −
π
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where the constant coefficients (ψk, ψ̄k) can be found (for

instance) in Ref. [30].

Under these assumptions, the unmodeled corrections

enumerated above can be represented by a continuous

and (in principle) predictable deformation of the GW

phase Ψ(f) and amplitude A(f). The particular defor-

mation depends on the systematic effect. For mismod-

eling, we expect corrections within the structure of the

PN series (δA ∝ f−7/6+kA/3 for the amplitude and δΨ ∝
f−5/3+kφ/3 for the phase, with integers kA, kφ > 0), be-

yond the highest known perturbative order (i.e., kA > 5

for the amplitude and kφ > 7 for the phase).

For astrophysical effects, we expect corrections to arise

almost always with “negative” PN exponents [33, 36, 37,

42]. For example, an accretion disk [42], the presence of a

third body [36], and orbital eccentricity [42] all introduce

GW phase corrections δΨ ∝ f−5/3−k�
φ , with integer k�φ >

0. Physically, this frequency-dependence corresponds to

astrophysical effects becoming less important for tighter

binaries, where strong-field effects become dominant.

Moving on to unmodeled corrections originating from

fundamental physics, the amplitude and phase deforma-

tions δA and δΨ can always be expressed as sums of fre-

quency powers, provided that δA and δΨ remain analytic
at all frequencies sampled during the inspiral:

δA = AGR(f)
K�

k=1

αku
ak , δΨ(f) =

K�

k=1

βku
bk , (3)

where (αk,βk, ak, bk) ∈ R for all k, and where we have

included the AGR prefactor in δA. We have neglected

possible logarithmic terms for simplicity, but they can

be included easily in the same fashion. This ppE model

introduces 4K new parameters in the waveform; the sim-

plest version of this model would allow only a single ex-

ponent:

δA = AGR(f)αua , δΨ(f) = β ub . (4)

Indeed, it can be shown that such a parametric defor-

mation is sufficiently general to model all known MG

corrections to the waveform to leading PN order [2, 3],

provided that the two tensor polarizations are dominant,

as in GR. Otherwise, a second term would be needed in

the phase and amplitude [43, 44].

Furthermore, a convincing argument can be made that

a and b should be restricted to a few discrete values [44].

Suppose that the adiabatic-inspiral waveform is derived

from an energy-balance equation with modified binding

energy and flux of the form

E = E0 v
2
�
1 + (· · · )PN + δE vk

�
, (5)

Ė = Ė0 v
10

�
1 + (· · · )PN + δĖ vm

�
, (6)

where v is the relative velocity of the binary components,

ellipses stand for higher-order PN terms, and E0, Ė0, δE
and δĖ are all constants that may depend on the source

parameters and on the MG coupling constants. The ex-

ponents k and m must be integers, otherwise E or Ė
would not be analytic, and we would lose the guaran-

tee that the equations have a unique solution of hyper-

bolic character by the Picard–Lindelöf theorem3. Fur-

thermore, we must have k ≥ −2 and m ≥ −10, otherwise

E and Ė would not reduce to the GR result in the weak-

field limit. These constraints lead to the deformations

δA = AGR(f)αuā/3 , δΨ(f) = β ub̄/3 , (7)

3 Given the differential equation dy/dt = f(t, y(t)), with initial
value y(t0) = y0, a unique solution exists for all t ∈ (t0−�, t0+�)
provided that f is Lipschitz continuous in y and continuous in t.
A noninteger value of k and m would lead to a differential equa-
tion with a non-Lipschitz continuous source term, with possible
loss of uniqueness.



representing modified gravity as “parametrized post-Einstein,”
we compare the MG SNRdetect  with the SNRbias where δθth > δθstat

3

Mismodeling bias is remedied by deriving ever more

accurate solutions to the field equations: for binary in-

spirals, this goal is currently pursued by pushing the

PN approximation to higher orders, and by integrating

together PN and numerical-relativity results with ana-

lytical resummation and fitting techniques, such as the

effective-one-body scheme. Instrumental bias is reduced

by careful detector modeling and characterization. As-

trophysical bias is expected to be irrelevant for most

ground-based binary observations; but even if this were

not the case, astrophysical effects should present them-

selves differently (or not at all) in observations of differ-
ent systems, whereas fundamental bias, if present, would

appear equally in all observed systems.

In this paper, we concentrate on the inspiral signals

from compact-binary coalescences. We consider inspirals

that are circular and adiabatic, with negligible spin ef-

fects, and neglect mismodeling bias by assuming the GW

emission is well-described by the restricted PN waveform

in the frequency-domain, stationary-phase approxima-

tion [38–41]. In GR, the resulting signals can be written

as
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mass ratio, M = m1+m2 the total mass, and f the GW

frequency. The constant amplitude A depends on the

chirp mass, the luminosity distance, and the detector’s

antenna patterns [38–41]. The quantity ΨGR(f) in Eq.
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the phase and amplitude [43, 44].
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in approximating h(�θtr + δ�θstat) − h(�θtr) as h,αδθαstat be
sufficiently small (0.1 in norm) on most (95%) of the 1–σ
error surface described by (F−1)αβ . For the theoretical
errors, we require that the FFs computed in the two ways
described below Eq. (13) be consistent to 1%.

III. ANALYSIS AND RESULTS

We examine three representative binary GW sources
for second-generation interferometric detectors such as
Advanced LIGO [50]: neutron-star–neutron-star bina-
ries with (1.4+1.4)M⊙ component masses; neutron-star–
black-hole binaries with (1.4 + 5)M⊙ masses; and black-
hole–black-hole binaries with (5 + 10)M⊙ masses.

We concentrate on the inspiral phase of coalescence,
which we model as quadrupolar and adiabatically quasi-
circular with 3.5PN-accurate phasing. We truncate the
waves at the innermost stable circular orbit of a point-
particle in a Schwarzschild background (assuming GR),
and we neglect spin effects and PN amplitude corrections.
The resulting waveforms are described by nine parame-
ters: the two masses (or the chirp and reduced masses),
the time and inspiral phase at coalescence, two sky-
position angles, two angles that describe the binary incli-
nation and GW polarization, and the luminosity distance
(see [30] and [3] for a similar waveform prescription).
We assume a simultaneous detection by three second-
generation detectors with the LIGO Hanford, LIGO Liv-
ingston, and Virgo geometries and relative delays [51],
and with identical broadband-configuration power spec-
tral densities, as given by Eq. (10) of [3]. Furthermore,
we assume that GW-detector noise is Gaussian and sta-
tionary, as required by the Cutler–Vallisneri [30] and Val-
lisneri [31] formalisms.

For these systems, we consider ppE phasing corrections
δΨ as described in Sec. II A, and we compare SNRbias

and SNRdetect as a function of the MG-correction mag-
nitude β for a range of exponents b̄. For each mass com-
bination, each b̄, and each β, we randomly select 1,000
configurations of the phase and angle parameters from
the appropriate uniform distributions (e.g., sky positions
are chosen randomly on the celestial sphere). The lumi-
nosity distance is reabsorbed in the SNR scaling, while
the time of coalescence has no effect on our computa-
tion. For each configuration we compute SNRdetect and
SNRbias, and we report their median values. The con-
dition maxα δθαth/δθ

α
stat = 1 that yields the latter is al-

most invariably satisfied first for the chirp-mass parame-
ter. Statistical fluctuations around the median turn out
to be rather small (a few percent).

The δ�θstat consistency check is satisfied for detection
SNRs ranging from 10 to 100, typically ∼ 50, but our
results for lower SNRs should be at least representative
of trends. The δ�θth check is satisfied for a maximum β
that depends on b̄, and which sets the largest β that we
investigate. By contrast, the smallest β that we study
corresponds to min(SNRdetect, SNRbias) = 100, a rela-
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FIG. 1. SNR
detect

(solid curves) and SNR
bias

(dashed

curves) as a function of β for b̄ = −7,−6,−5,−4,−3,−2,−1, 1
and 2 (left to right), for a NS–NS system with (m1,m2) =

(1.4, 1.4)M⊙ (top), a NS–BH system with (m1,m2) =

(1.4, 5)M⊙ (mid) and a BH–BH system (bottom) with

(m1,m2) = (5, 10)M⊙. The symbols in the top plot are de-

scribed in the main text.

tively large detection SNR that would be achieved very
rarely in volume-limited searches [52].
Figure 1 presents the main results of this paper, with

the solid curves plotting SNRdetect (once again, the detec-
tion SNR above which MG can be detected positively),
and the dashed curves plotting SNRbias (the SNR above
which the largest ratio of fundamental error to statistical
error reaches one). Both sets of curves are plotted as a
function of the MG-correction magnitude β; the curves in
each set correspond to b̄ = −7,−5,−4,−3,−2,−1, 1, and
2, from left to right as labeled. The top, mid, and bottom
panels report results for our (1.4+1.4)M⊙, (1.4+5)M⊙,
and (5 + 10)M⊙ systems, respectively.

This figure reveals a few interesting features. First,
for the same detection SNR, more massive systems re-
quire larger β before MG can be detected. This must
happen because the larger the mass, the fewer the num-
ber of useful GW cycles in the detector’s band, so the
signals become relatively featureless, and higher FFs can



representing modified gravity as “parametrized post-Einstein,”
we compare the MG SNRdetect  with the SNRbias where δθth > δθstat

3

Mismodeling bias is remedied by deriving ever more

accurate solutions to the field equations: for binary in-

spirals, this goal is currently pursued by pushing the

PN approximation to higher orders, and by integrating

together PN and numerical-relativity results with ana-

lytical resummation and fitting techniques, such as the
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ponents k and m must be integers, otherwise E or Ė
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mass ratio, M = m1+m2 the total mass, and f the GW

frequency. The constant amplitude A depends on the

chirp mass, the luminosity distance, and the detector’s

antenna patterns [38–41]. The quantity ΨGR(f) in Eq.

(1) is the GW phase, given in the PN approximation by

ΨGR = 2πftc − φc −
π

4

+
3u−5/3
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�
1 +

7�

k=2

�
ψk +

1

3
ψ̄k log(u)

�
η−k/5uk/3

�
,

(2)

where the constant coefficients (ψk, ψ̄k) can be found (for

instance) in Ref. [30].

Under these assumptions, the unmodeled corrections

enumerated above can be represented by a continuous

and (in principle) predictable deformation of the GW

phase Ψ(f) and amplitude A(f). The particular defor-

mation depends on the systematic effect. For mismod-

eling, we expect corrections within the structure of the

PN series (δA ∝ f−7/6+kA/3 for the amplitude and δΨ ∝
f−5/3+kφ/3 for the phase, with integers kA, kφ > 0), be-

yond the highest known perturbative order (i.e., kA > 5

for the amplitude and kφ > 7 for the phase).

For astrophysical effects, we expect corrections to arise

almost always with “negative” PN exponents [33, 36, 37,

42]. For example, an accretion disk [42], the presence of a

third body [36], and orbital eccentricity [42] all introduce

GW phase corrections δΨ ∝ f−5/3−k�
φ , with integer k�φ >

0. Physically, this frequency-dependence corresponds to

astrophysical effects becoming less important for tighter

binaries, where strong-field effects become dominant.

Moving on to unmodeled corrections originating from

fundamental physics, the amplitude and phase deforma-

tions δA and δΨ can always be expressed as sums of fre-

quency powers, provided that δA and δΨ remain analytic
at all frequencies sampled during the inspiral:

δA = AGR(f)
K�

k=1

αku
ak , δΨ(f) =

K�

k=1

βku
bk , (3)

where (αk,βk, ak, bk) ∈ R for all k, and where we have

included the AGR prefactor in δA. We have neglected

possible logarithmic terms for simplicity, but they can

be included easily in the same fashion. This ppE model

introduces 4K new parameters in the waveform; the sim-

plest version of this model would allow only a single ex-

ponent:

δA = AGR(f)αua , δΨ(f) = β ub . (4)

Indeed, it can be shown that such a parametric defor-

mation is sufficiently general to model all known MG

corrections to the waveform to leading PN order [2, 3],

provided that the two tensor polarizations are dominant,

as in GR. Otherwise, a second term would be needed in

the phase and amplitude [43, 44].

Furthermore, a convincing argument can be made that

a and b should be restricted to a few discrete values [44].

Suppose that the adiabatic-inspiral waveform is derived

from an energy-balance equation with modified binding

energy and flux of the form

E = E0 v
2
�
1 + (· · · )PN + δE vk

�
, (5)

Ė = Ė0 v
10

�
1 + (· · · )PN + δĖ vm

�
, (6)

where v is the relative velocity of the binary components,

ellipses stand for higher-order PN terms, and E0, Ė0, δE
and δĖ are all constants that may depend on the source

parameters and on the MG coupling constants. The ex-

ponents k and m must be integers, otherwise E or Ė
would not be analytic, and we would lose the guaran-

tee that the equations have a unique solution of hyper-

bolic character by the Picard–Lindelöf theorem3. Fur-

thermore, we must have k ≥ −2 and m ≥ −10, otherwise

E and Ė would not reduce to the GR result in the weak-

field limit. These constraints lead to the deformations

δA = AGR(f)αuā/3 , δΨ(f) = β ub̄/3 , (7)

3 Given the differential equation dy/dt = f(t, y(t)), with initial
value y(t0) = y0, a unique solution exists for all t ∈ (t0−�, t0+�)
provided that f is Lipschitz continuous in y and continuous in t.
A noninteger value of k and m would lead to a differential equa-
tion with a non-Lipschitz continuous source term, with possible
loss of uniqueness.
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in approximating h(�θtr + δ�θstat) − h(�θtr) as h,αδθαstat be
sufficiently small (0.1 in norm) on most (95%) of the 1–σ
error surface described by (F−1)αβ . For the theoretical
errors, we require that the FFs computed in the two ways
described below Eq. (13) be consistent to 1%.

III. ANALYSIS AND RESULTS

We examine three representative binary GW sources
for second-generation interferometric detectors such as
Advanced LIGO [50]: neutron-star–neutron-star bina-
ries with (1.4+1.4)M⊙ component masses; neutron-star–
black-hole binaries with (1.4 + 5)M⊙ masses; and black-
hole–black-hole binaries with (5 + 10)M⊙ masses.

We concentrate on the inspiral phase of coalescence,
which we model as quadrupolar and adiabatically quasi-
circular with 3.5PN-accurate phasing. We truncate the
waves at the innermost stable circular orbit of a point-
particle in a Schwarzschild background (assuming GR),
and we neglect spin effects and PN amplitude corrections.
The resulting waveforms are described by nine parame-
ters: the two masses (or the chirp and reduced masses),
the time and inspiral phase at coalescence, two sky-
position angles, two angles that describe the binary incli-
nation and GW polarization, and the luminosity distance
(see [30] and [3] for a similar waveform prescription).
We assume a simultaneous detection by three second-
generation detectors with the LIGO Hanford, LIGO Liv-
ingston, and Virgo geometries and relative delays [51],
and with identical broadband-configuration power spec-
tral densities, as given by Eq. (10) of [3]. Furthermore,
we assume that GW-detector noise is Gaussian and sta-
tionary, as required by the Cutler–Vallisneri [30] and Val-
lisneri [31] formalisms.

For these systems, we consider ppE phasing corrections
δΨ as described in Sec. II A, and we compare SNRbias

and SNRdetect as a function of the MG-correction mag-
nitude β for a range of exponents b̄. For each mass com-
bination, each b̄, and each β, we randomly select 1,000
configurations of the phase and angle parameters from
the appropriate uniform distributions (e.g., sky positions
are chosen randomly on the celestial sphere). The lumi-
nosity distance is reabsorbed in the SNR scaling, while
the time of coalescence has no effect on our computa-
tion. For each configuration we compute SNRdetect and
SNRbias, and we report their median values. The con-
dition maxα δθαth/δθ

α
stat = 1 that yields the latter is al-

most invariably satisfied first for the chirp-mass parame-
ter. Statistical fluctuations around the median turn out
to be rather small (a few percent).

The δ�θstat consistency check is satisfied for detection
SNRs ranging from 10 to 100, typically ∼ 50, but our
results for lower SNRs should be at least representative
of trends. The δ�θth check is satisfied for a maximum β
that depends on b̄, and which sets the largest β that we
investigate. By contrast, the smallest β that we study
corresponds to min(SNRdetect, SNRbias) = 100, a rela-
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FIG. 1. SNR
detect

(solid curves) and SNR
bias

(dashed

curves) as a function of β for b̄ = −7,−6,−5,−4,−3,−2,−1, 1
and 2 (left to right), for a NS–NS system with (m1,m2) =

(1.4, 1.4)M⊙ (top), a NS–BH system with (m1,m2) =

(1.4, 5)M⊙ (mid) and a BH–BH system (bottom) with

(m1,m2) = (5, 10)M⊙. The symbols in the top plot are de-

scribed in the main text.

tively large detection SNR that would be achieved very
rarely in volume-limited searches [52].
Figure 1 presents the main results of this paper, with

the solid curves plotting SNRdetect (once again, the detec-
tion SNR above which MG can be detected positively),
and the dashed curves plotting SNRbias (the SNR above
which the largest ratio of fundamental error to statistical
error reaches one). Both sets of curves are plotted as a
function of the MG-correction magnitude β; the curves in
each set correspond to b̄ = −7,−5,−4,−3,−2,−1, 1, and
2, from left to right as labeled. The top, mid, and bottom
panels report results for our (1.4+1.4)M⊙, (1.4+5)M⊙,
and (5 + 10)M⊙ systems, respectively.

This figure reveals a few interesting features. First,
for the same detection SNR, more massive systems re-
quire larger β before MG can be detected. This must
happen because the larger the mass, the fewer the num-
ber of useful GW cycles in the detector’s band, so the
signals become relatively featureless, and higher FFs can

at least for simple circular inspirals, stealth bias 
(significant δθth, non-detectable MG) is generic!
[but see arXiv/1301.2627]
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