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LF GWs: massive BHs,
large separations

astrophysics

nuclear physics
cosmology
fundamental gravity
black-hole structure

populations of compact objects;
SN and GRB progenitors*

NS EOS, r-mode processes™

massive BH origin and
evolution; Galactic WD-binary
populations and interactions

standard sirens*
strong-field and radiation-sector dynamics

tests of no-hair theorem
with EMRIs, ringdowns
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that the model Is right
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Monte Carlo (Von Neumann and Ulam, 1946):
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accuracy depends only on variance,
Nnot on the number of dimensions




unfortunately uniform sampling Is extremely
inefficient in high-dimensional spaces
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d Vbox — (27T)d
d/2
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Vbox N dd
—Tr Vhball




unfortunately uniform sampling Is extremely
inefficient in high-dimensional spaces

(@nd so are importance sampling
and rejection sampling)

" Viox = (27)°
d/2
Vball = ()
(n/2 + 1)
Vbox N dd
—TT Vhball







Nicholas Metropolis and his
Mathematical Analyzer Numerical Integrator And Calculator
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Equation of State Calculations by Fast Computing Machines
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.



Teller’'s crucial suggestion: ensemble averaging...

/ p(x)p(x)dx, with p(x) =~ e ECI/KT

Y
d(x)dp(x) ~ Z¢ (DY with {x{"}p

Thus the most naive method of carrying out the
integration would be to put each of the NV particles at a
random position in the square (this defines a random
point in the 2¥-dimensional configuration space), then
calculate the energy of the system according to Eq. (1),
and give this configuration a weight exp(—E/kT).
This method, however, is not practical for close-packed
configurations, since with high probability we choose a
configuration where exp(— E/kT) is very small; hence
a configuration of very low weight. So the method we
employ is actually a modified Monte Carlo scheme,
where, instead of choosing configurations randomly,
then weighting them with exp(—E/kT), we choose
configurations with a probability exp(—E/kT) and
weight them evenly.



...with samples generated by the “Metropolis™ algorithm

* given x"), propose x*1) by random walk
e accept it if AE = E(x"*1) — E(x) < O,

or with probability e 2547 if AE > 0
e if not accepted, set x+1) = x0)

* the resulting detailed balance
guarantees convergence to P

We then calculate the change in energy of the system
AE, which is caused by the move. If AE<O, i.e., if
the move would bring the system to a state of lower
energy, we allow the move and put the particle in its
new position. If AE>0, we allow the move with
probability exp(—AE/kT); i.e., we take a random
number £; between 0 and 1, and if {;<exp(—AE/kT),
we move the particle to its new position. If §;
>exp(—AE/kT), we return it to its old position.



§ It might be mentioned that the random numbers that we
used were generated by the middle square process. That is, if &
is an m digit random number, then a new random number £,
is given as the middle m digits of the complete 2m digit square of £,.



TOUR OF ACCOUNTING ARE
THAT'S THE

;’8:5 PROBLEM
THATS WITH RAN-
DOMNESS -

NINE NINE
NINE NINE
NINE NINE

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

RANDOM? YOU CAN

NEVER BE
SURE.

1olas|o® 2001 United Feature Syndicate. Inc.
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§ It might be mentioned that the random numbers that we
used were generated by the middle square process. That is, if &
is an m digit random number, then a new random number £,
is given as the middle m digits of the complete 2m digit square of £,.
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(Metropolis—Hastings) algorithm for any P
given x1), propose x+1) by Q(x"ext: xPrev)

accept It if
r = [POd V)P [QIXTXHD)/Q i x1)] > 1,
or with probabillity rif r < 1

if not accepted, set x*1) = x{)



but why does it work”?






* the Metropolis algorithm implements a
Markov Chain {x"} with transition
probability T(xi;x) = Tj
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and the transition rule (e.q., Metropolis)



* the Metropolis algorithm implements a initial condition /\

Markov Chain {x"} with transition PO (z)

probability T(xi;x) = Tj ¥ B o5 B
* Tis set by the proposal distribution Q P M

and the transition rule (e.q., Metropolis) R T
« if 7; satisfies certain properties, its EME)

repeated application to any initial e T

probability distribution pb% eventually p® () A/W

o
(&)
o
[&]]
S

vields the equilibrium distribution p* = P

(£00z Aeyoen)

equilibrium
distribution
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but:

convergence, while
guaranteed, is hard to assess

random-walk exploration is e need (L/€)°~(0max/Omin)? Steps
very inefficient to get independent sample
try:

e annealing, parallel tempering
e Hamiltonian MCMC
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p(M) = / p(datalx)p(x)dx



the Metropolis algorithm is very
general and very easy to
implement

but:

convergence, while
guaranteed, is hard to assess

(€002 Aeyjoen)

random-walk exploration is e need (L/€)°~(0max/Omin)? Steps
very inefficient to get independent sample
try:

e annealing, parallel tempering
e Hamiltonian MCMC
e affine-invariant samplers

the evidence/partition function < thermodynamic integration
s difficult to compute e reversible-jump MCMC
Z = / e ECI/KT gy e nested sampling

p(M) = / p(datalx)p(x)dx
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7 = / L(6)7(0)d6 = / L(X)dX

X(\) = /L . 7(0)do
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Nested sampling
(Skilling 20006)
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Nested sampling see bit.ly/multinest
(Skilling 20006) by Farhan Feroz, Holbson, Bridges
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Discussion

God is always in the detalils...
...but the transcendent is experienced, never proved

Trust no one...
...because there’s no free lunch
(not even with genetically engineered algorithms)

Parallelization is hard...
...but Gaussian integrals are easy

But harnessing the power of stochastic physical systems,
that’s just cool!
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GW science in a nutshell:
GW detection with addition, subtraction, and multiplication

data = signal + noise

3 | 3 7
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therefore: noise = data — signal; to assess detection,
we ask which instance of noise is more probable?

(no signal)
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(signal hidden in noise,
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the ratio of probabilities is ~ exp SNR?/2,
(here ~ 270,000)
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GW detection in practice [see PRD 87, 024033, 2013]

condition and calibrate
detector output

filter detector output
with theoretical templates

request coincidence and
consistency among detectors

apply data-quality cuts

and signal vetos (estimate background, using

. - coincidence between time slides)
estimate statistical

significance

follow up candidates

with detection checklist , o S
(estimate efficiency from injections,

/ number of galaxies within horizon)

claim detection! get upper limit
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we design a decision scheme (“AG or GR?”) with the Bayesian
odds ratio @O as the detection statistic: we set a threshold O™ and

claim detection when © > OF

model priors parameter priors
P(AG|s) P(AG) [ p(s]0"?) p(0"?) df"@ AG parameters
P(GR|s) P(GR) [ p(s|0") p(0") dO' GR parameters

evidence (= marginal likelihood) likelihood
for AG and GR models

SNR=10 distribution
FF=0.95 oflog Oj¢

SNR=15
FF=0.95

threshold :  distribution
logO* =2 of log O¢r

0.10

0.05

‘5% false alarms

detections

: 0 '
5 10 15 20 0 5 10 15 20

background: true signal is GR  detection efficiency: true signal is AG
x? /24x4/2(1—FF) SNR+(1—FF) SNR?

O&R\:w

renormalized odds ratios (model priors X is a normal random variable with zero mean
and Occam factors cancel out, see paper) and unit variance (a function on noise realization)




for strong signals, O¢g and O’ are remarkably simple functions of
FF and SNR alone. For a fixed false-alarm rate, we then ask
what SNR yields 50%-efficient AG detection, as a function of FF

10,000 +
1,000 g
F=10" 1100,000
— —4
100 false alarm F =10 1 000
10
10
8 -7 -6 -5 -4 -3 -2 -1 0
SNR required for log,,(1 - FF) number of events in a volume-
AG detection limited search to yield that
with 50% efficiency SNR as the loudest event

only very strong AG effects (FF of 0.9-0.99) would be seen in
volume-limited searches, so GR tests may have to wait for third-
generation ground-based detectors, or for space detectors



an application [Vallisneri and Yunes, arXiv/1301.2627]:
“fundamental” bias versus the detection of modified gravity

if model signals (GR) differ from true signals (MG) with the same parameters,
the best-fitting template will be displaced by theoretical error, which is
SNR-independent [see Cutler & Vallisneri 2007
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representing modified gravity as “parametrized post-Einstein,”
we compare the MG SNRtect with the SNR2s where 80t > 60stat
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representing modified gravity as “parametrized post-Einstein,”
we compare the MG SNRtect with the SNRP2s where 86t > 8Bstat

har(f) = AGR(f)eijR(f) oV (f) = Bu’

SNRbiaS SNRdetect
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100 N e T T T
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60 |-

SNR
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20 |
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1077 107° 10°
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at least for simple circular inspirals, stealth bias
(significant 66w, non-detectable MG) is generic!

[but see arXiv/1301.2627]



the Mock LISA Data Challenges: successfully fostering
and consolidating collaborative data-analysis development

MLDCA, training dotaset  SIITETTIIIATRES SIS o five challenges completed
' | | :% between 2006 and 2011

..plus the

. + weon N0 70 participants, 25 institutions
30+ publications

—sided

TDI X S(f) [1/Hz, one

* demonstrated the detection and
parameter estimation of all major
LF GW source classes, using a
great variety of methods

-19 S =
21077 | » el ke % %
2 _',,‘_'7 ']"_, ; "[ ] ,'! ' ,"7"'! Ll %

* lisatools.googlecode.com
lisasolve.googlecode.com

* acknowledged model for LISA
Pathfinder and the International
Pulsar-Timing Array




