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Linear systems in data acquisition



Linear systems of equations are ubiquitous

Model:




y




=




A







x




y: data coming off of sensor
A: mathematical (linear) model for sensor
x: signal/image to reconstruct



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1AT y

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A preserves distances ...

‖A(x1 − x2)‖22 ≈ ‖x1 − x2‖22 for all x1, x2 ∈ RN
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Sparsity

Decompose signal/image x(t) in orthobasis {ψi(t)}i

x(t) =
∑

i

αiψi(t)

wavelet transform zoom

x0 {αi}i



Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



When can we stably recover an S-sparse vector?

y ! x0=

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise



Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain x0(t) Frequency domain x̂0(ω)

Measure M samples S nonzero components
(red circles = samples)



Sampling a superposition of sinusoids

Reconstruct by solving

min
x
‖x̂‖`1 subject to x(tm) = x0(tm), m = 1, . . . ,M

original x̂0, S = 15 perfect recovery from 30 samples



Numerical recovery curves

Resolutions N = 256, 512, 1024 (black, blue, red)

Signal composed of S randomly selected sinusoids

Sample at M randomly selected locations
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In practice, perfect recovery occurs when M ≈ 2S for N ≈ 1000



A nonlinear sampling theorem

Exact Recovery Theorem (Candès, R, Tao, 2004):

Unknown x̂0 is supported on set of size S

Select M sample locations {tm} “at random” with

M ≥ Const · S logN

Take time-domain samples (measurements) ym = x0(tm)

Solve

min
x
‖x̂‖`1 subject to x(tm) = ym, m = 1, . . . ,M

Solution is exactly f with extremely high probability



When can we stably recover an S-sparse vector?

y ! x0=

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ keeps sparse signals separated

‖Φ(x1 − x2)‖22 ≈ ‖x1 − x2‖22
for all S-sparse x1, x2
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When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ keeps sparse signals separated

‖Φ(x1 − x2)‖22 ≈ ‖x1 − x2‖22
for all S-sparse x1, x2

To recover x0, we solve

min
x
‖x‖0 subject to Φx = y

‖x‖0 = number of nonzero terms in x

This program is computationally intractable



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ keeps sparse signals separated

‖Φ(x1 − x2)‖22 ≈ ‖x1 − x2‖22
for all S-sparse x1, x2

A relaxed (convex) program

min
x
‖x‖1 subject to Φx = y

‖x‖1 =
∑

k |xk|

This program is very tractable (linear program)

The convex program can recover nearly all “identifiable” sparse
vectors, and it is robust.



Intuition for `1

minx ‖x‖2 s.t. Φx = y minx ‖x‖1 s.t. Φx = y!"#$L2 %&'()*+$!&,-$

.'/(+$(01/,'(2
34)4313$L5 (&.1+4&)
4($/.3&(+$never sparse

!"#$L1 !%&'(

)*+*),)$L1 (%-,.*%+
/$L0 (01&(2(.$(%-,.*%+$*3

random orientation
dimension N-M



Sparse recovery algorithms

`1 can recover sparse vectors “almost anytime” it is possible

perfect recovery with no noise

stable recovery in the presence of noise

robust recovery when the signal is not exactly sparse



Sparse recovery algorithms

Other recovery techniques have similar theoretical properties
(their practical effectiveness varies with applications)

greedy algorithms

iterative thresholding

belief propagation

specialized decoding algorithms



What kind of matrices keep sparse signals separated?

Φ

!"#$%&&
"'()'*%*+,&

S

-!*.'(&
%*+-/%,&

±1

0"'()-%,,%.&
(%!,1-%(%*+,2&

M

N+'+!3&-%,'31#'*45!*.6/.+7&8&

Random matrices are provably efficient

We can recover S-sparse x from

M & S · log(N/S)

measurements



Rice single pixel cameraRice Single-Pixel CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk ’08)



Hyperspectral imaging

256 frequency bands, 10s of megapixels, 30 frames per second ...



DARPA’s Analog-to-Information

Multichannel ADC/receiver for identifying radar pulses
Covers ∼ 3 GHz with ∼ 400 MHz sampling rate



Compressive sensing with structured randomness

Subsampled rows of “incoherent” orthogonal matrix

Can recover S-sparse x0 with

M & S logaN

measurements

Candes, R, Tao, Rudelson, Vershynin, Tropp, . . .



Accelerated MRI
SPIR-iT with Wavelet CS

ARC SPIR-iT

(Lustig et al. ’08)



Matrices for sparse recovery with structured randomness

Random convolution + subsampling

Universal; Can recover S-sparse x0 with

M & S logaN

Applications include:

radar imaging

sonar imaging

seismic exploration

channel estimation for communications

super-resolved imaging

R, Bajwa, Haupt, Tropp, Rauhut, . . .



Integrating compression and sensing



Recovering a matrix from limited observations

Suppose we are interested in recovering the values of a matrix X

X =




X1,1 X1,2 X1,3 X1,4 X1,5

X2,1 X2,2 X2,3 X2,4 X2,5

X3,1 X3,2 X3,3 X3,4 X3,5

X4,1 X4,2 X4,3 X4,4 X4,5

X5,1 X5,2 X5,3 X5,4 X5,5




We are given a series of different linear combinations of the entries

y = A(X)



Example: matrix completion

Suppose we do not see all the entries in a matrix ...

X =




X1,1 − X1,3 − X1,5

− X2,2 − X2,4 −
− X3,2 X3,3 − −
X4,1 − − X4,4 X4,5

− − − X5,4 X5,5




... can we “fill in the blanks”?



Applications of matrix completion

G

K

Controller
Design

Constraints involving the rank of the Hankel Operator, 
Matrix, or Singular Values

Model 
Reduction

System
Identification

Multitask 
Learning

Euclidean
Embedding

Rank of: Matrix of 
Classifiers

Gram
Matrix

Recommender
Systems

Data
Matrix

(slide courtesy of Benjamin Recht)



Low rank structure

2
666666664

X

3
777777775

=

2
666666664

L

3
777777775

2
4 RT

3
5

K ⇥ N K ⇥ R

R ⇥ N



When can we stably recover a rank-R matrix?

We have an underdetermined linear operator A

A : RK×N → L, L� KN

and observe
y = A(X0) + noise

where X0 has rank R

We can recover X0 when A keeps low-rank matrices separated

‖A(X1 −X2)‖22 ≈ ‖X1 −X2‖2F

for all rank-R X1,X2



When can we stably recover a rank-R matrix?

We have an underdetermined linear operator A

A : RK×N → L, L� KN

and observe
y = A(X0) + noise

where X0 has rank R

To recover X0, we would like to solve

min
X

rank(X) subject to A(X) = y

but this is intractable



When can we stably recover a rank-R matrix?

We have an underdetermined linear operator A

A : RK×N → L, L� KN

and observe
y = A(X0) + noise

where X0 has rank R

A relaxed (convex) program

min
X
‖X‖∗ subject to A(X) = y

where ‖X‖∗ = sum of the singular values of X



Matrix Recovery

Take vectorize X, stack up vectorized Am as rows of a matrix

A X

Independent Gaussian entires in the Am embeds rank-R matrices when

M & R(K +N)

(Recht, Fazel, Parillo, Candes, Plan, ...)



Example: matrix completion

Suppose we do not see all the entries in a matrix ...

X =




X1,1 − X1,3 − X1,5

− X2,2 − X2,4 −
− X3,2 X3,3 − −
X4,1 − − X4,4 X4,5

− − − X5,4 X5,5




... we can fill them in from

M & R(K +N) log2(KN)

randomly chosen samples if X is diffuse.

(Recht, Candes, Tao, Montenari, Oh, ...)



Summary: random projections and structured recovery

The number of measurements (dimension of the projection) needed for
structured recovery depends on the geometrical complexity of the class.

Three examples:

structure number of measurements

S-sparse vectors, length N S log(N/S)

rank-R matrix, size K ×N R(K +N)

manifold in RN , intrins. dim. K K · (function of vol, curvature, etc)



Systems of quadratic and bilinear equations



Quadratic equations

Quadratic equations contain unknown terms multiplied by one another

x1x3 + x2 + x25 = 13

3x2x6 − 7x3 + 9x24 = −12

...

Their nonlinearity makes them trickier to solve, and the computational
framework is nowhere nearly as strong as for linear equations



Recasting quadratic equations

vvT =

2
666664

v2
1 v1v2 v1v3 · · · v1vN

v2v1 v2
2 v2v3 · · · v2vN

v3v1 v3v2 v3
3 · · · v3vN

· · · . . .
...

vNv1 vNv2 vNv3 · · · v2
N

3
777775

2v21 + 5v3v1 + 7v2v3 = · · ·
v2v1 + 9v22 + 4v3v2 = · · ·

A quadratic system of equations can be recast as a linear system of
equations on a matrix that has rank 1.



Recasting quadratic equations

vvT =

2
666664

v2
1 v1v2 v1v3 · · · v1vN

v2v1 v2
2 v2v3 · · · v2vN

v3v1 v3v2 v3
3 · · · v3vN

· · · . . .
...

vNv1 vNv2 vNv3 · · · v2
N

3
777775

Compressive (low rank) recovery ⇒
“Generic” quadratic systems with cN equations and N unknowns can be
solved using nuclear norm minimization



Blind deconvolution

image deblurring multipath in wireless comm

We observe
y[n] =

∑

`

w[`]x[n− `]

and want to “untangle” w and x.



Recasting as linear equations

While each observation is a quadratic combination of the unknowns:

y[`] =
∑

n

w[n]x[`− n]

it is linear is the outer product:

wxT =




w[1]x[1] w[1]x[2] · · · w[1]x[L]
w[2]x[1] w[2]x[2] · · · w[2]x[L]

...
...

. . .

w[L]x[1] w[L]x[2] · · · w[L]x[L]




So y = A(X0), where X0 = wxT has rank 1.



Recasting as linear equations

While each observation is a quadratic combination of the unknowns:

y[`] =
∑

n

w[n]x[`− n]

it is linear is the outer product:

(Bh)(Cm)T =




〈b1, h〉〈m, c1〉 〈b1, h〉〈m, c2〉 · · · 〈b1, h〉〈m, cN 〉
〈b2, h〉〈m, c1〉 〈b2, h〉〈m, c2〉 · · · 〈b2, h〉〈m, cN 〉

...
...

. . .

〈bK , h〉〈m, c1〉 〈bK , h〉〈m, c2〉 · · · 〈bK , h〉〈m, cN 〉




where bk is the kth row of B, and cn is the nth row of C.

So y is linear in hmT.



Blind deconvolution theoretical results

We observe

y = w ∗ x, w = Bh, x = Cm

= A(hm∗), h ∈ RK , m ∈ RN ,

and then solve

min
X
‖X‖∗ subject to A(X) = y.

Ahmed, Recht, R, ’12:
If B is “incoherent” in the Fourier domain, and C is randomly chosen,
then we will recover X0 = hm∗ exactly (with high probability) when

max(K,N) ≤ L

log3 L



Numerical results

white = 100% success, black = 0% success

w sparse, x sparse w sparse, x short

We can take K +N ≈ L/3



Numerical results

Unknown image with known support in the wavelet domain,
Unknown blurring kernel with known support in spatial domain



Phase retrieval

(image courtesy of Manuel Guizar-Sicairos)

Observe the magnitude of the Fourier transform |x̂(ω)|2
x̂(ω) is complex, and its phase carries important information



Phase retrieval

(image courtesy of Manuel Guizar-Sicairos)

Recently, Candès, Strohmer, Voroninski, have looked at stylized version of
phase retrieval:

observe y` = |〈a`,x〉|2 ` = 1, . . . , L

and shown that x ∈ RN can be recovered when L ∼ Const ·N
for random a`.



Random projections in fast forward modeling



Forward modeling/simulation

Given a candidate model of the earth, we want to estimate the
channel between each source/receiver pair

!"

#$#"

%$&"

'(
)
*"
+,
-"

""!""""""""""%""""""""""".""""""""""/"

0*1*(2*0"
,*3"

h:,4h:,3h:,2h:,1

p1 p4p3p2

1456(643*")76*8"
,()9843*6"793:93"



Simultaneous activation

Run a single simulation with all of the sources activated
simultaneously with random waveforms

The channel responses interfere with one another, but the randomness
“codes” them in such a way that they can be separated later
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Multiple channel linear algebra

G1 G2 · · · Gp

...

=yk
h1,k

h2,k !"#$$%&'()*((

&%$+,"((n

!)$-)&./)$(01,"(2.&'%( pj

m

hc,k

How long does each pulse need to be to recover all of the channels?
(the system is m× nc, m = pulse length, c =# channels)

Of course we can do it for m ≥ nc
But if the channels have a combined sparsity of S, then we can take
m ∼ s+ n



Seismic imaging simulation

Figure 1: Source and receiver geometry. We use 8192 (128 × 64) sources and 1 receiver.

33

(a) Simple case. (b) More complex case.

Figure 2: Desired band-limited Greens’s functions obtained by sequential-source modeling:
(a) Simple case and (b) More complex case.

34

Array of 128× 64 (8192) sources activated simultaneously (1 receiver)

Sparsity enforced in the curvelet domain

Can “compress” computations ∼ 20×



Source localization

We observe a narrowband source emitting from (unknown) location ~r0:

Y = αG(~r0) + noise, Y ∈ CN

Goal: estimate ~r0 using only implicit knowledge of the channel G



Matched field processing

|〈Y,G(~r)〉|2

!

!
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Given observations Y , estimate ~r0 by “matching against the field”:

r̂ = arg min
~r

min
β∈C
‖Y − βG(~r)‖2 = max

~r

|〈Y,G(~r)〉|2
‖G(~r)‖2 ≈ |〈Y,G(~r)〉|2

We do not have direct access to G, but can calculate 〈Y,G(~r)〉 for all ~r
using time-reversal



Multiple realizations

We receive a series of measurements Y1, . . . , YK from the same
environment (but possibly different source locations)

Calculating GHYk for each instance can be expensive
(requires a PDE solve)

A näıve precomputing approach:
I set off a source at each receiver location ~si
I time reverse GH1~si to “pick off” a row of G

We can use ideas from compressive sensing to significantly reduce the
amount of precomputation



Coded simulations

Pre-compute the responses to a series of randomly and simultaneously
activated sources along the receiver array

b1 = GHφ1, b2 = GHφ2, . . . bM = GHφM ,

where the φm are random vectors

Stack up the bHm to form the matrix ΦG

Given the observations Y , code them to form ΦY , and solve

r̂cs = arg min
~r

min
β∈C
‖ΦY − βΦG(~r)‖22 = arg max

~r

|〈ΦY,ΦG(~r)〉|2
‖ΦG(~r)‖2



Compressive ambiguity functions

ambiguity function (GHY )(~r) compressed amb func (GHΦHΦY )(~r)
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M = 10 (compare to 37 receivers)

The compressed ambiguity function is a random process whose mean
is the true ambiguity function

For very modest M , these two functions peak in the same place



Analysis

Suppose we can approximate GTG(~r) with a 2D Gaussian with
widths λ1, λ2
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set W = area
λ1λ2

then we can reliably estimate ~r0 when

M & logW

and withstand noise levels

σ2 . A2 M

W logW

A= source amplitude



Sampling ensembles of correlated signals



Sensor arrays



Neural probes
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recording site

Up to 100s of channels sampled at ∼ 100 kHz

10s of millions of samples/second

Near Future: 1 million channels, terabits per second



Correlated signals

M

Nyquist acquisition:

sampling rate ≈ (number of signals)× (bandwith)

= M ·W



Correlated signals




−0.82 −1.31
1.09 0.27
1.05 1.81
−0.74 −0.31
−0.97 0.94
1.19 2.19




=

M

R

Can we exploit the latent correlation structure to reduce the sampling rate?



Coded multiplexing

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

...
code pM

y

Architecture that achieves

sampling rate ≈ (independent signals)× (bandwidth)

≈ RW log3/2W
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