recent developments of approximation theory and
greedy algorithms
Peter Binev

Department of Mathematics
and
Interdisciplinary Mathematics Institute

University of South Carolina

Reduced Order Modeling in General Relativity

Pasadena, CA June 6-7, 2013

Table of Contents

Outline

Greedy Algorithms
Initial Remarks
Greedy Bases
Examples for Greedy Algorithms

Tree Approximation
Initial Setup
Binary Partitions
Near-Best Approximation
Near-Best Tree Approximation

Parameter Dependent PDEs
Reduced Basis Method
Kolmogorov Widths
Results
Robustness

Greedy Algorithms Initial Remarks

Polynomial Approximations

find the best Lo-approximation via polynomials to a function in an interval [a,]

> space X = Lsfa,b] of functions: [€ X e~ H}‘H < 00

> norm £]| = Ifllx = /12 :=([f@pds)*

la,b]

o o 9 o _ n—1
> basis p1 =1, po=2x, 3=, ... , P, =2" ",

> space of polynomials of degree n — 1 ®,, := span{p1, P2, ..., on}

> approximation p, := argmin || f — p|
ped,

n

> representation p, = Z cn, ;i (F)e;
Jj=1

> in general, the coefficients ¢, ;(f) are not easy to find

> in this case we can use orthogonality ~~ Hilbert spaces

Greedy Algorithms Initial Remarks

Polynomial Approximations

find the best Lo-approximation via polynomials to a function in a domain

» space X = Ly(Q) of functions: [€ X «w || f| < o0
> norm 7] = [|fllx = 1fll2 := ([|f(@)dz)”
Q

> basis p1, Y2, V3, ... , Pn,
> space of polynomials of degree n ®,, := span{p1, Y2, ..., On}

> approximation p, := argmin ||/ — p||
pED,

n

> representation p, = Z cn i (F)e;
Jj=1

> in general, the coefficients ¢, ;(f) are not easy to find

> in this case we can use orthogonality ~- Hilbert spaces

Greedy Algorithms Initial Remarks

Hilbert Space Setup

» Banach space X ~- normed linear space ~ | f||x

» Hilbert space H ~» Banach space with a scalar product ~~ (f,¢)

> LQ({Z) is a Hilbert space ~~ <f,g> = ff(’l)g(.L) dx g - complex conjugation
Q

» (induced) norm Il = <<f’ f>> 2

» orthogonality fLlg e (f,g)=0
=1l

» orthogonal basis 1, = ¢, + Z gjp; and ¥, L &, Gramm-Schmidt
J=1

> space of polynomials ~ ®,, = span{p;, a2, ..., on} = span{t), Yo, ..., 1, }

n
> representation p, = Z C;(f)v; := argmin || f — p|| €, do not depend on n
j=1 pEd,
(f, ¥
» Ci(f) = ﬁ ~» incase [[¢;|| =1, we have p, = Z(f, Vi),

j=1

Greedy Algorithms Initial Remarks

Approximation in Hilbert Spaces

» orthonormal basis of H: V1, Y2, U3, oy Yy e e {1 }jil
_ 0 if j £k) o0
(i,) = 8 = { 1 i = k ~ H = span {1“}47'}3':1
n
> linear approximation Pp = Z(ﬂ i) € Oy
j=1

© Parseval’s Identity

. .) : . 2 oo
> approximation error | f — p,[|* = Z |{f, 93] A2 = 32 106 0p) 2

Jj=n+1 J=1
n

> nonlinear approximation Ty = Z(f, Vr;)k,
=1

> index set A, = {kla kZ ---akn} CIN ~ A=A, 1 U {kn}

» How to find A, ?
| k) | 2 [V)| = | s} | > -

Greedy Algorithms Initial Remarks

Nonlinear Approximation

given a basis {/z/:j};;, choose any n elements from it and form the linear
n

combinations E Cjvx;

J=1

> approximation class (not a spacet) >, = {g = Z Cethp : A CIN,#A < n}
keA

> X, =3, <{“J}J%:1> can be defined for any basis in a Banach space X
> approximate [€ X via functions from X,
> best approximation o, (f) := inzf IIf = gll

geT,

» basic question: how to find g, € ¥, such that ||f — g,/ < Co, ?

Note that although {%; };;1 and {p; };ll might yield the same polynomial spaces ®,,, it is usually the case that

Xn <{zj)_7 };1) = B ({;)7 }T:1> for all n and even the rates of o,, can be completely different

Greedy Algorithms Greedy Bases

Greedy Approximation

how to find efficiently g, € ¥,, that approximates f well?

> the case of an orthonormal basis {1*]}52 in a Hilbert space X

1

incremental algorithm for finding ¢, = Z (f, Yr)r
keA,
Ay =0 and
A =A;_1U{k;}, where k; = argmax (f,¢x) = argmdx(f — gj—1, V)
keJN\A7 .

> for a general basis in a Banach space X, let f &€ X has the
o0

representation [= ch(f)wj
j=1

Greedy Algorithm : define g, = Z ek ()
kEA,,
for Ao=0 and A; =A,_1U{k;}, where k; = argmax ck(f)
kEIN\A;_y

Note that in the general case g, is no longer the best approximation from >, to f

Greedy Algorithms Greedy Bases

Greedy Basis

the bases, for which g, is a good approximation

» Greedy Basis {wj};il e forany f € X the greedy approximation
gn = gn(f) to [satisfies | f — gu|l < Go,(f) with a constant G
independent on [and n

» Unconditional Basis {wj};il a~s for any sign sequence {() } L

0; = £1, the operator My defined by ﬂJg(Z a; z/;j) = Z 0ja;1;
=1 =1

is bounded

» Democratic Basis {1/1j}°o , e~ there exists a constant D such that for

any two finite sets of mdeces P and Q with the same cardinality

#P = #0) we have HZL’ ’<DHZLAH

Theorem [Konyagin, Temlyakov]
A basis is greedy if and only if it is unconditional and democratic.

Greedy Algorithms Greedy Bases

Weak Greedy Algorithm

> often it is difficult (or even impossible) to find the maximizing element

> settle for an element which is at least ~ times the best with 0 <~ <1

> define gu(f) = > cr(f)tw

keA,

for A() = @ and Aj = A‘jfl @] {k7}, where Ck; (f) > Y kgjlzifleiiil (k(f)

Theorem [Konyagin, Temlyakov]

For any greedy basis of a Banach space X and any ~ € (0,1] there is a
basis-specific constant C(v), independent on f and n, such that

“[_gfl([)|‘ S C('\//) U'n(.f)

Greedy Algorithms Examples for Greedy Algorithms

General Greedy Strategy

>

>

>

start with go = 0 and A[) = (A
set j =1 and loop through the next items

analyze the element f — gy with the possible improvements related to
(some of) the elements from {‘/’k'}kzl by calculating a decision functional
Aj(f —gj—1,1y) for each possible

e in tree approximation the number of possible elements is bounded by (a multiple of) j

e in the classical settings X is usually related to Ij-“(f‘ If—9gj—1— Cyll
be greedy, use the element 1, with the largest \; or at least the one,
for which \;(f — gj—1,%k;) =7 sup \;(f — gj—1,¥x)
’ k
set AJ = AJ‘,] U {k‘j}

calculate the next approximation g; based on {wk}ke N
; A,

e in the classical settings g; is found in the form g; ;1 + C"z,;kl

set j:=7-+ 1 and continue the loop

Greedy Algorithms Examples for Greedy Algorithms

Greedy Algorithms for Dictionaries in Hilbert Spaces

{tr},_, is a dictionary (not a basis!) in a Hilbert space with || = 1

> Pure Greedy Algorithm
kj := argmax [(f — gj—1,%x)| and g; = gj—1 + (f — gj—1, V) ¥k,
k

Greedy Algorithms Examples for Greedy Algorithms

Greedy Algorithms for Dictionaries in Hilbert Spaces

{tr},_, is a dictionary (not a basis!) in a Hilbert space with || = 1
> Pure Greedy Algorithm
kj := argmax [(f — gj—1,%x)| and g; = gj—1 + (f — gj—1, V) ¥k,
k
» Orthogonal Greedy Algorithm
oy o= arg}‘nax [{(f —gj—1,%k)| and g; = P{wk}kc\] f

where Pq}f is the orthogonal projection of f on the space span{V}

Greedy Algorithms Examples for Greedy Algorithms

Greedy Algorithms for Dictionaries in Hilbert Spaces

{tr},_, is a dictionary (not a basis!) in a Hilbert space with || = 1
> Pure Greedy Algorithm
kj = argmax [(f —g;—1,%x)| and g; = g1+ (f — gj—1, ¥r;)V,
k
» Orthogonal Greedy Algorithm
ky 1= argma (£ gm0l and g, = Prisien,
where Pq;f is the orthogonal projection of f on the space span{V}

» Weak Greedy Algorithm with 0<y <1
I(f —gj—1,Y%;)| > W’Slllp I(f — gj—1, V)|

and g; = gj—1 +(f — gj—1,Vk;) Vx;

Greedy Algorithms Examples for Greedy Algorithms

Greedy Algorithms for Dictionaries in Hilbert Spaces

{tr},_, is a dictionary (not a basis!) in a Hilbert space with || = 1

> Pure Greedy Algorithm

kj = argmax [(f —g;—1,%x)| and g; = g1+ (f — gj—1, ¥r;)V,

k

» Orthogonal Greedy Algorithm

ky 1= swgmasc (£ = g,1.0)| and g, =Pl e, f

where Pq;f is the orthogonal projection of f on the space span{V}
» Weak Greedy Algorithm with 0<y <1

I(f = gj—1, %) 2 7 S [(f — gj—1, 9wl

and g; = gj—1 +(f — gj—1,Vk;) Vx;

» Weak Orthogonal Greedy Algorithm with 0<~y <1

|<f - g]‘*lﬁwk_j>| > Sll}p |<f — gj—1; U}\>| and 9j = P{’d’k}keu_l f

Greedy Algorithms Examples for Greedy Algorithms

Greedy Algorithms for Dictionaries in Hilbert Spaces

{tr},_, is a dictionary (not a basis!) in a Hilbert space with || = 1

> Pure Greedy Algorithm

kj = argmax [(f —g;—1,%x)| and g; = g1+ (f — gj—1, ¥r;)V,

k

» Orthogonal Greedy Algorithm

ky 1= swgmasc (£ = g,1.0)| and g, =Pl e, f

where Pq;f is the orthogonal projection of f on the space span{V}
» Weak Greedy Algorithm with 0<y <1

I(f = gj—1, %) 2 7 S [(f — gj—1, 9wl

and g; = gj—1 +(f — gj—1,Vk;) Vx;

» Weak Orthogonal Greedy Algorithm with 0<~y <1

|<f - g]‘*lﬁwk_j>| > Sll}p |<f — gj—1; U}\>| and 9j = P{’d’k}keu_l f

more in [V. Temlyakov, Greedy Approximation, Cambridge University Press, 2011]

Greedy Algorithms Examples for Greedy Algorithms

Two Additional Examles

» Coarse-to-Fine Algorithms in Tree Approximation

framework for adaptive partitioning strategies

gn corresponds to a (binary) tree with complexity n

functionals A\, are estimators of the local errors

search for k; is limited to the leaves of the tree corresponding to g;_;
greedy strategy does not work ~~ needs modifications

theoretical estimates ensure near-best approximation with essentially
linear complexity

vV VY VY VY VY

Greedy Algorithms Examples for Greedy Algorithms

Two Additional Examles

» Coarse-to-Fine Algorithms in Tree Approximation

framework for adaptive partitioning strategies

gn corresponds to a (binary) tree with complexity n

functionals A\, are estimators of the local errors

search for k; is limited to the leaves of the tree corresponding to g;_;
greedy strategy does not work ~~ needs modifications

theoretical estimates ensure near-best approximation with essentially
linear complexity

vV VY VY VY VY

» Greedy Approach to Reduced Basis Method

> the problem is to estimate a high dimensional parametric set via a low
dimensional subspace

> the error cannot be calculated efficiently and one has to settle with a
calculation of a surrogate ~~ using weak greedy strategies is a must

» the general comparison of the greedy approximation with the best
approximation requires exponential constants ~~ should apply finer
estimation techniques

Tree Approximation Initial Setup

Adaptive Approximation on Binary Partitions

Function f: X —)
» X C IR’ domain equipped with a measure px such that px(X) =1
» Y C[-M,M]C IR fora given constant M

Adaptive binary partitions of X’

building blocks A, with j=1,2,... and k=0,1,..,27 —1

v

v

k represents a bitstream with length 7

A()?Qj:)(‘; Al.OUAl,l:AOﬁ) and pX(Al,OQAM):O

v

v

Ajri2c UAj 11 k11 = Ak and pa (A 10k N Aj41264+1) =0

v

adaptive partition P : start with A,y and for certain pairs (j, k)
rep/ace A}k with Ajjq‘gk and Ajjq‘gqu]

v

corresponding binary tree 7 = 7 (P) with nodes A

Tree Approximation Binary Partitions

Binary Partitions

A LA A4

Tree Approximation Binary Partitions

Binary Partitions

Tree Approximation Binary Partitions

Binary Partitions

Tree Approximation Binary Partitions

Adaptive Approximation on Binary Partitions

piecewise polynomial approximation of f on the partition P

fr(x) = Z pa,f(z) xa(z)

AeP

> the process of finding an appropriate partition 7 can be defined on the
corresponding tree 7 = T (P) ~ tree algorithms

Tree Approximation Binary Partitions

Adaptive Approximation on Binary Partitions

piecewise polynomial approximation of f on the partition P

fr(z) = Z pa,f(z) xa(z)

AeP

> the process of finding an appropriate partition 7 can be defined on the
corresponding tree 7 = T (P) ~ tree algorithms

> in 7 the node Aj; is the “parent” of its “children” Aj 2, and Aj i1 2p41

> not every tree corresponds to a partition ~ admissible trees
T is admissible if for each node A € T its “sibling” is also in T

> the elements of P are the terminal nodes of 7, its “leaves” L(T)

> usually the complexity of P is measured by the number of its elements
N = #P

> the number of nodes of the binary tree 7 (P) is equivalent measure since
#T(P)=2N -1

Tree Approximation Near-Best Approximation

Near-Best Approximation

Best Approximation

on(f):= _ inf |f—fzl

P #P<N

Tree Approximation Near-Best Approximation

Near-Best Approximation

Best Approximation

on(f):= _ inf |f—fzl

P HPIN

Approximation class A*(X): f€ A%(X) «w on(f) = O(N—%/4)

shows the asymptotic behavior of the approximation

note the dependence on the dimension ~» curse of dimensionality
Usually, the theoretical results are given in terms of how the algorithms perform
for functions from an approximation class ~~ does not provide any assurance
about the performance for an individual function. Can we do better?

Near-Best Approximation > f
there exist constants Cy < oo and ¢y > 0 such that ||f — f|| < C1oe,n(f)
Sometimes referred as instance optimality

Tree Approximation Near-Best Tree Approximation

Error Functionals

» afunctional e: node AeT —

Z e(A).

A€L(T)

error e¢(A) >0

> total error E(T) :=

Subadditivity
For any node A € T' if C(A) is the set of its children, then

> e(A) <e(h)

AeC(A)

Weak Subadditivity

There exists Cy > 1 such that for any A € T' and for any finite subtree
TA C T with root node A

Z e(A") < Cy e(A)

A'€L(TA)

Tree Approximation Near-Best Tree Approximation

Greedy Strategy for Tree Approximation

Example: Approximation in L5[0,1] of a function [defined as linear
combination of scaled Haar functions: f(z):= AHa, + B Z Ha

A€z
» Ag:=[0,27], where M is huge constant
> 7 setof 2! dyadic subintervals of [, 1] with length 27*
» |Hallz,oq) =1 and A= B+e with € >0 arbitrarily small (5> 0)
» ¢([0,27™]) = A% for m < M and e(A)=B? for AcT

The greedy algorithm will first subdivide [1/2,1] and its descendants until we
obtain the set of intervals Z. From then on it will subdivide [0,2~™] for m < M
(the ancestors of Ay). After N := 2% + M — 2 subdivisions, the greedy algorithm
will give the tree T' with error E(T) = || f||7, = A% + 2"B>.

If we would have subdivided [1/2, 1] and its descendants to dyadic level k& + 1, we
would have used just n := 2**! subdivisions and gotten an error o, (f) = A%

oort1 = A2 < 27F(A? 1 2°B?) = E(T) with #T =2F + M — 2>2F !

Tree Approximation Near-Best Tree Approximation

Modified Greedy Strategy for Tree Approximation

> the standard greedy strategy does not work for tree approximation
» need a modification that will change the decision functional

> design modified error functionals to appropriately penalize the depth of
subdivision

> use the greedy strategy based on these modified error functionals
» use dynamic instead of static decision functionals

> extensions of the algorithms for high dimensions - sparse occupancy trees

Tree Approximation Near-Best Tree Approximation

Basic Idea of Tree Algorithm [B., DeVore 2004]

For all of the nodes of the initial tree 7; we define é(A) = e(A).

Then, for each child A;, j=1,...,m(A) of A

m(A)

Z e(4;)
8(A;) = q(A) == m &(A).

Note that € is constant on the children of A.

Define the penalty terms p(A;) := =

The main property of ¢ :

Tree Approximation Near-Best Tree Approximation

Adaptive Algorithm on Binary Trees [2007]

Modified Error ¢ :

> initial partition ~> subtree 7o C T, A e Ty: é(A):=e(A)

1 1\
> for each child A; of A : é(4;) == < ~ + (A))
Adaptive Tree Algorithm

(creates a sequence of trees 7}, j = 1,2,...):

» start with 7§
» subdivide leaves A € £(7;_1) with largest €(A) to produce T}

To eliminate sorting, we can consider all é(A) with 2 < é&(A) < 20!
as if they are equally large.

Tree Approximation Near-Best Tree Approximation

Near-Best Approximation on Binary Trees

Best Approximation

on(f):= _ inf |f—fzl

P #P<N

Assume that the error functionals ¢(A) > 0 satisfy the subadditivity condition.
Then the adaptive tree algorithm that produces a tree T corresponding to a
partition Py with N > n elements satisfies

. N
B(@w) = If = ful < (=g) on)

This gives the constant ' for any chosen 0 < ¢y <1

_ N
~ (1—c2)N+1

in the general estimate |f — fn|| < C1oe,n(f).

Parameter Dependent PDEs

Parameter Dependent PDEs

vV V. v Vv Vv Y

input parameters w € D C IRP

differential operator Ay H—H

functional LeH

solution uy of Apuy = f(uy)

quantity of interest I(p) = L(uy) I, — opt,ep
example:

1B =11 = aat)

P 3
(Ap,v) == au(u,v) = 29&7(#]’)/ Vu - Vv dx

= .
J Q;

uniform ellipticity: c1|v[|? < au(v,v) < Cq||v]|?

|v

[Y. Maday, T. Patera, G. Turicini, ...]

veEH, neD

Parameter Dependent PDEs Reduced Basis Method

Reduced Basis ~» exploit sparsity

» ‘“solution manifold”

compact set F:={u,=A;'0 : peD}CH

» offline:

compute fo, f1,-..s fn—1 such that for F,, :=span{fo,..., fn—1}
O — I/Iled}(If = Puof]l < [tollerance]

» online:

for each [i-query solve a small Galerkin problem in F,

all(uszj) :f(f7) j:0,...,n—1

Parameter Dependent PDEs Reduced Basis Method

Example
n-Vu=0
3 g 3
ﬁ ﬁ au(u,v)zz /uthwVUdz-&-/VUqudw
= = j=1 Q; Q4
m 2
L(v) = / v ds
n-Vu=1 T'c
w1 =0.1, pp = 0.3, pug = 0.8 w1 =04, up = 0.4, pz = 7.1

~ 0(u) = 1.24705 ~ L(u) = 0.58505

Parameter Dependent PDEs Reduced Basis Method

Reduced Basis ~» exploit sparsity

> offline: fo, f1,.--, fn—1 such that for F,, := span{fo,..., fn_1}

n = ma; - P, < [tollerance
Oy I}lei}(Hf fll - < [tollerance]

> online: foreach 1 solve a small Galerkin problem in Fj,
au(uy, f3) = €(f;) j=0,..,n—1

[C(up) — (uy)| = apu(uy — upy, w, — uy)
< Ci Un(]:)2 < [1‘/01167'ance}2

4

> use uy, for solving the optimization problem

Parameter Dependent PDEs Reduced Basis Method

Basis Construction ~~ greedy approach

> ideal algorithm ~> pure greedy
> fo:= arj%maXHfH . Fi:=span{fo}, ou(F):=|foll
eF

given [}, 1= span{fo, ---a,fnfl} and O-n,(-/—") = 1}163])__< Hf - Pnf”

» fn:=argmax|f— P,f]|
feF

> a feasible variant ~> weak greedy algorithm
using a computable “surrogate” R, (f) for which
2R (f) < |If = Pufll < CoRu(f)
> |If = fall =2 v on(F)

» eg f[n:=argmaxR,(f) and y=&
fer U2

Parameter Dependent PDEs Kolmogorov Widths

Kolmogorov Widths

dp(F):= inf sup disty(f,Y) < 0, (F)
dim(Y)=n feF

» Can one bound o, (F) in terms of d,(F) ?

> Are optimal subspaces spanned by elements of F ?

dn(F) = Yeil<1]£>n sup disty(f,Y) < on(F)

» Theorem:
» for any compact set F we have d,(F) < (n+1) d,(F)
> given any € > 0 there is a set F such that

do(F)> (n—1—¢) d,(F)

Widths

Parameter Dependent PDEs Kolmogorov Widths

vs Greedy

fo

Vs

Greedy Basis

Parameter Dependent PDEs Results

Results ~» pure greedy (v =1)

> [Buffa, Maday, Patera, Prudhomme, Turinici]
on(F) < C n2" d,(F)

> slight improvement
2n+1
O-YL ‘F S =
(F) 7

» forany n >0 and any ¢ > 0 there exists a set F = F,
such that for the pure greedy algorithm

dn(F)

on(F) > (1 —€)2" d,(F)

Parameter Dependent PDEs Results

Results ~~» pure greedy (v =1)
> [Buffa, Maday, Patera, Prudhomme, Turinici]

on(F) < C n2" d,(F)

> slight improvement

» forany n >0 and any ¢ > 0 there exists a set F = F,
such that for the pure greedy algorithm

on(F) > (1 —€)2" d,(F)

» Whatif 2"d,(F)-» 07
» Whatif <17

Parameter Dependent PDEs Results

Polynomial Convergence Rates

» Theorem [Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk]

Suppose that dy(F) < M. Then

do(F) < Mn= for n>0 = 0,(F) <CMn=* for n>0

with C:=4%°tz and q:=[20114"1]2

Parameter Dependent PDEs Results

Polynomial Convergence Rates

» Theorem [Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk]

Suppose that dy(F) < M. Then
dp(F) < Mn=% for n >0 = on(F) < CMn=* for n>0

with C:=4%°tz and q:=[20114"1]2

> using the “Flatness” Lemma:

Let 0 <0 <1 and assume that for q:= [20~'y"1]?
and some integers m and n we have 0, gm(F) > 0 0, (F).

Then

W=

on(F) < q2 dp(F).

Parameter Dependent PDEs Results

Idea of the Proof

. u(F)
.

Tntqm(F) = 0on(F)

0 ’ = on(F) < q2dm(F)

Parameter Dependent PDEs Results

Idea of the Proof

. on(F)
Teel, Tntam(F) > 000 (F)
.: 56560 . .n,“y,‘,hl'.] .
0 = on(F) < q2dm(F)
= m =
> o.(F) < CMn—“ for n < Np T
P assume it fails for some N > Np : : .
> = flatness for M ~ N me T o . e ‘
P apply flatness lemma 9=2 _|X >0 1 == |' ti:,
> . contradiction n = N/2 No N
- qm -

dp(F) < Mn=® for n>0 = on(F) < CMn=% for n>0

Parameter Dependent PDEs Results

Sub-Exponential Rates

» finer resolutions between n~% and e %"

» Theorem [DeVore, Petrova, Wojtaszczyk|

For any compact set F and n > 1, we have

n—m

2
on(F) < [min d,," (F)

Yo 1<m<n

2d,,(F)
~y

In particular, o9, (F) < and

d'i),(F) < C(] Bian” for n > 1
4

e 19 for n > 1 with ¢ = 27172,

Vv2C)
~y

Parameter Dependent PDEs Robustness

Robustness

> in reality f; cannot be computed exactly ~» we receive jN7 (that
might not be in F) with ||f; — f;|| <e

» instead of F), use fn = span{ﬁ),...,fjl,,l}

> performance of the noisy weak greedy algorithm
n(F) == sup disty(f, F)
fer

» Theorem [polynomial rates, n > 0]
dn(F) < Mn—© = 0n(F) < Cmax{Mn~ % e}

with C = C(a, 7).

» similar result for subexponential rates

Thanks

The End

THANK You!

	Table of Contents
	Greedy Algorithms
	Initial Remarks
	Greedy Bases
	Examples for Greedy Algorithms

	Tree Approximation
	Initial Setup
	Binary Partitions
	Near-Best Approximation
	Near-Best Tree Approximation

	Parameter Dependent PDEs
	Reduced Basis Method
	Kolmogorov Widths
	Results
	Robustness

	Thanks

