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Greedy Algorithms Initial Remarks

Polynomial Approximations

find the best L2-approximation via polynomials to a function in an interval [a, b]

I space X = L2[a, b] of functions: f ∈ X! ‖f‖ <∞

I norm ‖f‖ = ‖f‖X = ‖f‖2 :=
( ∫

[a,b]

|f(x)|2dx
) 1

2

I basis ϕ1 = 1, ϕ2 = x, ϕ3 = x2, ... , ϕn = xn−1, ...

I space of polynomials of degree n− 1 Φn := span{ϕ1, ϕ2, ..., ϕn}
I approximation pn := argmin

p∈Φn

‖f − p‖

I representation pn =

n∑
j=1

cn,j(f)ϕj

I in general, the coefficients cn,j(f) are not easy to find

I in this case we can use orthogonality  Hilbert spaces
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Greedy Algorithms Initial Remarks

Hilbert Space Setup

I Banach space X  normed linear space  ‖f‖X
I Hilbert space H  Banach space with a scalar product  〈f, g〉
I L2(Ω) is a Hilbert space  〈f, g〉 :=

∫
Ω

f(x)g(x) dx ḡ - complex conjugation

I (induced) norm ‖f‖ :=
(
〈f, f〉

) 1
2

I orthogonality f ⊥ g ! 〈f, g〉 = 0

I orthogonal basis ψn = ϕn +

n−1∑
j=1

qjϕj and ψn ⊥ Φn−1 Gramm-Schmidt

I space of polynomials Φn = span{ϕ1, ϕ2, ..., ϕn} = span{ψ1, ψ2, ..., ψn}

I representation pn =

n∑
j=1

Cj(f)ψj := argmin
p∈Φn

‖f − p‖ Cj do not depend on n

I Cj(f) :=
〈f, ψj〉
〈ψj , ψj〉

 in case ‖ψj‖ = 1, we have pn =

n∑
j=1

〈f, ψj〉ψj



Greedy Algorithms Initial Remarks

Approximation in Hilbert Spaces

I orthonormal basis of H: ψ1, ψ2, ψ3, ... , ψn, ... !
{
ψj
}∞
j=1

〈ψj , ψk〉 = δj,k :=

{
0 if j 6= k
1 if j = k

 H = span
{
ψj
}∞
j=1

I linear approximation pn =

n∑
j=1

〈f, ψj〉ψj ∈ Φn

I approximation error ‖f − pn‖2 =

∞∑
j=n+1

∣∣〈f, ψj〉∣∣2 Parseval’s Identity

‖f‖2 =
∞∑
j=1

∣∣〈f, ψj〉∣∣2

I nonlinear approximation gn =

n∑
j=1

〈f, ψkj 〉ψkj

I index set Λn =
{
k1, k2, ..., kn

}
⊂ IN  Λn = Λn−1 ∪ {kn}

I How to find Λn?
 

∣∣〈f, ψk1
〉
∣∣ ≥ ∣∣〈f, ψk2

〉
∣∣ ≥ ∣∣〈f, ψk3

〉
∣∣ ≥ ...



Greedy Algorithms Initial Remarks

Nonlinear Approximation

given a basis
{
ψj
}∞
j=1

, choose any n elements from it and form the linear

combinations
n∑
j=1

Cjψkj

I approximation class (not a space!) Σn :=
{
g =

∑
k∈Λ

Ckψk : Λ ⊂ IN,#Λ ≤ n
}

I Σn = Σn

({
ψj
}∞
j=1

)
can be defined for any basis in a Banach space X

I approximate f ∈ X via functions from Σn

I best approximation σn(f) := inf
g∈Σn

‖f − g‖

I basic question: how to find gn ∈ Σn such that ‖f − gn‖ ≤ Cσn ?

Note that although
{
ψj
}∞
j=1

and
{
ϕj
}∞
j=1

might yield the same polynomial spaces Φn, it is usually the case that

Σn

({
ψj
}∞
j=1

)
6= Σn

({
ϕj
}∞
j=1

)
for all n and even the rates of σn can be completely different



Greedy Algorithms Greedy Bases

Greedy Approximation

how to find efficiently gn ∈ Σn that approximates f well?

I the case of an orthonormal basis
{
ψj
}∞
j=1

in a Hilbert space X

incremental algorithm for finding gn =
∑
k∈Λn

〈f, ψk〉ψk

Λ0 = ∅ and
Λj = Λj−1 ∪ {kj}, where kj = argmax

k∈IN\Λj−1

〈f, ψk〉 = argmax
k∈IN

〈f − gj−1, ψk〉

I for a general basis in a Banach space X, let f ∈ X has the

representation f =

∞∑
j=1

cj(f)ψj

Greedy Algorithm : define gn =
∑
k∈Λn

ck(f)ψk

for Λ0 = ∅ and Λj = Λj−1 ∪ {kj}, where kj = argmax
k∈IN\Λj−1

ck(f)

Note that in the general case gn is no longer the best approximation from Σn to f



Greedy Algorithms Greedy Bases

Greedy Basis

the bases, for which gn is a good approximation

I Greedy Basis
{
ψj
}∞
j=1

! for any f ∈ X the greedy approximation

gn = gn(f) to f satisfies ‖f − gn‖ ≤ Gσn(f) with a constant G
independent on f and n

I Unconditional Basis
{
ψj
}∞
j=1

! for any sign sequence
{
θj
}∞
j=1

,

θj = ±1, the operator Mθ defined by Mθ

( ∞∑
j=1

ajψj

)
=

∞∑
j=1

θjajψj

is bounded

I Democratic Basis
{
ψj
}∞
j=1

! there exists a constant D such that for

any two finite sets of indeces P and Q with the same cardinality

#P = #Q we have
∥∥∥ ∞∑
k∈P

ψk

∥∥∥ ≤ D∥∥∥ ∞∑
k∈Q

ψk

∥∥∥
Theorem [Konyagin, Temlyakov]

A basis is greedy if and only if it is unconditional and democratic.



Greedy Algorithms Greedy Bases

Weak Greedy Algorithm

I often it is difficult (or even impossible) to find the maximizing element ψk

I settle for an element which is at least γ times the best with 0 < γ ≤ 1

I define gn(f) :=
∑
k∈Λn

ck(f)ψk

for Λ0 = ∅ and Λj = Λj−1 ∪ {kj}, where ckj (f) ≥ γ max
k∈IN\Λj−1

ck(f)

Theorem [Konyagin, Temlyakov]

For any greedy basis of a Banach space X and any γ ∈ (0, 1] there is a
basis-specific constant C(γ), independent on f and n, such that

‖f − gn(f)‖ ≤ C(γ) σn(f)



Greedy Algorithms Examples for Greedy Algorithms

General Greedy Strategy

I start with g0 = 0 and Λ0 = ∅
I set j = 1 and loop through the next items

I analyze the element f − g0 with the possible improvements related to

(some of) the elements from
{
ψk
}∞
k=1

by calculating a decision functional

λj(f − gj−1, ψk) for each possible ψk
• in tree approximation the number of possible elements is bounded by (a multiple of) j

• in the classical settings λj is usually related to inf
k,C

‖f − gj−1 − Cψk‖

I be greedy, use the element ψkj with the largest λj or at least the one,

for which λj(f − gj−1, ψkj ) ≥ γ sup
k
λj(f − gj−1, ψk)

I set Λj = Λj−1 ∪ {kj}
I calculate the next approximation gj based on

{
ψk
}
k∈Λj

• in the classical settings gj is found in the form gj−1 + Cψkj

I set j := j + 1 and continue the loop



Greedy Algorithms Examples for Greedy Algorithms

Greedy Algorithms for Dictionaries in Hilbert Spaces

{
ψk
}∞
k=1

is a dictionary (not a basis!) in a Hilbert space with ‖ψk‖ = 1

I Pure Greedy Algorithm
kj := argmax

k
|〈f − gj−1, ψk〉| and gj = gj−1 + 〈f − gj−1, ψkj 〉ψkj

I Orthogonal Greedy Algorithm
kj := argmax

k
|〈f − gj−1, ψk〉| and gj = P{ψk}k∈Λj

f

where PΨf is the orthogonal projection of f on the space span{Ψ}
I Weak Greedy Algorithm with 0 < γ ≤ 1

|〈f − gj−1, ψkj 〉| ≥ γ sup
k
|〈f − gj−1, ψk〉|

and gj = gj−1 + 〈f − gj−1, ψkj 〉ψkj
I Weak Orthogonal Greedy Algorithm with 0 < γ ≤ 1

|〈f − gj−1, ψkj 〉| ≥ γ sup
k
|〈f − gj−1, ψk〉| and gj = P{ψk}k∈Λj

f

more in [V. Temlyakov, Greedy Approximation, Cambridge University Press, 2011]
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Greedy Algorithms Examples for Greedy Algorithms

Two Additional Examles

I Coarse-to-Fine Algorithms in Tree Approximation

I framework for adaptive partitioning strategies
I gn corresponds to a (binary) tree with complexity n
I functionals λk are estimators of the local errors
I search for kj is limited to the leaves of the tree corresponding to gj−1

I greedy strategy does not work  needs modifications
I theoretical estimates ensure near-best approximation with essentially

linear complexity

I Greedy Approach to Reduced Basis Method

I the problem is to estimate a high dimensional parametric set via a low
dimensional subspace

I the error cannot be calculated efficiently and one has to settle with a
calculation of a surrogate  using weak greedy strategies is a must

I the general comparison of the greedy approximation with the best
approximation requires exponential constants  should apply finer
estimation techniques
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Tree Approximation Initial Setup

Adaptive Approximation on Binary Partitions

Function f : X → Y
I X ⊂ IRd domain equipped with a measure ρX such that ρX (X ) = 1

I Y ⊂ [−M,M ] ⊂ IR for a given constant M

Adaptive binary partitions of X
I building blocks ∆j,k with j = 1, 2, ... and k = 0, 1, .., 2j − 1

I k represents a bitstream with length j

I ∆0,∅ = X ; ∆1,0 ∪∆1,1 = ∆0,∅ and ρX(∆1,0 ∩∆1,1) = 0

I ∆j+1,2k ∪∆j+1,2k+1 = ∆j,k and ρX (∆j+1,2k ∩∆j+1,2k+1) = 0

I adaptive partition P : start with ∆0,∅ and for certain pairs (j, k)
replace ∆j,k with ∆j+1,2k and ∆j+1,2k+1

I corresponding binary tree T = T (P) with nodes ∆j,k
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Binary Partitions
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Tree Approximation Binary Partitions

Adaptive Approximation on Binary Partitions

piecewise polynomial approximation of f on the partition P

fP(x) :=
∑
∆∈P

p∆,f (x) χ∆(x)

I the process of finding an appropriate partition P can be defined on the
corresponding tree T = T (P)  tree algorithms

I in T the node ∆j,k is the “parent” of its “children” ∆j+1,2k and ∆j+1,2k+1

I not every tree corresponds to a partition  admissible trees
T is admissible if for each node ∆ ∈ T its “sibling” is also in T

I the elements of P are the terminal nodes of T , its “leaves” L(T )

I usually the complexity of P is measured by the number of its elements
N = #P

I the number of nodes of the binary tree T (P) is equivalent measure since
#T (P) = 2N − 1
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Near-Best Approximation

Best Approximation

σN (f) := inf
P : #P≤N

‖f − fP‖

Approximation class As(X): f ∈ As(X) ! σN (f) = O(N−s/d)
shows the asymptotic behavior of the approximation
note the dependence on the dimension  curse of dimensionality

Usually, the theoretical results are given in terms of how the algorithms perform
for functions from an approximation class  does not provide any assurance
about the performance for an individual function. Can we do better?

Near-Best Approximation  f̃

there exist constants C1 <∞ and c2 > 0 such that ‖f − f̃‖ ≤ C1 σc2N (f)

Sometimes referred as instance optimality
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Tree Approximation Near-Best Tree Approximation

Error Functionals

I a functional e : node ∆ ∈ T → error e(∆) ≥ 0

I total error E(T ) :=
∑

∆∈L(T )

e(∆).

Subadditivity
For any node ∆ ∈ T if C(∆) is the set of its children, then∑

∆′∈C(∆)

e(∆′) ≤ e(∆)

Weak Subadditivity
There exists C0 ≥ 1 such that for any ∆ ∈ T and for any finite subtree
T∆ ⊂ T with root node ∆ ∑

∆′∈L(T∆)

e(∆′) ≤ C0 e(∆)



Tree Approximation Near-Best Tree Approximation

Greedy Strategy for Tree Approximation

Example: Approximation in L2[0, 1] of a function f defined as linear

combination of scaled Haar functions: f(x) := AH∆0
+B

∑
∆∈I
H∆

I ∆0 := [0, 2−M ], where M is huge constant

I I set of 2k−1 dyadic subintervals of [ 1
2 , 1] with length 2−k

I ‖H∆‖L2[0,1] = 1 and A = B + ε with ε > 0 arbitrarily small (B > 0)

I e([0, 2−m]) = A2 for m ≤M and e(∆) = B2 for ∆ ∈ I

The greedy algorithm will first subdivide [1/2, 1] and its descendants until we
obtain the set of intervals I. From then on it will subdivide [0, 2−m] for m ≤M
(the ancestors of ∆0). After N := 2k +M − 2 subdivisions, the greedy algorithm
will give the tree T with error E(T ) = ‖f‖2L2

= A2 + 2kB2.

If we would have subdivided [1/2, 1] and its descendants to dyadic level k + 1, we
would have used just n := 2k+1 subdivisions and gotten an error σn(f) = A2.

σ2k+1 = A2 < 2−k(A2 + 2kB2) = E(T ) with #T = 2k +M − 2>>2k+1
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Modified Greedy Strategy for Tree Approximation

I the standard greedy strategy does not work for tree approximation

I need a modification that will change the decision functional

I design modified error functionals to appropriately penalize the depth of
subdivision

I use the greedy strategy based on these modified error functionals

I use dynamic instead of static decision functionals

I extensions of the algorithms for high dimensions - sparse occupancy trees
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Basic Idea of Tree Algorithm [B., DeVore 2004]

For all of the nodes of the initial tree T0 we define ẽ(∆) = e(∆).

Then, for each child ∆j , j = 1, . . . ,m(∆) of ∆

ẽ(∆j) := q(∆) :=

m(∆)∑
j=1

e(∆j)

e(∆) + ẽ(∆)
ẽ(∆).

Note that ẽ is constant on the children of ∆.

Define the penalty terms p(∆j) :=
e(∆j)

ẽ(∆j)
The main property of ẽ :

m(∆)∑
j=1

p(∆j) = p(∆) + 1 .
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Adaptive Algorithm on Binary Trees [2007]

Modified Error ẽ :

I initial partition  subtree T0 ⊂ T , ∆ ∈ T0 : ẽ(∆) := e(∆)

I for each child ∆j of ∆ : ẽ(∆j) :=

(
1

e(∆j)
+

1

ẽ(∆)

)−1

Adaptive Tree Algorithm
( creates a sequence of trees Tj , j = 1, 2, . . . ):

I start with T0

I subdivide leaves ∆ ∈ L(Tj−1) with largest ẽ(∆) to produce Tj

To eliminate sorting, we can consider all ẽ(∆) with 2` ≤ ẽ(∆) < 2`+1

as if they are equally large.
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Near-Best Approximation on Binary Trees

Best Approximation

σN (f) := inf
P : #P≤N

‖f − fP‖

Assume that the error functionals e(∆) ≥ 0 satisfy the subadditivity condition.
Then the adaptive tree algorithm that produces a tree TN corresponding to a
partition PN with N ≥ n elements satisfies

E(TN ) = ‖f − f̃N‖ ≤
(

N

N − n+ 1

)
σn(f)

This gives the constant C1 = N
(1−c2)N+1 for any chosen 0 < c2 ≤ 1

in the general estimate ‖f − f̃N‖ ≤ C1 σc2N (f).



Parameter Dependent PDEs

Parameter Dependent PDEs

I input parameters µ ∈ D ⊂ IRp

I differential operator Aµ : H → H′

I functional ` ∈ H′

I solution uµ of Aµuµ = `(uµ)

I quantity of interest I(µ) = `(uµ) Iµ → optµ∈D

I example:

‖ · ‖2H = ‖ · ‖2 = aµ̄(·, ·)

〈Aµ, v〉 := aµ(u, v) =

p∑
j=1

θj(µj)

∫
Ωj

∇u · ∇v dx

uniform ellipticity: c1‖v‖2 ≤ aµ(v, v) ≤ C1‖v‖2 v ∈ H, µ ∈ D

[Y. Maday, T. Patera, G. Turicini, ...]



Parameter Dependent PDEs Reduced Basis Method

Reduced Basis  exploit sparsity

I “solution manifold”

compact set F :=
{
uµ = A−1

µ ` : µ ∈ D
}
⊂ H

I offline:

compute f0, f1,..., fn−1 such that for Fn := span{f0, ..., fn−1}
σn := max

f∈F
‖f − Pnf‖ ≤ [tollerance]

I online:

for each µ-query solve a small Galerkin problem in Fn

aµ(unµ, fj) = `(fj) j = 0, ..., n− 1
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Example

aµ(u, v) =
3∑
j=1

∫
Ωj

µj ∇u · ∇v dx +

∫
Ω4

∇u · ∇v dx

`(v) =

∫
ΓC

v ds

µ1 = 0.1, µ2 = 0.3, µ3 = 0.8

 `(u) = 1.24705

µ1 = 0.4, µ2 = 0.4, µ3 = 7.1

 `(u) = 0.58505
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Reduced Basis  exploit sparsity

I offline: f0, f1,..., fn−1 such that for Fn := span{f0, ..., fn−1}
σn := max

f∈F
‖f − Pnf‖ ≤ [tollerance]

I online: for each µ solve a small Galerkin problem in Fn

aµ(unµ, fj) = `(fj) j = 0, ..., n− 1

 
|`(uµ)− `(unµ)| = aµ(uµ − unµ, uµ − unµ)

≤ C1 σn(F)2 ≤ C1 [tollerance]2

⇓
I use unµ for solving the optimization problem
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Basis Construction  greedy approach

I ideal algorithm  pure greedy

I f0 := argmax
f∈F

‖f‖ , F1 := span{f0} , σ1(F) := ‖f0‖

given Fn := span{f0, ..., fn−1} and σn(F) := max
f∈F
‖f − Pnf‖

I fn := argmax
f∈F

‖f − Pnf‖

I a feasible variant  weak greedy algorithm

using a computable “surrogate” Rn(f) for which

c2Rn(f) ≤ ‖f − Pnf‖ ≤ C2Rn(f)

I ‖f − fn‖ ≥ γ σn(F)

I e.g. fn := argmax
f∈F

Rn(f) and γ = c2
C2
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Kolmogorov Widths

dn(F) := inf
dim(Y )=n

sup
f∈F

distH(f, Y ) ≤ σn(F)

I Can one bound σn(F) in terms of dn(F) ?

I Are optimal subspaces spanned by elements of F ?

dn(F) := inf
Y ∈〈F〉n

sup
f∈F

distH(f, Y ) ≤ σn(F)

I Theorem:

I for any compact set F we have dn(F) ≤ (n+ 1) dn(F)

I given any ε > 0 there is a set F such that

dn(F) ≥ (n− 1− ε) dn(F)



Parameter Dependent PDEs Kolmogorov Widths

Widths vs Greedy

n = 1 n = 2

Kolmogorov Widths vs Greedy Basis
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Results  pure greedy (γ = 1)

I [Buffa, Maday, Patera, Prudhomme, Turinici]

σn(F) ≤ C n2n dn(F)

I slight improvement

σn(F) ≤ 2n+1

√
3

dn(F)

I for any n > 0 and any ε > 0 there exists a set F = Fn
such that for the pure greedy algorithm

σn(F) ≥ (1− ε)2n dn(F)

I What if 2ndn(F) 9 0 ?

I What if γ < 1 ?
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Polynomial Convergence Rates

I Theorem [Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk]

Suppose that d0(F) ≤M . Then

dn(F) ≤Mn−α for n > 0 ⇒ σn(F) ≤ CMn−α for n > 0

with C := 4αqα+ 1
2 and q := d2α+1γ−1e2 .

I using the “Flatness” Lemma:

Let 0 < θ < 1 and assume that for q := d2θ−1γ−1e2
and some integers m and n we have σn+qm(F) ≥ θ σn(F).

Then
σn(F) ≤ q 1

2 dm(F).



Parameter Dependent PDEs Results

Polynomial Convergence Rates

I Theorem [Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk]
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I using the “Flatness” Lemma:

Let 0 < θ < 1 and assume that for q := d2θ−1γ−1e2
and some integers m and n we have σn+qm(F) ≥ θ σn(F).

Then
σn(F) ≤ q 1

2 dm(F).



Parameter Dependent PDEs Results

Idea of the Proof

σn+qm(F) ≥ θσn(F)

⇒ σn(F) ≤ q
1
2 dm(F)

I σn(F) ≤ CMn−α for n ≤ N0

I assume it fails for some N > N0

I ⇒ flatness for m ∼ n
I apply flatness lemma

I  contradiction

dn(F) ≤Mn−α for n > 0 ⇒ σn(F) ≤ CMn−α for n > 0
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⇒ σn(F) ≤ q
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Sub-Exponential Rates

I finer resolutions between n−α and e−an

I Theorem [DeVore, Petrova, Wojtaszczyk]

For any compact set F and n ≥ 1, we have

σn(F) ≤
√

2

γ
min

1≤m<n
d
n−m
n

m (F)

In particular, σ2n(F) ≤
√

2dn(F)

γ
and

dn(F) ≤ C0 e
−anα for n ≥ 1

⇓

σn(F) ≤
√

2C0

γ
e−c1an

α

for n ≥ 1 with c1 = 2−1−2α .
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Robustness

I in reality fj cannot be computed exactly  we receive f̃j (that

might not be in F) with ‖fj − f̃j‖ ≤ ε

I instead of Fn use F̃n := span
{
f̃0, ..., f̃n−1

}
I performance of the noisy weak greedy algorithm

σ̃n(F) := sup
f∈F

distH(f, F̃n)

I Theorem [polynomial rates, n > 0]

dn(F) ≤Mn−α ⇒ σ̃n(F) ≤ C max{Mn−α, ε}

with C = C(α, γ).

I similar result for subexponential rates



Thanks

The End

T HANK YOU!


	Table of Contents
	Greedy Algorithms
	Initial Remarks
	Greedy Bases
	Examples for Greedy Algorithms

	Tree Approximation
	Initial Setup
	Binary Partitions
	Near-Best Approximation
	Near-Best Tree Approximation

	Parameter Dependent PDEs
	Reduced Basis Method
	Kolmogorov Widths
	Results
	Robustness

	Thanks

