recent developments of approximation theory and greedy algorithms

Peter Binev

Department of Mathematics and Interdisciplinary Mathematics Institute

University of South Carolina

Reduced Order Modeling in General Relativity

Pasadena, CA

June 6-7, 2013

Table of Contents

Outline

Greedy Algorithms

Initial Remarks Greedy Bases Examples for Greedy Algorithms

Tree Approximation

Initial Setup Binary Partitions Near-Best Approximation Near-Best Tree Approximation

Parameter Dependent PDEs

Reduced Basis Method Kolmogorov Widths Results Robustness

Polynomial Approximations

find the best L_2 -approximation via polynomials to a function in an interval [a, b]

• space $X = L_2[a, b]$ of functions: $f \in X \iff ||f|| < \infty$

• norm
$$||f|| = ||f||_X = ||f||_2 := \left(\int_{[a,b]} |f(x)|^2 dx\right)^{\frac{1}{2}}$$

- ▶ basis $\varphi_1 = 1$, $\varphi_2 = x$, $\varphi_3 = x^2$, ... , $\varphi_n = x^{n-1}$, ...
- space of polynomials of degree n-1 $\Phi_n := \operatorname{span}\{\varphi_1, \varphi_2, ..., \varphi_n\}$
- approximation $p_n := \underset{p \in \Phi_n}{\operatorname{argmin}} \|f p\|$

 p_1

representation

$$c_n = \sum_{j=1}^n c_{n,j}(f)\varphi_j$$

- in general, the coefficients $c_{n,j}(f)$ are not easy to find
- \blacktriangleright in this case we can use orthogonality $~\rightsquigarrow~$ Hilbert spaces

Polynomial Approximations

find the best L_2 -approximation via polynomials to a function in a domain $\ \Omega$

- space $X = L_2(\Omega)$ of functions: $f \in X \iff ||f|| < \infty$
- norm $||f|| = ||f||_X = ||f||_2 := \left(\int_{\Omega} |f(x)|^2 dx\right)^{\frac{1}{2}}$

$$\blacktriangleright$$
 basis φ_1 , φ_2 , φ_3 , ... , φ_n , ...

- space of polynomials of degree n $\Phi_n := \operatorname{span}\{\varphi_1, \varphi_2, ..., \varphi_n\}$
- approximation $p_n := \underset{p \in \Phi_n}{\operatorname{argmin}} \|f p\|$
- representation $p_n = \sum_{j=1}^n c_{n,j}(f) \varphi_j$
- in general, the coefficients $c_{n,j}(f)$ are not easy to find
- in this case we can use orthogonality \rightsquigarrow Hilbert spaces

Hilbert Space Setup

- Banach space $X \rightsquigarrow$ normed linear space $\rightsquigarrow ||f||_X$
- ▶ Hilbert space $H \rightsquigarrow$ Banach space with a scalar product $\rightsquigarrow \langle f,g
 angle$
- $L_2(\Omega)$ is a Hilbert space $\rightsquigarrow \langle f,g \rangle := \int_{\Omega} f(x) \overline{g(x)} \, dx$ \bar{g} complex conjugation
- (induced) norm $\|f\| := \left(\langle f, f \rangle\right)^{\frac{1}{2}}$
- $\blacktriangleright \quad \text{orthogonality} \qquad \qquad f \perp g \ \longleftrightarrow \ \langle f,g \rangle = 0$
- orthogonal basis $\psi_n = \varphi_n + \sum_{i=1}^{n-1} q_j \varphi_j$ and $\psi_n \perp \Phi_{n-1}$ Gramm-Schmidt
- space of polynomials $\Phi_n = \operatorname{span}\{\varphi_1, \varphi_2, ..., \varphi_n\} = \operatorname{span}\{\psi_1, \psi_2, ..., \psi_n\}$
- ▶ representation $p_n = \sum_{j=1}^n C_j(f) \psi_j := \operatorname*{argmin}_{p \in \Phi_n} \|f-p\|$ C_j do not depend on n

•
$$C_j(f) := \frac{\langle f, \psi_j \rangle}{\langle \psi_j, \psi_j \rangle} \quad \rightsquigarrow \text{ in case } \|\psi_j\| = 1, \text{ we have } p_n = \sum_{j=1}^n \langle f, \psi_j \rangle \psi_j$$

Approximation in Hilbert Spaces

linear approximation

$$p_n = \sum_{j=1}^n \langle f, \psi_j \rangle \psi_j \in \Phi_n$$

• approximation error
$$\|f-p_n\|^2 = \sum_{j=n+1}^{\infty} \left|\langle f,\psi_j
angle
ight|^2$$

Parseval's Identity
$$\left\|f\right\|^{2} = \sum_{j=1}^{\infty} \left|\langle f, \psi_{j} \rangle\right|^{2}$$

• nonlinear approximation
$$g_n = \sum_{j=1}^n \langle f, \psi_{k_j}
angle \psi_{k_j}$$

• index set
$$\Lambda_n = \{k_1, k_2, ..., k_n\} \subset \mathbb{N} \rightsquigarrow \Lambda_n = \Lambda_{n-1} \cup \{k_n\}$$

► How to find Λ_n ? $\rightsquigarrow |\langle f, \psi_{k_1} \rangle| \ge |\langle f, \psi_{k_2} \rangle| \ge |\langle f, \psi_{k_3} \rangle| \ge ...$

Nonlinear Approximation

given a basis $\{\psi_j\}_{j=1}^{\infty}$, choose any *n* elements from it and form the linear combinations $\sum_{j=1}^{n} C_j \psi_{k_j}$

 $\blacktriangleright \quad \text{approximation class (not a space!)} \quad \Sigma_n := \Big\{g = \sum_{k \in I} C_k \psi_k : \Lambda \subset {I\!\!N}, \#\Lambda \leq n \Big\}$

- $\Sigma_n = \Sigma_n \left(\left\{ \psi_j \right\}_{j=1}^{\infty} \right)$ can be defined for any basis in a Banach space X
- approximate $f \in X$ via functions from Σ_n
- best approximation $\sigma_n(f) := \inf_{g \in \Sigma} ||f g||$
- basic question: how to find $g_n \in \Sigma_n$ such that $||f g_n|| \le C\sigma_n$?

Note that although $\{\psi_j\}_{j=1}^{\infty}$ and $\{\varphi_j\}_{j=1}^{\infty}$ might yield the same polynomial spaces Φ_n , it is usually the case that $\Sigma_n\left(\{\psi_j\}_{j=1}^{\infty}\right) \neq \Sigma_n\left(\{\varphi_j\}_{j=1}^{\infty}\right)$ for all n and even the rates of σ_n can be completely different

Greedy Approximation

how to find efficiently $g_n \in \Sigma_n$ that approximates f well?

• the case of an orthonormal basis $\{\psi_j\}_{j=1}^{\infty}$ in a Hilbert space Xincremental algorithm for finding $g_n = \sum_{k \in \Lambda_n} \langle f, \psi_k \rangle \psi_k$ $\Lambda_0 = \emptyset$ and $\Lambda_j = \Lambda_{j-1} \cup \{k_j\}$, where $k_j = \underset{k \in \mathbb{N} \setminus \Lambda_{j-1}}{\operatorname{argmax}} \langle f, \psi_k \rangle = \underset{k \in \mathbb{N}}{\operatorname{argmax}} \langle f - g_{j-1}, \psi_k \rangle$

► for a general basis in a Banach space X, let $f \in X$ has the representation $f = \sum_{j=1}^{\infty} c_j(f)\psi_j$

 ${\sf Greedy} \; {\sf Algorithm} \; : \qquad {\sf define} \quad g_n = \sum_{k \in \Lambda_n} c_k(f) \psi_k$

for $\Lambda_0 = \emptyset$ and $\Lambda_j = \Lambda_{j-1} \cup \{k_j\}$, where $k_j = \operatorname*{argmax}_{k \in \mathbb{N} \setminus \Lambda_{j-1}} c_k(f)$

Note that in the general case $\,g_n\,$ is no longer the best approximation from $\,\Sigma_n\,$ to $\,f\,$

Greedy Basis

the bases, for which g_n is a good approximation

- Greedy Basis $\{\psi_j\}_{j=1}^{\infty} \iff$ for any $f \in X$ the greedy approximation $g_n = g_n(f)$ to f satisfies $||f g_n|| \le G\sigma_n(f)$ with a constant G independent on f and n
- Unconditional Basis $\{\psi_j\}_{j=1}^{\infty} \iff$ for any sign sequence $\{\theta_j\}_{j=1}^{\infty}$, $\theta_j = \pm 1$, the operator M_{θ} defined by $M_{\theta} \left(\sum_{j=1}^{\infty} a_j \psi_j\right) = \sum_{j=1}^{\infty} \theta_j a_j \psi_j$ is bounded
- ► Democratic Basis $\{\psi_j\}_{j=1}^{\infty} \iff$ there exists a constant D such that for any two finite sets of indeces P and Q with the same cardinality #P = #Q we have $\left\|\sum_{k\in P}^{\infty} \psi_k\right\| \le D \left\|\sum_{k\in Q}^{\infty} \psi_k\right\|$

Theorem [Konyagin, Temlyakov]

A basis is greedy if and only if it is unconditional and democratic.

Weak Greedy Algorithm

- often it is difficult (or even impossible) to find the maximizing element ψ_k
- settle for an element which is at least γ times the best with $0 < \gamma \leq 1$

• define
$$g_n(f) := \sum_{k \in \Lambda_n} c_k(f) \psi_k$$

 $\text{for } \Lambda_0 = \emptyset \ \text{ and } \ \Lambda_j = \Lambda_{j-1} \cup \{k_j\}, \ \text{where } \ c_{k_j}(f) \geq \gamma \ \max_{k \in I\!\!N \setminus \Lambda_{j-1}} c_k(f)$

Theorem [Konyagin, Temlyakov]

For any greedy basis of a Banach space X and any $\gamma \in (0,1]$ there is a basis-specific constant $C(\gamma)$, independent on f and n, such that

 $\|f - g_n(f)\| \le C(\gamma) \sigma_n(f)$

General Greedy Strategy

- start with $g_0 = 0$ and $\Lambda_0 = \emptyset$
- set j = 1 and loop through the next items
- ► analyze the element $f g_0$ with the possible improvements related to (some of) the elements from $\{\psi_k\}_{k=1}^{\infty}$ by calculating a decision functional $\lambda_j(f g_{j-1}, \psi_k)$ for each possible ψ_k

• in tree approximation the number of possible elements is bounded by (a multiple of) j

- in the classical settings λ_j is usually related to $\inf_{k \in C} \|f g_{j-1} C\psi_k\|$
- ▶ be greedy, use the element ψ_{k_j} with the largest λ_j or at least the one, for which $\lambda_j(f g_{j-1}, \psi_{k_j}) \ge \gamma \sup_k \lambda_j(f g_{j-1}, \psi_k)$
- set $\Lambda_j = \Lambda_{j-1} \cup \{k_j\}$
- calculate the next approximation g_j based on $\{\psi_k\}_{k\in\Lambda_j}$

• in the classical settings $\,g_{j}\,$ is found in the form $\,g_{j-1}+C\psi_{k_{\,j}}\,$

• set j := j + 1 and continue the loop

 $ig\{\psi_kig\}_{k=1}^\infty$ is a dictionary (not a basis!) in a Hilbert space with $\|\psi_k\|=1$

Pure Greedy Algorithm

 $k_j := \operatorname*{argmax}_k \ |\langle f - g_{j-1}, \psi_k \rangle| \ \text{ and } \ g_j = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

 $ig\{\psi_kig\}_{k=1}^\infty$ is a dictionary (not a basis!) in a Hilbert space with $\|\psi_k\|=1$

Pure Greedy Algorithm

 $k_j := \operatorname*{argmax}_k |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_j = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

Orthogonal Greedy Algorithm

 $k_j := \operatorname*{argmax}_k |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_j = \mathcal{P}_{\{\psi_k\}_{k \in \Lambda_j}} f$ where $\mathcal{P}_{\Psi} f$ is the orthogonal projection of f on the space $\operatorname{span}\{\Psi\}$

 $ig\{\psi_kig\}_{k=1}^\infty$ is a dictionary (not a basis!) in a Hilbert space with $\|\psi_k\|=1$

Pure Greedy Algorithm

 $k_j := \operatorname*{argmax}_k |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_j = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

Orthogonal Greedy Algorithm

 $k_j := \underset{k}{\operatorname{argmax}} |\langle f - g_{j-1}, \psi_k \rangle| \text{ and } g_j = \mathcal{P}_{\{\psi_k\}_{k \in \Lambda_j}} f$ where $\mathcal{P}_{\Psi} f$ is the orthogonal projection of f on the space $\operatorname{span}\{\Psi\}$

► Weak Greedy Algorithm with $0 < \gamma \le 1$ $|\langle f - g_{j-1}, \psi_{k_j} \rangle| \ge \gamma \sup_k |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_i = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

 $ig\{\psi_kig\}_{k=1}^\infty$ is a dictionary (not a basis!) in a Hilbert space with $\|\psi_k\|=1$

Pure Greedy Algorithm

 $k_j := \operatorname*{argmax}_k |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_j = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

Orthogonal Greedy Algorithm

 $k_j := \underset{k}{\operatorname{argmax}} |\langle f - g_{j-1}, \psi_k \rangle| \text{ and } g_j = \mathcal{P}_{\{\psi_k\}_{k \in \Lambda_j}} f$ where $\mathcal{P}_{\Psi} f$ is the orthogonal projection of f on the space $\operatorname{span}\{\Psi\}$

► Weak Greedy Algorithm with $0 < \gamma \le 1$ $|\langle f - g_{j-1}, \psi_{k_j} \rangle| \ge \gamma \sup_k |\langle f - g_{j-1}, \psi_k \rangle|$

and $g_j = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

► Weak Orthogonal Greedy Algorithm with $0 < \gamma \leq 1$ $|\langle f - g_{j-1}, \psi_{k_j} \rangle| \geq \gamma \sup_k |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_j = \mathcal{P}_{\{\psi_k\}_{k \in \Lambda_j}} f$

 $ig\{\psi_kig\}_{k=1}^\infty$ is a dictionary (not a basis!) in a Hilbert space with $\|\psi_k\|=1$

Pure Greedy Algorithm

 $k_j := \operatorname*{argmax}_k |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_j = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

• Orthogonal Greedy Algorithm

 $k_j := \underset{k}{\operatorname{argmax}} |\langle f - g_{j-1}, \psi_k \rangle|$ and $g_j = \mathcal{P}_{\{\psi_k\}_{k \in \Lambda_j}} f$ where $\mathcal{P}_{\Psi} f$ is the orthogonal projection of f on the space $\operatorname{span}\{\Psi\}$

► Weak Greedy Algorithm with $0 < \gamma \le 1$ $|\langle f - g_{j-1}, \psi_{k_j} \rangle| \ge \gamma \sup_k |\langle f - g_{j-1}, \psi_k \rangle|$

and $g_j = g_{j-1} + \langle f - g_{j-1}, \psi_{k_j} \rangle \psi_{k_j}$

 $\begin{array}{l|l} \blacktriangleright \quad \mbox{Weak Orthogonal Greedy Algorithm} & \mbox{with} \quad 0 < \gamma \leq 1 \\ |\langle f - g_{j-1}, \psi_{k_j} \rangle| \geq \gamma \sup_k \ |\langle f - g_{j-1}, \psi_k \rangle| & \mbox{and} \quad g_j = \mathcal{P}_{\{\psi_k\}_{k \in \Lambda_j}} f \end{array}$

more in [V. Temlyakov, Greedy Approximation, Cambridge University Press, 2011]

Two Additional Examles

► Coarse-to-Fine Algorithms in Tree Approximation

- framework for adaptive partitioning strategies
- g_n corresponds to a (binary) tree with complexity n
- functionals λ_k are estimators of the local errors
- ▶ search for k_j is limited to the leaves of the tree corresponding to g_{j-1}
- \blacktriangleright greedy strategy does not work $~\rightsquigarrow~$ needs modifications
- theoretical estimates ensure near-best approximation with essentially linear complexity

Two Additional Examles

► Coarse-to-Fine Algorithms in Tree Approximation

- framework for adaptive partitioning strategies
- g_n corresponds to a (binary) tree with complexity n
- functionals λ_k are estimators of the local errors
- ▶ search for k_j is limited to the leaves of the tree corresponding to g_{j-1}
- \blacktriangleright greedy strategy does not work $~\leadsto~$ needs modifications
- theoretical estimates ensure near-best approximation with essentially linear complexity

Greedy Approach to Reduced Basis Method

- the problem is to estimate a high dimensional parametric set via a low dimensional subspace
- ► the error cannot be calculated efficiently and one has to settle with a calculation of a surrogate ~→ using weak greedy strategies is a must
- ► the general comparison of the greedy approximation with the best approximation requires exponential constants ~→ should apply finer estimation techniques

Adaptive Approximation on Binary Partitions

Function $f: \mathcal{X} \to \mathcal{Y}$

- $\mathcal{X} \subset \mathbb{R}^d$ domain equipped with a measure $\rho_{\mathcal{X}}$ such that $\rho_{\mathcal{X}}(\mathcal{X}) = 1$
- ▶ $\mathcal{Y} \subset [-M, M] \subset \mathbb{R}$ for a given constant M

Adaptive binary partitions of \mathcal{X}

• building blocks $\Delta_{j,k}$ with j = 1, 2, ... and $k = 0, 1, ..., 2^j - 1$

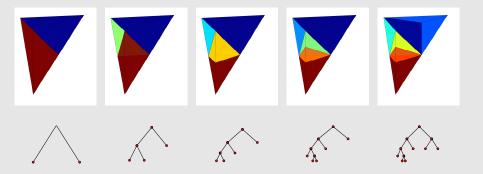
 \triangleright k represents a bitstream with length j

- $\Delta_{0,\emptyset} = \mathcal{X}$; $\Delta_{1,0} \cup \Delta_{1,1} = \Delta_{0,\emptyset}$ and $\rho_X(\Delta_{1,0} \cap \Delta_{1,1}) = 0$
- $\Delta_{i+1,2k} \cup \Delta_{i+1,2k+1} = \Delta_{i,k}$ and $\rho_{\mathcal{X}}(\Delta_{i+1,2k} \cap \Delta_{i+1,2k+1}) = 0$
- > adaptive partition \mathcal{P} : start with $\Delta_{0,\emptyset}$ and for certain pairs (j,k)replace $\Delta_{i,k}$ with $\Delta_{i+1,2k}$ and $\Delta_{i+1,2k+1}$

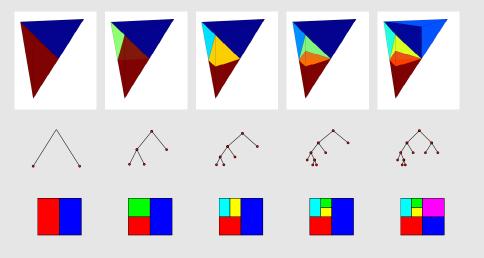
• corresponding binary tree $\mathcal{T} = \mathcal{T}(\mathcal{P})$ with nodes $\Delta_{i,k}$

Binary Partitions

Binary Partitions



Binary Partitions



Adaptive Approximation on Binary Partitions

piecewise polynomial approximation of f on the partition $\mathcal P$

$$f_{\mathcal{P}}(x) := \sum_{\Delta \in \mathcal{P}} p_{\Delta,f}(x) \ \chi_{\Delta}(x)$$

► the process of finding an appropriate partition *P* can be defined on the corresponding tree *T* = *T*(*P*) → tree algorithms

Adaptive Approximation on Binary Partitions

piecewise polynomial approximation of f on the partition ${\mathcal P}$

$$f_{\mathcal{P}}(x) := \sum_{\Delta \in \mathcal{P}} p_{\Delta,f}(x) \ \chi_{\Delta}(x)$$

- ► the process of finding an appropriate partition *P* can be defined on the corresponding tree *T* = *T*(*P*) → tree algorithms
- in \mathcal{T} the node $\Delta_{j,k}$ is the "parent" of its "children" $\Delta_{j+1,2k}$ and $\Delta_{j+1,2k+1}$
- ▶ not every tree corresponds to a partition \rightsquigarrow admissible trees *T* is admissible if for each node $\Delta \in T$ its "sibling" is also in *T*
- ▶ the elements of \mathcal{P} are the terminal nodes of \mathcal{T} , its "leaves" $\mathcal{L}(\mathcal{T})$
- usually the complexity of \mathcal{P} is measured by the number of its elements $N = \# \mathcal{P}$
- ▶ the number of nodes of the binary tree T(P) is equivalent measure since #T(P) = 2N 1

Tree Approximation Nea

Near-Best Approximation

Near-Best Approximation

Best Approximation

$$\sigma_N(f) := \inf_{\mathcal{P}: \#\mathcal{P} \le N} \|f - f_{\mathcal{P}}\|$$

Near-Best Approximation

Best Approximation

$$\sigma_N(f) := \inf_{\mathcal{P}: \#\mathcal{P} \le N} \|f - f_{\mathcal{P}}\|$$

Approximation class $\mathcal{A}^{s}(X)$: $f \in \mathcal{A}^{s}(X) \iff \sigma_{N}(f) = \mathcal{O}(N^{-s/d})$ shows the asymptotic behavior of the approximation note the dependence on the dimension \rightsquigarrow curse of dimensionality Usually, the theoretical results are given in terms of how the algorithms perform for functions from an approximation class \rightsquigarrow does not provide any assurance about the performance for an individual function. **Can we do better?**

 $\begin{array}{ll} \text{Near-Best Approximation} & \rightsquigarrow & \tilde{f} \\ \text{there exist constants } C_1 < \infty \text{ and } c_2 > 0 \text{ such that } \|f - \tilde{f}\| \leq C_1 \, \sigma_{c_2 N}(f) \\ & \text{Sometimes referred as instance optimality} \end{array}$

Error Functionals

▶ a functional e : node $\Delta \in T$ \rightarrow error $e(\Delta) \ge 0$

► total error
$$E(T) := \sum_{\Delta \in \mathcal{L}(T)} e(\Delta).$$

Subadditivity

For any node $\Delta \in T$ if $\mathcal{C}(\Delta)$ is the set of its children, then

$$\sum_{\Delta' \in \mathcal{C}(\Delta)} e(\Delta') \le e(\Delta)$$

Weak Subadditivity

There exists $C_0 \ge 1$ such that for any $\Delta \in T$ and for any finite subtree $T_\Delta \subset T$ with root node Δ

$$\sum_{\Delta' \in \mathcal{L}(T_{\Delta})} e(\Delta') \le C_0 \ e(\Delta)$$

Greedy Strategy for Tree Approximation

Example: Approximation in $L_2[0,1]$ of a function f defined as linear combination of scaled Haar functions: $f(x) := A\mathcal{H}_{\Delta_0} + B\sum_{\Delta \in \mathcal{I}} \mathcal{H}_{\Delta}$

- $\Delta_0 := [0, 2^{-M}]$, where *M* is huge constant
- \mathcal{I} set of 2^{k-1} dyadic subintervals of $[\frac{1}{2},1]$ with length 2^{-k}
- $\blacktriangleright \ e([0,2^{-m}])=A^2 \ \ \text{for} \ \ m\leq M \ \ \text{and} \ \ e(\Delta)=B^2 \ \ \text{for} \ \ \Delta\in\mathcal{I}$

The greedy algorithm will first subdivide [1/2, 1] and its descendants until we obtain the set of intervals \mathcal{I} . From then on it will subdivide $[0, 2^{-m}]$ for $m \leq M$ (the ancestors of Δ_0). After $N := 2^k + M - 2$ subdivisions, the greedy algorithm will give the tree T with error $E(T) = ||f||_{L_2}^2 = A^2 + 2^k B^2$.

If we would have subdivided [1/2, 1] and its descendants to dyadic level k + 1, we would have used just $n := 2^{k+1}$ subdivisions and gotten an error $\sigma_n(f) = A^2$.

 $\sigma_{2^{k+1}} = A^2 < \mathbf{2^{-k}}(A^2 + 2^k B^2) = E(T) \quad \text{with} \quad \#T = 2^k + M - 2 \ggg 2^{k+1}$

Modified Greedy Strategy for Tree Approximation

- the standard greedy strategy does not work for tree approximation
- need a modification that will change the decision functional
- design modified error functionals to appropriately penalize the depth of subdivision
- use the greedy strategy based on these modified error functionals
- use dynamic instead of static decision functionals
- extensions of the algorithms for high dimensions sparse occupancy trees

Basic Idea of Tree Algorithm [B., DeVore 2004]

For all of the nodes of the initial tree T_0 we define $\tilde{e}(\Delta) = e(\Delta)$.

Then, for each child Δ_j , $j=1,\ldots,m(\Delta)$ of Δ

$$\tilde{e}(\Delta_j) := q(\Delta) := \frac{\sum_{j=1}^{m(\Delta)} e(\Delta_j)}{e(\Delta) + \tilde{e}(\Delta)} \tilde{e}(\Delta).$$

Note that \tilde{e} is constant on the children of Δ .

Define the penalty terms $p(\Delta_j) := \frac{e(\Delta_j)}{\tilde{e}(\Delta_j)}$ The main property of \tilde{e} :

$$\sum_{j=1}^{m(\Delta)} p(\Delta_j) = p(\Delta) + 1.$$

Adaptive Algorithm on Binary Trees [2007]

Modified Error \tilde{e} :

▶ initial partition \rightsquigarrow subtree $T_0 \subset T$, $\Delta \in T_0$: $\tilde{e}(\Delta) := e(\Delta)$

• for each child
$$\Delta_j$$
 of Δ : $\tilde{e}(\Delta_j) := \left(\frac{1}{e(\Delta_j)} + \frac{1}{\tilde{e}(\Delta)}\right)^{-1}$

Adaptive Tree Algorithm

(creates a sequence of trees T_j , j = 1, 2, ...):

- start with T_0
- subdivide leaves $\Delta \in \mathcal{L}(T_{j-1})$ with largest $\tilde{e}(\Delta)$ to produce T_j

To eliminate sorting, we can consider all $\tilde{e}(\Delta)$ with $2^{\ell} \leq \tilde{e}(\Delta) < 2^{\ell+1}$ as if they are equally large.

Near-Best Approximation on Binary Trees

Best Approximation

$$\sigma_N(f) := \inf_{\mathcal{P}: \#\mathcal{P} \le N} \|f - f_{\mathcal{P}}\|$$

Assume that the error functionals $e(\Delta) \ge 0$ satisfy the subadditivity condition. Then the adaptive tree algorithm that produces a tree T_N corresponding to a partition \mathcal{P}_N with $N \ge n$ elements satisfies

$$E(T_N) = \|f - \tilde{f}_N\| \le \left(\frac{N}{N - n + 1}\right)\sigma_n(f)$$

This gives the constant $C_1 = \frac{N}{(1-c_2)N+1}$ for any chosen $0 < c_2 \le 1$ in the general estimate $\|f - \tilde{f}_N\| \le C_1 \sigma_{c_2N}(f)$. Parameter Dependent PDEs

Parameter Dependent PDEs

- input parameters $\mu \in D \subset {I\!\!R}^p$
- differential operator $A_{\mu}: \mathcal{H} \to \mathcal{H}'$
- functional $\ell \in \mathcal{H}'$
- solution u_{μ} of $A_{\mu}u_{\mu} = \ell(u_{\mu})$
- quantity of interest $I(\mu) = \ell(u_{\mu})$ $I_{\mu} \to \operatorname{opt}_{\mu \in D}$
- example:

$$\|\cdot\|_{\mathcal{H}}^{2} = \|\cdot\|^{2} = a_{\bar{\mu}}(\cdot, \cdot)$$
$$\langle A_{\mu}, v \rangle := a_{\mu}(u, v) = \sum_{j=1}^{p} \theta_{j}(\mu_{j}) \int_{\Omega_{j}} \nabla u \cdot \nabla v \, dx$$

uniform ellipticity: $c_1 \|v\|^2 \le a_\mu(v,v) \le C_1 \|v\|^2$ $v \in \mathcal{H}, \ \mu \in D$

[Y. Maday, T. Patera, G. Turicini, ...]

Reduced Basis \rightsquigarrow *exploit sparsity*

"solution manifold"

compact set $\mathcal{F} := \left\{ u_{\mu} = A_{\mu}^{-1} \ell \ : \ \mu \in D \right\} \subset \mathcal{H}$

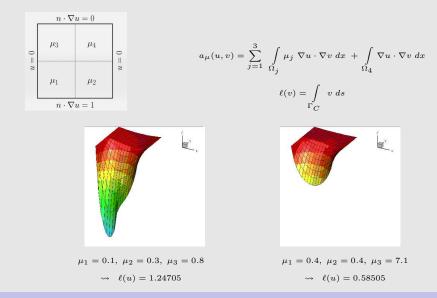
offline:

compute $f_0, f_1, ..., f_{n-1}$ such that for $F_n := \operatorname{span}\{f_0, ..., f_{n-1}\}$ $\sigma_n := \max_{f \in \mathcal{F}} \|f - P_n f\| \leq [tollerance]$

online:

for each $\mu\text{-query solve a small Galerkin problem in }F_n$ $a_\mu(u_\mu^n,f_j)=\ell(f_j) \qquad \qquad j=0,...,n-1$

Example



Parameter Dependent PDEs Reduced Basis Method

Reduced Basis \rightsquigarrow *exploit sparsity*

► offline:
$$f_0, f_1, ..., f_{n-1}$$
 such that for $F_n := \operatorname{span}\{f_0, ..., f_{n-1}\}$
$$\sigma_n := \max_{f \in \mathcal{F}} ||f - P_n f|| \leq [tollerance]$$

▶ online: for each μ solve a small Galerkin problem in F_n $a_\mu(u^n_\mu, f_j) = \ell(f_j)$ j = 0, ..., n - 1

$$\begin{aligned} |\ell(u_{\mu}) - \ell(u_{\mu}^{n})| &= a_{\mu}(u_{\mu} - u_{\mu}^{n}, u_{\mu} - u_{\mu}^{n}) \\ &\leq C_{1} \sigma_{n}(\mathcal{F})^{2} \leq C_{1} \left[tollerance \right]^{2} \end{aligned}$$

use u_{μ}^{n} for solving the optimization problem

Basis Construction \rightsquigarrow greedy approach

- $\blacktriangleright \quad \text{ideal algorithm} \quad \rightsquigarrow \quad \text{pure greedy}$
 - $f_0 := \underset{f \in \mathcal{F}}{\operatorname{argmax}} \|f\|$, $F_1 := \operatorname{span}\{f_0\}$, $\sigma_1(\mathcal{F}) := \|f_0\|$

given $F_n := \operatorname{span}\{f_0, ..., f_{n-1}\}$ and $\sigma_n(\mathcal{F}) := \max_{f \in \mathcal{F}} \|f - P_n f\|$

- $f_n := \operatorname*{argmax}_{f \in \mathcal{F}} \|f P_n f\|$
- a feasible variant \rightsquigarrow weak greedy algorithm using a computable "surrogate" $R_n(f)$ for which $c_2R_n(f) \le \|f - P_nf\| \le C_2R_n(f)$
 - $||f f_n|| \ge \gamma \ \sigma_n(\mathcal{F})$

• e.g.
$$f_n := \operatorname*{argmax}_{f \in \mathcal{F}} R_n(f)$$
 and $\gamma = \frac{c_2}{C_2}$

Kolmogorov Widths

 $d_n(\mathcal{F}) := \inf_{\dim(Y)=n} \sup_{f \in \mathcal{F}} \operatorname{dist}_{\mathcal{H}}(f, Y) \qquad \leq \sigma_n(\mathcal{F})$

• Can one bound $\sigma_n(\mathcal{F})$ in terms of $d_n(\mathcal{F})$?

• Are optimal subspaces spanned by elements of \mathcal{F} ?

 $\overline{d}_n(\mathcal{F}) := \inf_{Y \in \langle \mathcal{F} \rangle_n} \sup_{f \in \mathcal{F}} \operatorname{dist}_{\mathcal{H}}(f, Y) \leq \sigma_n(\mathcal{F})$

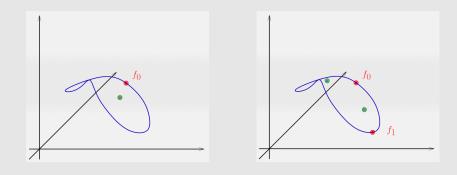
Theorem:

- for any compact set \mathcal{F} we have $\overline{d}_n(\mathcal{F}) \leq (n+1) d_n(\mathcal{F})$
- given any $\varepsilon > 0$ there is a set \mathcal{F} such that $\overline{d}_n(\mathcal{F}) \ge (n - 1 - \varepsilon) \ d_n(\mathcal{F})$

Parameter Dependent PDEs

Kolmogorov Widths

Widths vs Greedy



n = 1

n=2

Kolmogorov Widths vs Greedy Basis

Parameter Dependent PDEs Res

Results

Results \rightsquigarrow pure greedy $(\gamma = 1)$

► [Buffa, Maday, Patera, Prudhomme, Turinici] $\sigma_n(\mathcal{F}) < C \ n2^n \ d_n(\mathcal{F})$

slight improvement

$$\sigma_n(\mathcal{F}) \le \frac{2^{n+1}}{\sqrt{3}} d_n(\mathcal{F})$$

▶ for any n > 0 and any $\varepsilon > 0$ there exists a set $\mathcal{F} = \mathcal{F}_n$ such that for the pure greedy algorithm

 $\sigma_n(\mathcal{F}) \ge (1-\varepsilon)2^n \ d_n(\mathcal{F})$

Parameter Dependent PDEs Res

Results

Results \rightsquigarrow pure greedy $(\gamma = 1)$

► [Buffa, Maday, Patera, Prudhomme, Turinici] $\sigma_n(\mathcal{F}) < C \ n2^n \ d_n(\mathcal{F})$

slight improvement

$$\sigma_n(\mathcal{F}) \le \frac{2^{n+1}}{\sqrt{3}} d_n(\mathcal{F})$$

▶ for any n > 0 and any $\varepsilon > 0$ there exists a set $\mathcal{F} = \mathcal{F}_n$ such that for the pure greedy algorithm

 $\sigma_n(\mathcal{F}) \ge (1-\varepsilon)2^n \ d_n(\mathcal{F})$

- What if $2^n d_n(\mathcal{F}) \not\rightarrow 0$?
- What if $\gamma < 1$?

Polynomial Convergence Rates

Theorem [Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk]

Suppose that $d_0(\mathcal{F}) \leq M$. Then

 $d_n(\mathcal{F}) \leq M n^{-\alpha}$ for $n > 0 \qquad \Rightarrow \qquad \sigma_n(\mathcal{F}) \leq C M n^{-\alpha}$ for n > 0

with $C := 4^{\alpha} q^{\alpha + \frac{1}{2}}$ and $q := [2^{\alpha + 1} \gamma^{-1}]^2$.

Polynomial Convergence Rates

► Theorem [Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk]

Suppose that $d_0(\mathcal{F}) \leq M$. Then

 $d_n(\mathcal{F}) \leq M n^{-\alpha}$ for $n > 0 \qquad \Rightarrow \qquad \sigma_n(\mathcal{F}) \leq C M n^{-\alpha}$ for n > 0

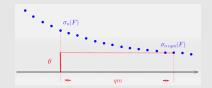
with $C:=4^{\alpha}q^{\alpha+\frac{1}{2}}$ and $q:=\lceil 2^{\alpha+1}\gamma^{-1}\rceil^2$.

using the "Flatness" Lemma:

Let $0 < \theta < 1$ and assume that for $q := \lceil 2\theta^{-1}\gamma^{-1} \rceil^2$ and some integers m and n we have $\sigma_{n+qm}(\mathcal{F}) \ge \theta \sigma_n(\mathcal{F})$. Then

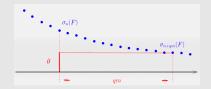
$$\sigma_n(\mathcal{F}) \le q^{\frac{1}{2}} d_m(\mathcal{F}).$$

Idea of the Proof



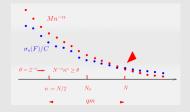
$$\sigma_{n+qm}(\mathcal{F}) \ge \theta \sigma_n(\mathcal{F})$$
$$\Rightarrow \quad \sigma_n(\mathcal{F}) \le q^{\frac{1}{2}} d_m(\mathcal{F})$$

Idea of the Proof



$$\sigma_{n+qm}(\mathcal{F}) \ge \theta \sigma_n(\mathcal{F})$$
$$\Rightarrow \quad \sigma_n(\mathcal{F}) \le q^{\frac{1}{2}} d_m(\mathcal{F})$$

- $\sigma_n(\mathcal{F}) \leq CMn^{-\alpha}$ for $n \leq N_0$
- \blacktriangleright assume it fails for some $N>N_0$
- ightarrow flatness for $m\sim n$
- apply flatness lemma
- ~~ contradiction



 $d_n(\mathcal{F}) \leq M n^{-\alpha}$ for n > 0

 $\Rightarrow \sigma_n(\mathcal{F}) \leq CMn^{-\alpha} \text{ for } n > 0$

Sub-Exponential Rates

- finer resolutions between n^{-lpha} and e^{-an}
- Theorem [DeVore, Petrova, Wojtaszczyk]

For any compact set \mathcal{F} and $n \geq 1$, we have

$$\sigma_n(\mathcal{F}) \le \frac{\sqrt{2}}{\gamma} \min_{1 \le m < n} d_m^{\frac{n-m}{n}}(\mathcal{F})$$

In particular,
$$\sigma_{2n}(\mathcal{F}) \leq rac{\sqrt{2d_n(\mathcal{F})}}{\gamma}$$
 and

Robustness

- ▶ in reality f_j cannot be computed exactly \rightsquigarrow we receive \tilde{f}_j (that might not be in \mathcal{F}) with $\|f_j \tilde{f}_j\| \leq \varepsilon$
- instead of F_n use $\widetilde{F}_n := \operatorname{span}\left\{\widetilde{f}_0, ..., \widetilde{f}_{n-1}\right\}$
- ▶ performance of the noisy weak greedy algorithm $\widetilde{\sigma}_n(\mathcal{F}) := \sup_{f \in \mathcal{F}} \operatorname{dist}_{\mathcal{H}}(f, \widetilde{F}_n)$
- ► Theorem [polynomial rates, n > 0] $d_n(\mathcal{F}) \le Mn^{-\alpha} \implies \widetilde{\sigma}_n(\mathcal{F}) \le C \max\{Mn^{-\alpha}, \varepsilon\}$ with $C = C(\alpha, \gamma)$.
- similar result for subexponential rates

Thanks

The End

THANK YOU!