Gas in Galaxy Mergers: More
Important than You Thmk

Philip Hopkins
11/13/08

Lars Hernquist, T. J. Cobz,fiosh Younger, John Kormendy, Barry Rothberg,
Tod Lauer, Eliot Quataert, Chung-Pe1 Ma, Dusan Keres, Volker Springel

Tuesday, December 25, 12




T= 0Myr Gas
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Galaxy Mergers

HOW GOOD IS OUR CONVENTIONAL WISDOM?

Gas-Poor (fgas ~0.1) Gas

\

GaS'RICh (fgas ~ 0.4)

Q

Tuesday, December 25, 12



Major Merger Remnants
DO MERGERS DESTROY DISKS?

Bulge (B/T =0.2) Stellar Disk Gas Disk
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Major Merger Remnants
DO MERGERS DESTROY DISKS?
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The Unsolved Questions
HOW CAN A DISK SURVIVE?

Stellar disks are collisionless: they violently relax when they collide

Can’t “cool” into a new disk
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The Unsolved Questions
HOW CAN A DISK SURVIVE?

Gas, however, is collisional:

> ' T

Will cool into a new disk:
only goes to center and
bursts if angular momentum
IS removed
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How Do Disks Survive Mergers?

companions -- bars -- gas/star offset -- torques --
gas inflow (see, e.g., Barnes 92, Barnes & Hernquist 96, Mihos &
W LI B BN R B B Hernquist94,96)

i | ; stars
: ; (color)

gas
(contours)

What does the torquing?
Stars in the same galaxy
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How Do Disks Survive Mergers?
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How Do Disks Survive Mergers?

Progenltor Ist Passage 2nd Passage Remnant
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How Do Disks Survive Mergers?
Burst mass vs. fgas

T I s ; SRy ~
; All Gas Bursted (1., =1.,.)
0.5 Predicted (Linear/Mestel Disk)
0.4 Predicted (NumericaV ey ' .
Syl Exponential Disk) 2
0.3!
£l .
. . . 02 Y . . 2
Surviving Gas Disk Mass vs. fgas | e : .
c 0.1] o~
o0 o = e B < S R __omite
’ i 0.1 0.2 0.3 0.4 0.5 0.6
06 -
0.10; viash
| -~ 05!
5 ¢~ (all gas bursts)
e T 04| o 2
§ 0.01 Ea st
g o 3 :2 03 A A
w { & ‘e y 3=
2 1w__ O'D‘tf ‘ ...“E‘ orob‘toho D 'i 7‘:; 02 A .
° 1 35 5 N A 5
g (all gas \ P e 0.1/
- R ot ) ™ A .
€ 0.10 survives).. Orbitk
7 0.1 0.2 03 0.4 0.5 06
06F e
' “u Initial (-2 Gyr Pre-Merger) Gas Fraction: e’
0017 . “eenn Al Gas Survives (f,, =1,.) } 0.5 ® 01 * 06 L o
’ Predictad (Linear) i 02 o038 .
[ Predictad (Numerical) 0.4} 04 @10
0.1 1.0 : 0.3 e *
Pre-Merger Gas Fraction f,,, ; 8. -
(gas-dependent 02 g st /—'
prediction) 1 S / *
Torque on gas: e A e
0.1 0.2 03 0.4
t ~ G Mstellar bal’/ dr Immediate Pre-Merger Gas Fraction f_,
for the same merger/perturbation,
Mstellar bar X Msteliar X (1 - fgas) (gas-dependent

prediction)

Tuesday, December 25, 12



How Do Disks Survive Mergers?

Can similarly calculate
dependence on orbital parameters

- A driven distortion:
much simpler than secular

- Timescales are short:
halo/secular exchange
can be completely ignored

Nothing to do with net

angular momentum!

Efficiency of Disk Destruction
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How Do Disks Survive Mergers?
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How Do Disks Survive Mergers?
THE PUNCHLINE

Derive:
Gas angular momentum loss/starburst mass
Surviving gas disk fraction
Violently relaxed fraction of stellar disk

= F(fgas, L, Horbit)

(. [Simulation)

Works varying:
Baryonic/halo mass
Redshift
BH properties (presence, mass, feedback)
Galaxy concentrations/initial B-T/sizes
Mass ratio, orbital parameters, gas fraction
Stellar feedback

fse [Simulation]

Purely gravitational process:
Independent of feedback
Must happen

0.01 0.10 1.00
faaalf aeo10,8) [Predicted)
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Fold this into a cosmological model: why do we care?
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Low-mass galaxies have high gas fractions: less B/T for the same mergers
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT
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B/T

Why Do We Care?

HOW DISK SURVIVAL IN MERGERS IS IMPORTANT
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Observed 9= o
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effects of gas)

(Discrepancy between gas-blind models and
observations grows at z=1, as merger rates rise)

Early-Type Fraction (8/T >0.4)

Morphology-mass relation:

NOT possible to obtain with
just dependence of merger history
on mass/environment

(Stewart, Khochfar talks)

Natural consequence of
fgas-mass
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

— Early-type MF
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Why Do We Care?

HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Early type MF

5 -1 v
& . . B 1 >0.4 ]
P Predicted i
g -2 L.t :
=,

Gas-blind ~ [ 1 * H" S :

models: 5‘ = Observed 1
o )
2 ' :
3 -4} :
s =
= s ]
D . -
g _5 'y i i ‘)
8 9 10 11 12
Exact same model, adding fgas-
dependent simulation results
=) 1 M2 Y | At
B/T>0.4

-2 F 3
-3 .5
-4t E
-5 A PR Y P A PUPRP Aetdtid “‘
8 9 10 11
|Og Mslo' [MO]

12

log dN/(dlog M,,,) [Mpc™ dex™]

log dN/(dlog M, ) [Mpc™ dex™]

| |
N -—

|
[

Late type MF

../ <O 4
1. Observed

.-\‘
. ’ +'&_

12

B/7<0.4

9 10 1
|Og Muor [MO]

Tuesday, December 25, 12



Why Do We Care?

HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Weak evolution:

Makes existence of
high-z disks much easier

Disks could form (at least
some mass) earlier
than z=1

May be seeing this
at high redshift:
Hammer talk
Robertson & Bullock 08
Shapiro talk
(turbulent, low V/O disks)
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Why Do We Care?

HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Weak evolution:

Makes existence of
high-z disks much easier

Disks could form (at least
some mass) earlier
than z=1

May be seeing this
at high redshift:
Hammer talk
Robertson & Bullock 08
Shapiro talk
(turbulent, low V/O disks)
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content

This is a purely gravitational process:
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content

This is a purely gravitational process:
If gas is collisional
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content

This is a purely gravitational process:
If gas is collisional
And stars are collisionless
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content

This is a purely gravitational process:
If gas is collisional
And stars are collisionless
And we understand gravity

Tuesday, December 25, 12



Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content

This is a purely gravitational process:
If gas is collisional
And stars are collisionless
And we understand gravity
This will happen
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content

This is a purely gravitational process:
If gas is collisional
And stars are collisionless
And we understand gravity
This will happen

If gas fractions are anything close to what observers tell us...
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Disk Survival In Mergers
HOW CAN A DISK SURVIVE?

The efficiency of disk destruction/bulge formation
scales inversely with gas content

This is a purely gravitational process:
If gas is collisional
And stars are collisionless
And we understand gravity
This will happen

If gas fractions are anything close to what observers tell us...
This is very important for bulge formation
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?

Borne et al., 2000

Funneled to the center
-> massive starbursts

Look at late-stage
merger remnants

Bright ULIRGs make
stars at a rate of
>100 M_,,/yr.

Compact (<kpc scales)

Most luminous starbursts in the Universe:
are they the progenitors of ellipticals?
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The Problem
FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Ellipticals are much more dense than spirals of the same mass:
Kormendy (1985)
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The Problem
FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Why are ellipticals so much smaller than disks?
Gas dissipation allows them to collapse to small scales!
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The Problem
FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Increased dissipation—smaller, more compact
remnants (Cox; Robertson; Khochfar; Naab)

“ Otherwise identical
NN mergers
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»
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||
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Bulge mass fraction formed in bursts
(versus violently relaxed from disks)

Tuesday, December 25, 12



The Solution: Gas Dissipation?
COMPARE WITH OBSERVED RECENT GAS-RICH MERGER REMNANTS

Mergers *have* solved this problem: we just need to understand it
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Starburst Stars in Simulations Leave an “Imprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Mihos & Hernquist 1994

Merger remnant elliptical profiles
should be fundamentally
two-component:

£
g G P _starburst/Disk
| (dissipationless, violently
o | relaxed)
Starburst

(dissipational, no strong
violent relaxation)

e(1/4)
Not observed at the time:

“Can the merger hypothesis be reconciled with the lack of dense stellar cores in most normal
ellipticals?” (MH94)
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Starburst Stars in Simulations Leave an “Imprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Since then...
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Starburst Stars in Simulations Leave an “Imprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Since then...
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Structure in Elliptical Light Profiles
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

10°

Q: Can we design a decomposition that separates
disk/starburst stars in the final profile?

......
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Radiusl/4
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Structure in Elliptical Light Profiles
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Q: Can we design a decomposition that separates
disk/starburst stars in the final profile?

.................................................

10° Pre-Starburst Stars . Sersic + Cusp
10" (n, = 2.85) b Au=0.15
Starburst Stars o n, =2.83
102 "\ (fraction = 6.1%) . Extra Light = + 5.1%

107 \ \
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10| g, ¥ \

1 0-5 ' ‘V\\‘\\ \\\

10° W, \

Radiusl/4
A: Yes we can
(Kormendy talk; Balcells talk)

B 2
4
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Structure in Elliptical Light Profiles
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008

PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:

L o e e o e g

AM1158-333
n,=3.0
f, =0.32 TN

Au=0.09 17 \

N
T

18] Empirical |
(fitted) \
20 decompositioh\

.................

Arp156

n=3.1
f, =20.12 3
An =0.11

14 ¢

n=3.1210
f,=031+009 o
Au=0.08 161

u(r) [mag arcsec?

18+ )
+ Direct \\
simulation-
20~ observation®

—
©
|

-

n=3.0x1.0
f,=0.17 =0.06

Au =0.06 ) ]
‘ Simulation

_— profile

Simulation
—— starburst

profile

14 16 18 20
r1" [kpC"‘]
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Structure in Elliptical Light Profiles

PFH & Rothberg et al. 2008
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

PFH, Kormendy, & Lauer et al. 2008

Starburst gas mass needed to
match observed profile (or
fitted to profile shape):

fstarburst

- Observed Disk
Gas Fractions:
o4 2=0

...........

9.0 95 10.0 105 110 115 120 9.0 95 100 105 110 11.5 120

log( M, / Mg) log( M, / My)

You can and do get realistic ellipticals given the observed

amount of gas in progenitor disks

Independent checks: stellar populations (younger burst mass);
metallicity/color/age gradients; isophotal shapes; kinematics;
recent merger remnants; enrichment patterns (e.g. Graves talk)
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Structure in Elliptical Light Profiles PFH, Cox, & Hernquist 2008
THE ROLE OF GAS IN THE SIZE-MASS RELATION

Recall, low-M ellipticals
are more compact than
disks of similar mass

Stellar R, [kpc]

Spheroids

104 106 108 110 112 11. 10 -
log[ M. / Mg ¥

R. [kpc]

Include effects of gas:
reproduce fundamental * &

plane, sizes, etc. of ellipticals < 200 g $ & 9B
S 2 w ¢ o
*, e 2 e ,.:,i -
- 100 & | fz,,ﬁ'gt,

+ ¥

95 10.0 105 11.0 115 120 95 100 105 11.0 11.5 120
log(M, /My) log( M, /M)

50
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Fundamental Plane Tilt

WHERE DOES IT COME FROM?

T T TYYT Y T Ty T 1 —
125 AM = 0.06 dex
AM(M,,,=M!*") = 0.08 dex

12.0
L 11.8E
=
% 11.0}
3
S 105

1 1 1 1 J 3

Tit= 0.21 £ 0.05
Tit = 0.23 = 0.07
Tilt = 0.20 = 0.06

P UED VS Wy S

"

log(M./Mz)

9.5 10.0 105 11.0 115 120
0.98log(M./M,) - 0.2110g(1,,) + C

TP ——

R ——
i AM 0.16 dex

AM(M,, LxM*) = 0.18 dex
12.0:

12.5

1155
11.0+
105+

10.0-

9.5

. ’s ' ' ' e

95 100 105 11.0 115 120
0.89l0g(M./M,) - 0.41l0g(1,,) + C

12.5

12.0}
11.5}
1.0+

10.5]

a5/

10.0

[Py

Simulate just galaxies on
observed fgas-Mstellar relation:

Observed FP!

\ Observed FP:

E: Mdyn / Mstellar ~ MO'2

Relation without gas:
Mdyn / Mste]]ar = COIlS'[aIlt

Having some f_starburst for each observed system, can we factor it out?

Yes: FP can be phyS|caIIy restated as Mayn ~ Mstellar X F(faissipationat)

e e P

log(M./Mg) + Fl,,)

AM = 0.14 dex ;
Soaa

® 8 3

i

¢ ]

]

i

]

( ]
4

95 100 105 11.0 11.5 120 125
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Fundamental Plane Tilt
WHERE DOES IT COME FROM?

Go further: is there any FP ‘ilt’ left if we just consider
systems with the same amount of dissipation?

...............................................................................................

taxlfa < 0 05 O Fig 0 05 < fexlra < 0 1 /'
= le ,E’g o :
= %9’8 : 2
B b " Of Constant
§€ k: g‘t’? ’c‘; Mdyn/Mstar
o 10 = . — - — - Fittad Relation el ol
L-E W M, % MI* B
OF &’ Tit= 000007 f .~ Tilt= 0.03 + 0.07
' Tilt = 0.005 = 0.008 Tilt = 0.020 + 0.014
0.1 <fo; <02 . B i 02<hy,y, L i
12 | d
] & . ok
e : (o)
s % |
= 10 . &
8 - it /‘
9 Tilt= 0.03 + 0.10 ot Tilt= 0.07 + 0.09
Tit= 001510010 Tilt=0.023 + 0.014
9 10 11 12 9 10 11 12
log(M./Mg) log(M,/Mg)

At FIXED fgissipational, there is NO TILT
Same for size-mass and other bulge correlations: without dissipation, follow disks
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Summary

® How do disks survive mergers?
® Being very gas rich (fgas >~ 0.3-0.5): fewer stars = less angular momentum loss
® /Independent of feedback.... in an instantaneous sense:

o Feedback is hugely important for the initial conditions: determining how
much gas is available and where it is (relative to the stars)
(Governato, Navarro talks)

O Rapid accretion/cold flows make life easier: don’t need to entirely save
massive disks from high-z to z=0; just need to suppress the efficiency of
high-z bulge formation

® How do we make a real elliptical?

® Gas again! Dissipation builds central mass densities, explains observed scaling
laws: just need disks as gas rich as observed (fgas ~ 0.1 - 0.5)

® A given elliptical can only be made by mergers with a narrow range of fgas

® \We're finally making “realistic” ellipticals: direct 1-to-1 SB profiles, kinematics,
stellar populations, isophotal shape, enrichment,

o Observed scaling of fgas with disk mass explains difference between
global bulge and disk scaling laws: FP, size-mass, Faber-Jackson,
stellar populations+FP residuals, phase-space densities, etc.
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SFR (Mo yr™')
S

10™ . .
0.0 0.5 1.0

Multiple Nuclei

* the majority of stars are
formed

Starburst-driven (transitioning to QS0) winds
|

Gas

Stars
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How Do Disks Survive Mergers?

Corrollary: Jgas loss inside Reric where
torques/stellar distortion are
strong (torque*dynamical time >> J)

-10 0 10

x [kpc]
Gas inside Rt falls
to center and bursts Gas outside Rt
survives with high J
107N\ SRAMS LS S
. Rivtias <Rem |

gas
(contours)

0.8: Resa > R

Fracton

4 0 1 2 3 4
Specific L /(R,-V,)
(Final angular momentum)
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How Do Disks Survive Mergers?

More violent/resonant mergers -- remove

Retrograde . .
. angular momentum further out in the disk

1.0] R S S A
BN Prograde (Major)
2 ! - = = Retrograde (Major) -
« 08 ° - == Retrograde (Minor) -
= A |
» E Ry
S 0.6 :' ‘\ \ g
9 ) \ \ q
g 04 B '\ \ 7
Prograde x [kpc] o ] R *
g"‘-’— e BT g W st S ‘.: : '8 b . 4
= © 0.2 x -
0.0
ot 3 0.0 1.0 2.0 3.0
3 Initial Gas Radius / R,
=5
10 25
TR SR AT RIS
-10 0 10 PFH et al. ‘08
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Fundamental Plane Tilt
HOMOLOGY VS. NON-HOMOLOGY

.....
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Fundamental Plane Tilt
WHERE DOES IT COME FROM?

f_extra = same function of
mass as fitted or predicted
from disks f_gas
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Dissipation versus Redshift
HIGH-Z DISKS ARE MORE GAS RICH...

- O

{RA(M. 12)} /{R.(M, 10);
O -

(=]
N N
w
al
o
N
o
E <N
FP Tilt «

So get more compact ellipticals

95 100 105 11.0 115 120
log( Mg, / M)
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0.15«
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0.00 o
0 1 > 3 4
y 4
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Implications for BH-Host Correlations
EVOLUTION WITH REDSHIFT e | TR
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Structure in Elliptical Light Profiles
RECOVERING THE ROLE OF GAS

Get accompanying predictions
for how stellar populations &
their gradients should scale with
size, luminosity, etc.

d[ZM] / dlogr
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Structure in Elliptical Light Profiles
RECOVERING THE ROLE OF GAS
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Structure in Elliptical Light Profiles
RECOVERING THE ROLE OF GAS
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