Gas in Galaxy Mergers: More Important than You Think

Philip Hopkins 11/13/08

Lars Hernquist, T. J. Cox, Josh Younger, John Kormendy, Barry Rothberg, Tod Lauer, Eliot Quataert, Chung-Pei Ma, Dusan Keres, Volker Springel

T = 0 Myr

Gas

Galaxy Mergers HOW GOOD IS OUR CONVENTIONAL WISDOM?

Major Merger Remnants DO MERGERS DESTROY DISKS?

Tuesday, December 25, 12

Major Merger Remnants DO MERGERS DESTROY DISKS?

Tuesday, December 25, 12

The Unsolved Questions HOW CAN A DISK SURVIVE?

Stellar disks are collisionless: they violently relax when they collide

Can't "cool" into a new disk

The Unsolved Questions HOW CAN A DISK SURVIVE?

Gas, however, is collisional:

Can similarly calculate dependence on orbital parameters

- A driven distortion: much simpler than secular
- Timescales are short: halo/secular exchange can be completely ignored

How Do Disks Survive Mergers? THE PUNCHLINE

Derive:

Gas angular momentum loss/starburst mass Surviving gas disk fraction Violently relaxed fraction of stellar disk

= F(f_{gas},
$$\mu$$
, θ_{orbit})

Works varying:

Baryonic/halo mass

Redshift

BH properties (presence, mass, feedback) Galaxy concentrations/initial B-T/sizes Mass ratio, orbital parameters, gas fraction Stellar feedback

Purely gravitational process: Independent of feedback Must happen

> Fold this into a cosmological model: why do we care?

Low-mass galaxies have high gas fractions: less B/T for the same mergers

Somerville, Croton, Bower+ SAMs; alternative HOD models:

Hundreds/thousands of model runs with ~10-20 free parameters each: always overproduce low-mass bulge-dominated population

> The efficiency of disk destruction/bulge formation scales inversely with gas content

- The efficiency of disk destruction/bulge formation scales inversely with gas content
 - This is a purely gravitational process:

- The efficiency of disk destruction/bulge formation scales inversely with gas content
 - This is a purely gravitational process:
 If gas is collisional

- The efficiency of disk destruction/bulge formation scales inversely with gas content
 - > This is a purely gravitational process:
 - If gas is collisional
 - And stars are collisionless

- The efficiency of disk destruction/bulge formation scales inversely with gas content
 - This is a purely gravitational process:
 - If gas is collisional
 - And stars are collisionless
 - And we understand gravity

- The efficiency of disk destruction/bulge formation scales inversely with gas content
 - This is a purely gravitational process:
 - If gas is collisional
 - And stars are collisionless
 - And we understand gravity
 - This will happen

- The efficiency of disk destruction/bulge formation scales inversely with gas content
 - > This is a purely gravitational process:
 - If gas is collisional
 - And stars are collisionless
 - And we understand gravity
 - > This will happen

If gas fractions are anything close to what observers tell us...

- The efficiency of disk destruction/bulge formation scales inversely with gas content
 - > This is a purely gravitational process:
 - If gas is collisional
 - And stars are collisionless
 - And we understand gravity
 - > This will happen

If gas fractions are anything close to what observers tell us...
 This *is* very important for bulge formation

What About the Gas that Does Lose Angular Momentum? CAN WE MAKE A REAL ELLIPTICAL?

Funneled to the center -> massive starbursts

Look at late-stage merger remnants

Bright ULIRGs make stars at a rate of >100 M_{sun}/yr.

Compact (<kpc scales)

Most luminous starbursts in the Universe: are they the progenitors of ellipticals?

Borne et al., 2000

The Problem

FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Ellipticals are much more dense than spirals of the same mass:

The Problem FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Why are ellipticals so much smaller than disks? Gas dissipation allows them to collapse to small scales!

The Problem FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Increased dissipation-smaller, more compact remnants (Cox; Robertson; Khochfar; Naab)

The Solution: Gas Dissipation? COMPARE WITH OBSERVED RECENT GAS-RICH MERGER REMNANTS

Mergers *have* solved this problem: we just need to understand it

Starburst Stars in Simulations Leave an "Imprint" on the Profile RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

ellipticals?" (MH94)

Starburst Stars in Simulations Leave an "Imprint" on the Profile RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Since then...

Starburst Stars in Simulations Leave an "Imprint" on the Profile RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Since then...

Kormendy et al. 2008

"Normal and low-luminosity ellipticals... in fact, have *extra*, not missing light at at small radii with respect to the inward extrapolation of their outer Sersic profiles."

Q: Can we design a decomposition that separates disk/starburst stars in the final profile?

Radius^{1/4}

Q: Can we design a decomposition that separates disk/starburst stars in the final profile?

Application: Merger Remnants RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008 PFH, Kormendy, & Lauer et al. 2008

> Apply this to a well-studied sample of local merger remnants & ellipticals:

PFH & Rothberg et al. 2008 PFH, Kormendy, & Lauer et al. 2008

Starburst gas mass needed to match observed profile (or fitted to profile shape):

You can and do get realistic ellipticals given the observed amount of gas in progenitor disks

Independent checks: stellar populations (younger burst mass); metallicity/color/age gradients; isophotal shapes; kinematics; recent merger remnants; enrichment patterns (e.g. Graves talk)

Having some f_starburst for each observed system, can we factor it out? Yes: FP can be physically restated as M_{dyn} ~ M_{stellar} x F(f_{dissipational})

Tuesday, December 25, 12

Fundamental Plane Tilt WHERE DOES IT COME FROM?

Go further: is there any FP 'tilt' left if we just consider systems with the same amount of dissipation?

At FIXED fdissipational, there is NO TILT

Same for size-mass and other bulge correlations: without dissipation, follow disks

Summary

How do disks survive mergers?

Being very gas rich (f_{gas} >~ 0.3-0.5): fewer stars = less angular momentum loss

- Independent of feedback.... in an instantaneous sense:
 - Peedback is hugely important for the initial conditions: determining how much gas is available and where it is (relative to the stars) (Governato, Navarro talks)
 - Papid accretion/cold flows make life easier: don't need to entirely save massive disks from high-z to z=0; just need to suppress the efficiency of high-z bulge formation

How do we make a real elliptical?

- Gas again! Dissipation builds central mass densities, explains observed scaling laws: just need disks as gas rich as observed (fgas ~ 0.1 - 0.5)
 - >• A given elliptical can only be made by mergers with a narrow range of fgas
 - We're finally making "realistic" ellipticals: direct 1-to-1 SB profiles, kinematics, stellar populations, isophotal shape, enrichment,
 - Observed scaling of f_{gas} with disk mass explains difference between global bulge and disk scaling laws: FP, size-mass, Faber-Jackson, stellar populations+FP residuals, phase-space densities, etc.

Corrollary: J_{gas} loss inside R_{crit} where torques/stellar distortion are strong (torque*dynamical time >> J)

More violent/resonant mergers -- remove angular momentum further out in the disk

PFH et al. '08

Tuesday, December 25, 12

Fundamental Plane Tilt HOMOLOGY VS. NON-HOMOLOGY

Fundamental Plane Tilt WHERE DOES IT COME FROM?

Dissipation versus Redshift HIGH-Z DISKS ARE MORE GAS RICH...

Implications for BH-Host Correlations EVOLUTION WITH REDSHIFT

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

Get accompanying predictions for how stellar populations & their gradients should scale with size, luminosity, etc.

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

