"Feedback," Star Formation, and AGN

0.0 Gyr

Stars 0.1 Gyr

Stars

10 kpc

10 kpc

Philip Hopkins

Eliot Quataert, Norm Murray,

Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more

Q: WHY IS STAR FORMATION SO INEFFICIENT?

Stellar Feedback is (a/the) Key to Galaxy Formation! SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation):
 Couple SNe energy as "heating"/thermal energy **FAILS**:

$$t_{\rm cool} \sim 4000 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1}$$
$$t_{\rm dyn} \sim 10^8 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1/2}$$

 High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating (no cheating!):
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating (no cheating!):
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Spiral Galaxy M101 Spitzer Space Telescope • Hubble Space NASA / JPL-Caltech / ESA / CXC / STScl

Hopkins, Quataert, & Murray, 2011

Hopkins, Quataert, & Murray, 2011

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

PFH, Quataert, & Murray, 2011a

PFH, Quataert, & Murray, 2011a

PFH, Quataert, & Murray, 2011a

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

 \gg Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 $\dot{P}_* \sim \dot{P}_{\rm diss}$

Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

$$\dot{P}_* \sim \dot{P}_{\text{diss}}$$

 $\dot{P}_* \sim \text{few} \times \frac{L}{c} \sim \epsilon_* \dot{M}_* c$

•

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma\Omega}{\pi G\Sigma}$$

$$\dot{P}_* \sim \dot{P}_{\rm diss}$$

$$\dot{P}_* \sim few \times \frac{L}{c} \sim \epsilon_* \, \dot{M}_* \, c$$

$$\longrightarrow \dot{\Sigma}_* \sim \left(\frac{\sigma}{\epsilon_* c}\right) \, \Sigma_{\rm gas} \Omega \sim 0.02 \, \Sigma_{\rm gas} \Omega$$

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

• Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008 Molecular Chemistry doesn't change things above modest Metallicity MOLECULES ARE A TRACER

Molecular Chemistry doesn't change things above modest Metallicity MOLECULES ARE A TRACER

> Just need *some* cooling channel: changes at $M_{gal} < 10^6 M_{sun}$, Z<0.01 Z_{sun}

Starburst Galaxy (Gas-Rich) Merger

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Properties of GMCs & Gas "Clumps"

SMC

Feedback is Reflected in Dense Gas TRACERS OF STAR FORMATION EFFICIENCY

Gas

How Efficient Are Galactic Super-Winds? AND WHAT MECHANISMS DRIVE THEM?

How Efficient Are Galactic Super-Winds? AND WHAT MECHANISMS DRIVE THEM?

How Efficient Are Galactic Super-Winds? AND WHAT MECHANISMS DRIVE THEM?

How Efficient Are Galactic Super-Winds? AND WHAT MECHANISMS DRIVE THEM?

How Efficient Are Galactic Super-Winds?

How Efficient Are Galactic Super-Winds?

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

What About the AGN?

What can AGN Feedback Do For You?

Removing/heating gas in groups

What can AGN Feedback Do For You?

- Lowering mass of >M* galaxies
- Removing/heating gas in groups

"Transition"

- "Quasar" mode (high mdot)
- Move mass from Blue to Red?
- Rapid (~10⁷ yr)
- Small(er) scales (~pc-kpc)
- Morphological Transformation
- Gas-rich/Dissipational Mergers?

Regulates Black Hole Mass

"Maintenance"

- "Radio" mode (low mdot)
- Keep it Red

VS.

- Long-lived (~Hubble time)
- Large (~halo) scales
- Subtle morphological change
- Hot Halos & Dry Mergers

Regulates Galaxy Mass

Step 1: Inflow

Step 1: Inflow

100 pc

Gas

Gas

Tidal torques \Rightarrow large, rapid gas inflows (e.g. Barnes & Hernquist 1991)

Gas

Gas

Triggers Starbursts (e.g. Mihos & Hernquist 1996)

Gas

Gas

Fuels Rapid BH Growth? (e.g. Di Matteo et al., PFH et al. 2005)

Gas

Gas

Large-scale simulation: follow gas to sub-kpc scales

Gas

Gas

Gas

Gas

Gas

Step 2: Stellar Feedback & the ISM

Heating:

- > SNe (II & Ia)
- Stellar Winds
- Photoionization (HII Regions)

Explicit Momentum Flux:

Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Do we need 'Quasar Mode' Feedback?

Do we need 'Quasar Mode' Feedback?

Step 3: Observed Sources of AGN Feedback

• Jets

• heat IGM/ICM (low-density), but not dense ISM

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - L_{AGN} >> L_{stars}

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - $L_{AGN} >> L_{stars}$
- Accretion Disk Winds
 - Broad Absorption Line Winds 3

BAL Winds on ~1pc - 1kpc scales:

PFH in prep Wada et al.

 $v_{\rm launch}(0.1\,{\rm pc}) = 10,000\,{\rm km/s}$

Tuesday, December 25, 12

Summary:

- Star formation is Feedback-Regulated:
 - Independent of small-scale SF 'law' & chemistry
 - Leads to Kennicutt relation & super-winds
- Different mechanisms dominate different regimes:
 - High-r: radiation pressure
 - Intermediate: HII heating, stellar wind momentum
 - Low-r: SNe & stellar wind shock-heating
 - No one mechanism works
- Mergers: Extreme laboratory (>100x GMC densities!)
 - No "unique" physics
 - Super-winds: ~10-500 M_{sun}/yr
- Most Massive Galaxies: Need "AGN" Feedback!
 - Disk Winds+Radiation Pressure+Jets: Explain M_{BH}-s & suppress SF
 - "Radio Mode": What's doing the work?