# Feedback-Regulated Star Formation in Galaxies



## **Philip Hopkins**

Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more

## Q: WHY IS STAR FORMATION SO INEFFICIENT?



Stellar Feedback is (a/the) Key to Galaxy Formation! SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation):
 Couple SNe energy as "heating"/thermal energy **FAILS**:

$$t_{\rm cool} \sim 4000 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1}$$
$$t_{\rm dyn} \sim 10^8 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1/2}$$





 High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n<sub>H</sub>>1000 cm<sup>-3</sup>)



- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n<sub>H</sub>>1000 cm<sup>-3</sup>)
- Heating (no cheating!):
  - SNe (II & Ia)
  - Stellar Winds
  - Photoionization (HII Regions)



- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n<sub>H</sub>>1000 cm<sup>-3</sup>)
- Heating (no cheating!):
  - SNe (II & Ia)
  - Stellar Winds
  - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
  - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$











Spiral Galaxy M101 Spitzer Space Telescope • Hubble Space NASA / JPL-Caltech / ESA / CXC / STScl







![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

Hopkins, Quataert, & Murray, 2011

![](_page_9_Picture_0.jpeg)

![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

Hopkins, Quataert, & Murray, 2011

## Stellar Feedback gives Self-Regulated Star Formation

![](_page_10_Figure_1.jpeg)

## Stellar Feedback gives Self-Regulated Star Formation

![](_page_11_Figure_1.jpeg)

## Stellar Feedback gives Self-Regulated Star Formation

![](_page_12_Figure_1.jpeg)

# Stellar Feedback & Self-Regulation WHICH MECHANISMS MATTER?

![](_page_13_Picture_1.jpeg)

 $SFR \sim 100 + M_{sun}/yr$   $(L \sim L_{EDD})$ 

Optically thick

>  $<n> \sim 100 \text{ cm}^{-3}$  $T_{cool} \sim 1000 \text{ yr}$ 

# Stellar Feedback & Self-Regulation WHICH MECHANISMS MATTER?

![](_page_14_Picture_1.jpeg)

> SFR ~ 0.01  $M_{sun}/yr$ (L << L<sub>EDD</sub>) Optically thin

 $<n> \sim 0.1 \text{ cm}^{-3}$  $T_{\text{cool}} \sim \text{Myr}$ 

![](_page_15_Figure_1.jpeg)

 $\blacktriangleright$  Efficient cooling  $\rightarrow$  the gas disk dissipates its support:

 $\gg$  Efficient cooling  $\rightarrow$  the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$$

 $\blacktriangleright$  Efficient cooling  $\rightarrow$  the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$

 $\blacktriangleright$  Efficient cooling  $\rightarrow$  the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

 $\blacktriangleright$  Efficient cooling  $\rightarrow$  the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:  

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 $\blacktriangleright$  Efficient cooling  $\rightarrow$  the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:  

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 $\dot{P}_* \sim \dot{P}_{\rm diss}$ 

Efficient cooling  $\rightarrow$  the gas disk dissipates its support: 

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

$$\dot{P}_* \sim \dot{P}_{\text{diss}}$$
  
 $\dot{P}_* \sim \text{few} \times \frac{L}{c} \sim \epsilon_* \dot{M}_* c$ 

•

 $\blacktriangleright$  Efficient cooling  $\rightarrow$  the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma\Omega}{\pi G\Sigma}$$

$$\dot{P}_* \sim \dot{P}_{\rm diss}$$

$$\dot{P}_* \sim few \times \frac{L}{c} \sim \epsilon_* \, \dot{M}_* \, c$$

$$\longrightarrow \dot{\Sigma}_* \sim \left(\frac{\sigma}{\epsilon_* c}\right) \, \Sigma_{\rm gas} \Omega \sim 0.02 \, \Sigma_{\rm gas} \Omega$$

## Global Star Formation Rates are INDEPENDENT of High-Density SF Law

![](_page_25_Figure_1.jpeg)

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

## Global Star Formation Rates are INDEPENDENT of High-Density SF Law

![](_page_26_Figure_1.jpeg)

• Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

## Star Formation is Feedback-Regulated: MORE FEEDBACK = LESS STAR FORMATION

![](_page_27_Figure_1.jpeg)

## Star Formation is Feedback-Regulated: MORE FEEDBACK = LESS STAR FORMATION

![](_page_28_Figure_1.jpeg)

## Properties of GMCs & Gas "Clumps"

![](_page_29_Figure_1.jpeg)

SMC

![](_page_30_Picture_0.jpeg)

![](_page_31_Picture_0.jpeg)

Gas

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

## How Efficient Are Galactic Super-Winds?

![](_page_36_Figure_1.jpeg)

## How Efficient Are Galactic Super-Winds?

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

Cosmological Simulations "ZOOM-IN" RUNS

# Proto-MW: Gas Temperature:

| Phenomenological Winds | Full Feedback |
|------------------------|---------------|
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |
|                        |               |

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

## "Clumpy" Disks FEEDBACK SUPPRESSES CLUMP INSPIRAL

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

## "Clumpy" Disks FEEDBACK SUPPRESSES CLUMP INSPIRAL

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

0.0 Gyr

Gas 0.0 Gyr

Stars

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

10 kpc

## Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

- Global conclusions similar to old models:
  - 10% SF in mergers

(Hernquist & Spergel 91)

- sizes/structure/profiles
- burst dominated
   by inflows to nuclei
- Enhanced SF in tails/bridges/shocks
- Super-winds: ~10-500 M<sub>sun</sub>/yr

![](_page_44_Picture_8.jpeg)

![](_page_45_Picture_0.jpeg)

## Disk Survival REMAINS EFFICIENT!

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

## Disk Survival REMAINS EFFICIENT!

![](_page_47_Figure_1.jpeg)

More efficient in gas-rich mergers

Large fraction of high-z merger remnants will be "disks/disky"

![](_page_47_Figure_4.jpeg)

![](_page_48_Picture_0.jpeg)

Do we need 'Quasar Mode' Feedback?

![](_page_49_Figure_1.jpeg)

Do we need 'Quasar Mode' Feedback?

![](_page_50_Figure_1.jpeg)

Do we need 'Quasar Mode' Feedback?

![](_page_51_Figure_1.jpeg)

## Summary:

- Global Star formation is Feedback-Regulated: independent of small-scale SF 'law'
  - Need 'enough' stars to offset dissipation (set by gravity)
- Feedback leads to Kennicutt relation & super-winds:

$$\dot{M}_{\rm wind} \approx 10 \, \dot{M}_{*} \left( \frac{V_c}{100 \, \rm km \, s^{-1}} \right)^{-1.1} \left( \frac{\Sigma_{\rm gas}}{10 \, \rm M_{\odot} \, pc^{-2}} \right)^{-0.5}$$

- Different mechanisms dominate different regimes:
  - High densities: radiation pressure
  - Intermediate: HII heating, stellar wind momentum
  - Low densities: SNe & stellar wind shock-heating
    - No one mechanism works
- Giant Clumps: Mostly transient features of unstable, gas-rich disks
- Mergers: Broadly similar conclusions
  - Efficient disk survival
  - Super-winds with ~10-500  $M_{sun}$ /yr: consistent *per unit SFR* with isolated disks
- Can't Quench Without "Impulsive" Feedback!
  - Quasar BAL Winds: Explain M<sub>BH</sub>-S, and WILL suppress SFRs