Feedback-Regulated Star Formation on Galactic Scales

Philip Hopkins

Norm Murray, Eliot Quataert,

Lars Hernquist, Todd Thompson, Dusan Keres, Chris Hayward, Stijn Wuyts, Kevin Bundy, Desika Narayanan, Ryan Hickox, Rachel Somerville, & more

Q: WHY IS STAR FORMATION SO INEFFICIENT?

A: Stellar Feedback! SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation):
 Couple SNe energy as "heating"/thermal energy

FAILS:

 $t_{\rm cool} \sim 4000 \,\mathrm{yr} \left(\frac{n}{\mathrm{cm}^{-3}}\right)^{-1}$ $t_{\rm dyn} \sim 10^8 \,{\rm yr} \left(\frac{n}{{\rm cm}^{-3}}\right)^{-1/2}$

 High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating:
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating:
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Spiral Galaxy M101 Spitzer Space Telescope • Hubble Space NASA / JPL-Caltech / ESA / CXC / STScl

Hopkins, Quataert, & Murray, in prep

Hopkins, Quataert, & Murray, in prep

Hopkins, Quataert, & Murray, in prep

Hopkins, Quataert, & Murray, in prep

Stellar Feedback & Self-Regulation WHICH MECHANISMS MATTER?

 $SFR \sim 100 + M_{sun}/yr$ $(L \sim L_{EDD})$

Optically thick

> $<n> \sim 100 \text{ cm}^{-3}$ $T_{cool} \sim 1000 \text{ yr}$

Stellar Feedback & Self-Regulation WHICH MECHANISMS MATTER?

 $SFR \sim 0.01 \text{ M}_{sun}/\text{yr}$ $(L << L_{EDD})$

Optically thin

 $<n> \sim 0.1 \text{ cm}^{-3}$ $T_{\text{cool}} \sim \text{Myr}$

Kennicutt-Schmidt relation emerges naturally

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

• Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

• Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Molecular Chemistry also has No Effect MOLECULES ARE A TRACER

Molecular Chemistry also has No Effect MOLECULES ARE A TRACER

> Just need *some* cooling channel: changes at $M_{gal} < 10^6 M_{sun}$, Z<0.01 Z_{sun}

How Does Star Formation Self-Regulate? SELF-ADJUST THE MASS IN *DENSE* GAS

How Does Star Formation Self-Regulate? SELF-ADJUST THE MASS IN *DENSE* GAS

Need net momentum injection dP/dt ~ L/c ~ SFR to cancel dissipation ~ M_{gas} S_{disk} W and maintain Q~1

How Does Star Formation Self-Regulate? SELF-ADJUST THE MASS IN *DENSE* GAS

- Need net momentum injection dP/dt ~ L/c ~ SFR to cancel dissipation ~ M_{gas} S_{disk} W and maintain Q~1
- Not just top-down collapse

Star Formation is Feedback-Regulated: MORE FEEDBACK = LESS STAR FORMATION

Star Formation is Feedback-Regulated: MORE FEEDBACK = LESS STAR FORMATION

Q ~ 1 Is a Boring Diagnostic EVERYTHING GOES TO Q~1. SERIOUSLY.

Q ~ 1 Is a Boring Diagnostic EVERYTHING GOES TO Q~1. SERIOUSLY.

Properties of GMCs STUFF TO EXAMINE IN THE FUTURE...

100 pc

Future Directions WHAT CAN WE EXPLORE WITH MORE REALISTIC ISM/FEEDBACK MODELS?

- Mergers:
 - Star cluster formation? Starburst environments?
- AGN Feedback:
 - How does it couple to a multi-phase ISM?
- Cosmological simulations:
 - "Zoom-in" disk formation simulations (D. Keres)
 - Cosmological volume AMR: dwarf populations and mass function evolution (M. Kuhlen)
- GMCs & ISM Structure:
 - Formation & destruction of GMCs, lifetimes, star formation efficiencies

~30 sec

A Few Words on Mergers... WHY DO WE CARE ABOUT THEIR STAR FORMATION Mihos & Hernquist 94 Kormendy+99,05,08,10 Lauer+98,05,07 Hopkins, Kormendy, Lauer 10a-d Ferrarese+06, Cote+08

Elliptical structure is fundamentally two-component:

Mergers always dominate at highest L, but the threshold shifts

Tuesday, December 25, 12

The Role of Starbursts in Cosmic Star Formation:

This Accounts for the Centers of (nearly all) Ellipticals WHAT ARE THE PHYSICS AT WORK?

Gas

Do we still need 'Quasar Mode' Feedback?

Do we still need 'Quasar Mode' Feedback?

Summary:

- Global Star formation is Feedback-Regulated: independent of small-scale SF 'law' (same for molecular chemistry, cooling, etc)
 - Need 'enough' stars to offset dissipation (set by gravity)
- Gravity+turbulence' alone fails. Badly.
 - That said, galaxies will find a way to get to Q~1:
 S(gas) independent of feedback.... even when driven by feedback
- Feedback leads to Kennicutt relation & super-winds:
 - $\gg~{
 m Mass}$ -loading $\dot{M}_{
 m wind} \propto \dot{M}_{*}/V_{c}$
- Different feedback mechanisms dominate different regimes:
 - High densities: radiation pressure
 - Intermediate densities: HII heating, stellar wind momentum
 - Low densities: SNe & stellar wind shock-heating
 - Extremely non-linear coupling between them!
 - No one mechanism works
- Even if every bulge forms in a merger, only ~10% of stars
 - (an important 10%!)
 - Bulge kinematics, shapes, dispersions, mass densities, kinematic subcomponents
 - Fuels SMBH growth?

- Radiative Transfer: SUNRISE by P. Jonsson
- Not just at z=0, but in high-redshift sub-millimeter galaxies (e.g. work by Melbourne, Narayanan, Genzel & co.)

- Radiative Transfer: SUNRISE by P. Jonsson
- Not just at z=0, but in high-redshift sub-millimeter galaxies (e.g. work by Melbourne, Narayanan, Genzel & co.)

- Radiative Transfer: SUNRISE by P. Jonsson
- Not just at z=0, but in high-redshift sub-millimeter galaxies (e.g. work by Melbourne, Narayanan, Genzel & co.)

Tuesday, December 25, 12

Radiative Transfer: SUNRISE by P. Jonsson

- Radiative Transfer: SUNRISE by P. Jonsson
- Not just at z=0, but in high-redshift sub-millimeter galaxies (e.g. work by Melbourne, Narayanan, Genzel & co.)

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008 PFH, Kormendy, & Lauer et al. 2

> You DO get realistic ellipticals, IF given realistic disks

Recover the "tilt" in the fundamental plane: spheroid scalings = disks + dissipation

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008 PFH, Kormendy, & Lauer et al. 2

- > You DO get realistic ellipticals, IF given realistic disks
- Recover the "tilt" in the fundamental plane: spheroid scalings = disks + dissipation

Metallicity & Stellar Pops: Foster, Proctor PFH et al. 0

V/s & Structural Parameters: Jogee & PFH et al. 10,11

Tuesday, December 25, 12

Tuesday, December 25, 12

How Good Is Our Conventional Wisdom?

Major Merger Remnants DO MERGERS DESTROY DISKS?

Tuesday, December 25, 12