A New Approach to Turbulence:

Origins of ISM Structure, Stellar Clustering & the IMF, and (perhaps?) Planet Formation

Philip Hopkins

The Turbulent ISM IMPORTANT ON (ALMOST) ALL SCALES

- **Gravity**
- Turbulence
- Magnetic, Thermal, Cosmic Ray, Radiation Pressure
- Cooling (atomic, molecular, metal-line, free-free)
- Star & BH Formation/Growth
- "Feedback": Massive stars, SNe, BHs, external galaxies, etc.

The ISM YET THERE IS SURPRISING REGULARITY

The ISM YET THERE IS SURPRISING REGULARITY

The ISM YET THERE IS SURPRISING REGULARITY

Extended Press-Schechter / Excursion-Set Formalism

- Press & Schechter '74:
 - $> \rho$ Fluctuations a Gaussian random field
 - Know linear power spectrum P(k~1/r): variance ~ k³ P(k)

Extended Press-Schechter / Excursion-Set Formalism

- Press & Schechter '74:
 - > ρ Fluctuations a Gaussian random field
 - Know linear power spectrum P(k~1/r): variance ~ k³ P(k)

- "Count" mass above critical fluctuation: "Halos"
 - > Turnaround & gravitational collapse $ar{
 ho}(< R \sim 1/k) >
 ho_{
 m crit}$

Extended Press-Schechter / Excursion-Set Formalism

- Press & Schechter '74:
 - > ρ Fluctuations a Gaussian random field
 - Know linear power spectrum P(k~1/r): variance ~ k³ P(k)

- "Count" mass above critical fluctuation: "Halos"
 - > Turnaround & gravitational collapse $ar{
 ho}(< R \sim 1/k) >
 ho_{
 m crit}$

 Generalize to conditional probabilities,
 N-point statistics, resolve "cloud in cloud" problem (e.g. Bond et al. 1991)

Turbulence BASIC EXPECTATIONS

 $(k E(k) \sim u_t(k)^2)$ Velocity: $E(k) \propto k^{-p}$

Turbulence BASIC EXPECTATIONS

Turbulence BASIC EXPECTATIONS

Super-Sonic Turbulence BASIC EXPECTATIONS

$$dp(\ln \rho | R) = \frac{1}{\sqrt{2\pi S(R)}} \exp\left[\frac{-(\ln \rho - \langle \ln \rho \rangle)^2}{2 S(R)}\right]$$

Super-Sonic Turbulence BASIC EXPECTATIONS

Super-Sonic Turbulence BASIC EXPECTATIONS

$$dp(\ln \rho | R) = \frac{1}{\sqrt{2\pi S(R)}} \exp\left[\frac{-(\ln \rho - \langle \ln \rho \rangle)^2}{2 S(R)}\right]$$

$$S_k = \ln\left[1 + \alpha \mathcal{M}(k)^2\right]$$

$$Lemaster \& Stone 2009$$

$$1 \qquad 2 \qquad 3$$

$$\ln(1 + 0.5 \text{ Mach}^2)$$

$$S(R) = \int d\ln k S_k |W(k, R)|^2$$

$$\omega^2 = \kappa^2 + c_s^2 k^2 + u_t(k)^2 k^2 - \frac{4\pi G \rho |k|h}{1 + |k|h}$$

Chandrasekhar '51, Vandervoort '70, Toomre '77

$$\omega^2 = \kappa^2 + c_s^2 \, k^2 + u_t(k)^2 \, k^2 - \frac{4\pi \, G \, \rho \, |k| h}{1 + |k| h}$$
 Angular Momentum

 $\kappa \sim \frac{V_{\rm disk}}{R_{\rm disk}}$

Chandrasekhar '51, Vandervoort '70, Toomre '77

Mode Grows (Collapses) when $\omega < 0$:

$$\rho > \rho_c(k) = \rho_0 \left(1 + |kh| \right) \left[\left(\mathcal{M}_h^{-2} + |kh|^{1-p} \right) kh + \frac{2}{|kh|} \right]$$

Chandrasekhar '51, Vandervoort '70, Toomre '77

"Counting" Collapsing Objects **EVALUATE DENSITY FIELD vs. "BARRIER"** Averaging Scale R [pc] 1000 100 0.1 10 15 10 Log[Density / Mean] 5 0 -5 0.01 10 100 1000 0.1 lkhl

Evolve the Fluctuations in Time CONSTRUCT "MERGER/FRAGMENTATION" TREES

$$p(\delta \mid \tau) = \frac{1}{\sqrt{2\pi S \left(1 - \exp\left[-2\tau\right]\right)}} \exp\left[-\frac{(\delta - \delta(t = 0) \exp\left[-\tau\right])^2}{2 S \left(1 - \exp\left[-2\tau\right]\right)}\right]$$

Evolve the Fluctuations in Time CONSTRUCT "MERGER/FRAGMENTATION" TREES

The "First Crossing" Mass Function VS GIANT MOLECULAR CLOUDS

The "First Crossing" Mass Function **VS GIANT MOLECULAR CLOUDS**

 $r_{
m sonic} \ll r \ll h$ $S(r) \sim S_0$

 $r_{
m sonic} \ll r \ll h$ $S(r) \sim S_0$

$$\frac{\mathrm{d}n}{\mathrm{d}M} \propto M^{-\alpha} \, e^{-(M/M_J)^{\beta}}$$

"Void" Abundance VS HI "HOLES" IN THE ISM

The "Last Crossing" Mass Function VS PROTOSTELLAR CORES & THE STELLAR IMF

The "Last Crossing" Mass Function VS PROTOSTELLAR CORES & THE STELLAR IMF

Structural Properties of "Clouds" LARSON'S LAWS EMERGE NATURALLY

Structural Properties of "Clouds" LARSON'S LAWS EMERGE NATURALLY

Clustering PREDICT N-POINT CORRELATION FUNCTIONS

Clustering PREDICT N-POINT CORRELATION FUNCTIONS

Clustering PREDICT N-POINT CORRELATION FUNCTIONS

Clustering of Stars: Predicted vs. Observations PREDICT N-POINT CORRELATION FUNCTIONS

Testing the Analytics vs. NUMERICAL SIMULATIONS

0 Myr

General, Flexible Theory: EXTREMELY ADAPTABLE TO MOST CHOICES

- Complicated, multivariable gas equations of state
- Accretion
- Magnetic Fields
- Time-Dependent Background Evolution/Collapse
- Intermittency
- Correlated, multi-scale driving

What About Planets?

Planet Formation?

- Two channels:
 - (1) "Core accretion"

(2) "Direct Collapse"

Standard (Toomre) Criterion for Direct Collapse:

 $Q = \frac{c_s \,\Omega}{\pi \, G \,\Sigma_{\rm gas}} \sim \frac{1}{\rho} \, \frac{M_*}{r_*^3}$

Standard (Toomre) Criterion for Direct Collapse:

 $Q = \frac{c_s \,\Omega}{\pi \, G \,\Sigma_{\text{gas}}} \sim \frac{1}{\rho} \, \frac{M_*}{r_*^3}$

$$Q \sim 100 \left(\frac{\Sigma_{\text{gas}}}{\Sigma_{\text{MMSN}}}\right)^{-1} r_{*,\text{AU}}^{-1/4}$$

Need density fluctuation:

$$\frac{\rho}{\langle \rho \rangle} \gtrsim \frac{1}{\langle \rho \rangle} \, \frac{M_*}{r_*^3} \sim Q$$

Need density fluctuation:

$$\frac{\rho}{\langle \rho \rangle} \gtrsim \frac{1}{\langle \rho \rangle} \, \frac{M_*}{r_*^3} \sim Q$$

> Turbulence:: stochastic fluctuations with $\sigma_{\ln
ho} \approx \sqrt{\ln \left(1 + \mathcal{M}^2\right)} \sim \mathcal{M}$

Need density fluctuation:
$$\frac{\rho}{\langle \rho \rangle} \gtrsim \frac{1}{\langle \rho \rangle} \frac{M_*}{r_*^3} \sim Q$$

> Turbulence:: stochastic fluctuations with $\sigma_{\ln \rho} \approx \sqrt{\ln \left(1 + \mathcal{M}^2\right)} \sim \mathcal{M}$

> So, at any instant, in a given region:
$$P_{\rho} \sim \operatorname{erfc}\left[\frac{\ln Q}{\sqrt{2}\,\sigma_{\ln\rho}}\right]$$

Need density fluctuation:
$$\frac{\rho}{\langle \rho \rangle} \gtrsim \frac{1}{\langle \rho \rangle} \frac{M_*}{r_*^3} \sim Q$$

> Turbulence:: stochastic fluctuations with $\sigma_{\ln
ho} \approx \sqrt{\ln \left(1 + \mathcal{M}^2\right)} \sim \mathcal{M}$

> So, at any instant, in a given region:
$$P_{\rho} \sim \mathrm{erfc} \left[\frac{\ln Q}{\sqrt{2} \sigma_{\ln \rho}} \right]$$

> Q~100, *M*~0.1 ::
$$P_p \sim 10^{-7}$$
 is small!

But, What if the Disks Are Turbulent?

 \gg Most unstable wavelength ("size" of regions) : $\sim h$

 \gg Most unstable wavelength ("size" of regions) : $\sim h$

> So have
$$N_{\text{volumes}} \sim \left(\frac{r_*}{h}\right)^2$$
 independent "samples" (at a given time)

 \gg Most unstable wavelength ("size" of regions) : $\sim h$

> So have
$$N_{\text{volumes}} \sim \left(\frac{r_*}{h}\right)^2$$
 independent "samples" (at a given time)

Turbulence evolves stochastically with coherence time ~ eddy turnover time:

$$t_{\text{"reset"}} \approx t_{\text{cross}}(\text{turb}) \approx t_{\text{dyn}} = \Omega^{-1} \sim \text{yr}$$

 \gg Most unstable wavelength ("size" of regions) : $\sim h$

> So have
$$N_{\text{volumes}} \sim \left(\frac{r_*}{h}\right)^2$$
 independent "samples" (at a given time)

Turbulence evolves stochastically with coherence time ~ eddy turnover time:

$$t_{\text{"reset"}} \approx t_{\text{cross}}(\text{turb}) \approx t_{\text{dyn}} = \Omega^{-1} \sim \text{yr}$$

> And disks have a long lifetime $t_{
m disk} \sim {
m Myr}$

so "resample" it
$$\frac{t_{\text{disk}}}{t_{\text{dyn}}}$$
 independent times

 \gg Most unstable wavelength ("size" of regions) : $\sim h$

> So have
$$N_{\text{volumes}} \sim \left(\frac{r_*}{h}\right)^2$$
 independent "samples" (at a given time)

Turbulence evolves stochastically with coherence time ~ eddy turnover time:

$$t_{\text{"reset"}} \approx t_{\text{cross}}(\text{turb}) \approx t_{\text{dyn}} = \Omega^{-1} \sim \text{yr}$$

> And disks have a long lifetime $t_{
m disk} \sim {
m Myr}$

so "resample" it
$$\frac{t_{\text{disk}}}{t_{\text{dyn}}}$$
 independent times

$$P_{\rm tot} \sim \left(\frac{t_{\rm disk}}{t_{\rm dyn}}\right) \left(\frac{r_*}{h}\right)^2 \operatorname{erfc}\left[\frac{\ln Q}{\sqrt{2}\,\sigma_{\ln\rho}}\right]$$

 \gg Most unstable wavelength ("size" of regions) : $\sim h$

> So have
$$N_{\text{volumes}} \sim \left(\frac{r_*}{h}\right)^2$$
 independent "samples" (at a given time)

Turbulence evolves stochastically with coherence time ~ eddy turnover time:

$$t_{\text{"reset"}} \approx t_{\text{cross}}(\text{turb}) \approx t_{\text{dyn}} = \Omega^{-1} \sim \text{yr}$$

> And disks have a long lifetime $t_{
m disk} \sim {
m Myr}$

so "resample" it
$$\frac{t_{\text{disk}}}{t_{\text{dyn}}}$$
 independent times

 $\gtrsim 1 \text{ for } \begin{array}{c} Q \sim 100 \\ \mathcal{M} \gtrsim 0.1 \end{array}$

 \gg Most unstable wavelength ("size" of regions) : $\sim h$

> So have
$$N_{\text{volumes}} \sim \left(\frac{r_*}{h}\right)^2$$
 independent "samples" (at a given time)

Turbulence evolves stochastically with coherence time ~ eddy turnover time:

$$t_{\text{"reset"}} \approx t_{\text{cross}}(\text{turb}) \approx t_{\text{dyn}} = \Omega^{-1} \sim \text{yr}$$

> And disks have a long lifetime $t_{
m disk} \sim {
m Myr}$

so "resample" it
$$\frac{t_{\text{disk}}}{t_{\text{dyn}}}$$
 independent times

$$P_{\rm tot} \sim \left(\frac{t_{\rm disk}}{t_{\rm dyn}}\right) \left(\frac{r_*}{h}\right)^2 \operatorname{erfc}\left[\frac{\ln Q}{\sqrt{2}\,\sigma_{\ln\rho}}\right] \gtrsim 1 \quad \text{for} \quad \begin{array}{l} Q \sim 100 \\ \mathcal{M} \gtrsim 0.1 \end{array}$$

Mass Function of "Stochastic" Direct Collapse Events RIGOROUSLY CALCULATE RATE OF EVENTS VS MASS

Mass Function of "Stochastic" Direct Collapse Events RIGOROUSLY CALCULATE RATE OF EVENTS VS MASS

What is the real "threshold" for an event? (FOR A GIVEN DISK LIFETIME)

What is the real "threshold" for an event? (FOR A GIVEN DISK LIFETIME)

What is Theoretically Expected? "TYPICAL" DISK AROUND A SOLAR-TYPE STAR

Self-consistently calculate temperatures, etc.

- Different drivers of turbulence:
 - Convection
 - Magneto-Rotational Instability
 - "Gravito-Turbulence"

What is Theoretically Expected? "TYPICAL" DISK AROUND A SOLAR-TYPE STAR

Self-consistently calculate temperatures, etc.

- Different drivers of turbulence:
 - Convection
 - Magneto-Rotational Instability
 - "Gravito-Turbulence"

What is Theoretically Expected? "TYPICAL" DISK AROUND A SOLAR-TYPE STAR

Self-consistently calculate temperatures, etc.

- Different drivers of turbulence:
 - Convection
 - Magneto-Rotational Instability
 - "Gravito-Turbulence"

What is Theoretically Expected? "TYPICAL" DISK AROUND A SOLAR-TYPE STAR

Self-consistently calculate temperatures, etc.

- Different drivers of turbulence:
 - Convection
 - Magneto-Rotational Instability
 - "Gravito-Turbulence"

Summary:

* ISM *statistics* are far more fundamental than we typically assume *

Turbulence + Gravity: ISM structure follows

- Lognormal density PDF is not critical
- > ANALYTICALLY understand:
 - GMC Mass Function & Structure ("first crossing")
 - Core MF ("last crossing") & Linewidth-Size-Mass
 - Clustering of Stars (correlation functions)

Planet Formation in Direct Collapse:

- Modest turbulence (Mach >0.1) is sufficient for ~ 1 event(s)
- Applies to grains as well?

Non-Gaussian Statistics: not dominant in calculations above

- But very interesting probes of the structure of turbulence!
- Indicates Mach-density connection generalizes over entire cascade

What If The Statistics Aren't Gaussian?

What If The Statistics Aren't Gaussian?

... actually, they never are, and that's great!

Saturday, March 9, 13

Many kinds of Non-Gaussianity Appear: BUT THESE ARE TRACTABLE!

- Non-isothermal equations of state
- Long-range forces (gravity)
- Intermittency

 (non-self similarity)
 in the turbulence

Example: Non-isothermal equations of state APPLY COSMOLOGICAL METHODS FOR NON-GAUSSIAN FIELDS

More Interesting: Even Isothermal Gas is Not Lognormal! MASS CONSERVATION & INTERMITTENCY PREVENT IT

More Interesting: Even Isothermal Gas is Not Lognormal! MASS CONSERVATION & INTERMITTENCY PREVENT IT

Saturday, March 9, 13

More Interesting: Even Isothermal Gas is Not Lognormal! EXPLAINS MANY DISCREPANCIES IN SIMULATIONS & METHODS

More Interesting: Even Isothermal Gas is Not Lognormal! MASS CONSERVATION & INTERMITTENCY PREVENT IT

- > Parameter T = 0.1 represents the "degree of intermittency"
 - *Fundamental* parameter of multi-fractal/cascade models of turbulence

Same values for *T* derived from density PDF or velocity statistics

Saturday, March 9, 13