Gastrophysics: Peeking Under the Hood

Philip F. Hopkins (Caltech) \& the FIRE Team www.tapir.caltech.edu/~phopkins
Kung-Yi Su, Mike Grudic, Matt Orr, Shea Garrison-Kimmel, Coral Wheeler, Ivanna Escala, Denise Schmitz, Xiangcheng Ma, David Guszejnov, Robyn Sanderson, Anne Medling, Christine Moran

Large Scales:

Large Scales

HOW DO WE GO FROM BIG BANG TO MILKY WAY?

The Basic Picture

Stars \& Pre-Stellar Gas Cores:

Giant Molecular Clouds:

Correlation functions, SFRs (Kennicutt-Schmidt), Scaling laws (Tully-Fisher)

Is this an accident?

STRUCTURE FORMATION

STAR FORMATION

Gravitational collapse

Hierarchical fragmentation into stars

Sub-cluster formation
and stellar feedback

Hierarchical assembly and gas blowout

Matthew Bate
University of Exeter

Guszejnov 15,16, 17
Grudic 16, 17

Problem:

WHY SO FEW GALAXIES \& STARS?

Problem:

GALAXY MORPHOLOGIES AND SCALING RELATIONS

Rotation curves:

- Stars form too early
- Too many metals trapped ("G-dwarf problem")
- Sizes too small
("angular momentum catastrophe")
- Vc too large
("Tully-Fisher" problem)
- Stars in spheroid, not thin disk
("Over-merging" problem)

But wait...

... Nature hates theorists

$$
\sim 10^{10} \mathrm{pc}
$$

$$
\sim 10^{7}-10^{8} \mathrm{pc}
$$

$$
\sim 10^{4-5} \mathrm{pc}
$$

Hubble volume

Stars, protostellar disks
Clusters, Large-scale structure
Galaxy

Cores, clusters, Supernovae blastwaves

~101-102 pc
Molecular clouds, Star-Forming Regions

3 Breakthroughs:

1. "Concordance" cosmology

Well-posed initial conditions:

"Ingredients":

"smoothed" field looks roughly like this:

- Large-scale structure / age of the universe are not "free parameters"!

2. Resolution (Moore's Law + Algorithms)

3. "New" Physics

- Star formation is strongly clustered (in space \& time). So are SNe!
- GMCs are destroyed (by radiation \& stellar winds) before SNe explode
- ISM is strongly super-sonically turbulent: structure is transient (short-lived)

14Myr

Let's Build Back Up

Cores to Stars

"Fragmentation Cascade":

Isothermal fragmentation:

$$
M_{\text {Jeans }} \sim \frac{c_{s}^{3}}{G^{3 / 2} \prec^{1 / 2}} \longleftarrow \propto L_{\text {core }}^{3 / 2}
$$

To opacity limit! (all stars $\sim 10 M_{\text {Jupiter }}$)

Feedback vs. Gravity
Guszejnov, Hopkins, \& Krumholz 2015

$$
M_{\text {crit }} \sim 0.1 M_{\odot}\left(\frac{\psi}{\psi_{0}}\right)^{0.4}\left(\frac{R_{\text {core }}}{0.1 \mathrm{pc}}\right)^{0.1}
$$

See also:
Bate+ '09, '12
Offner+ '09, '14
Krumholz+ '12
Guszejnov+ '16, 17

- (+Multiplicity, Periods)

Clustering Matters

INSIGHTS FROM STAR FORMATION

Kung-Yi Su+ 17, 18

Winds "by hand" ~SFR

SNe Explode in Density Peaks (no radiative feedback)

Explicit ISM/Feedback

Star Clusters \& GMCs: Radiation+O/B Winds Destroy Clouds FEEDBACK VS. GRAVITY

Mike Grudic

Gravity $\sim \frac{G M_{\text {tot }} M_{\text {gas }}}{R^{2}} \propto M_{\text {tot }} \Sigma_{\text {gas }} \quad$ Vs. \quad Feedback $\sim \frac{\text { Momentum }}{\text { Time }} \propto(\ldots) M_{*}$

Building Up to Galaxy Scales

Yellow: hot ($>10^{6} \mathrm{~K}$) Pink: warm (ionized, $\sim 10^{4} \mathrm{~K}$) Blue: cold (neutral <10-8000 K)

- $\mathrm{DM}=$ collisionless, nonrelativistic, gravity-only fluid (or your preferred idea...)
- Resolution ~pc

Cooling \& Chemistry $\sim 10-10^{10} \mathrm{~K}$

- Feedback:
- SNe (II \& Ia)
- Stellar Winds (O/B \& AGB)
- Photoionization (HII regions) \& Photo-electric (dust)
- Radiation Pressure (IR \& UV)
- now with... (Su+ 18)
- Magnetic fields
- Anisotropic conduction \& viscosity
- Cosmic rays

$$
1 \stackrel{\rightharpoonup}{\mathrm{kpc}} \quad \mathrm{z}=0.00
$$

Stars (Hubble image):
Blue: Young star clusters Red: Dust extinction

Gas: Magenta: cold ($<10^{4} \mathrm{~K}$) Green: warm (ionized) Red: hot ($>10^{6} \mathrm{~K}$)

This Works (More or Less) if You Resolve Key Scales

Failures No More "MISSING SATELLITES" \& "TOO BIG TO FAIL"

Shea Garrison-Kimmel+ (arXiv:1806.04143)
(also Escala+ in prep)

Garrison-Kimmel+ 1712.03966

Angular Momentum of Gas+Stars

- Dwarfs: Thick/irregular [clumpy + bursty]

Some Remaining Uncertainties

Binary Stars:

 "FEEDING" MASSIVE STARS

Binarity \& Rotation:

Stars

Binarity \& Rotation:

Astrid Lamberts VERY IMPORTANT FOR THINGS THAT DEPEND ON MOST MASSIVE STARS

SXS Collaboration

Need Additional Physics To Turn Off Star Formation STELLAR FEEDBACK + COOLING + HYDRO = COOLING FLOW PROBLEM

Progress: Physics Beyond Those Above Clearly Needed

 STELLAR FEEDBACK + COOLING + HYDRO = COOLING FLOW PROBLEM- Virial shocks
- "Morphological Quenching"
- AGB Winds \& SNe Ia
- Magnetic Fields, Conduction

Not
Enough

AGN can do it: "Maintenance" (Jets) + (?) "Transition" (Winds)

 ALSO RULING OUT SOME CHANNELS (CAN’T OVERHEAT/BLOW OUT CGM)

> In the last decade: galaxy \& star formation have seen tremendous progress

- How does "feedback" work? Where is the evidence? What does it do? Why is star formation inefficient?

Where do thin disks come from? What drives scaling relations? Where are the baryons? What's universal?
> "Null hypothesis" (CDM + known stellar processes) resolves most of the classic "CDM problems"

- "Missing satellites"/"Cusp-core"/"Too Big to Fail"/"Angular Momentum Catastrophe"/"Over-merging"/
"Diversity/Rotation Curve Shapes"/"Baryonic Tully-Fisher (or Radial Acceleration)" predicted [no fine-tuning!]
- Changing e.g. DM model, or stellar evolution, doesn't really improve match

Without violating stellar evolution constraints, hard to differ at factor >~ 2
> Open: (1) "Over-cooling/quenching," (2) subtleties of massive stars on short spatial/time-scales

- (1) Probably AGN, inputs/coupling physics remain uncertain (certainly can do it).
- (2) Matters for ionizing photons, LIGO source pops, globular internal abundances, NS-NS + Ia prompt rates
> Ad: Mock Gaia Catalogues + Galaxy Snapshots, public this week (Robyn Sanderson+)
- Multiple galaxies with $\sim 100 \mathrm{M}$ resolved stars

