Quasars in a Cosmological Context

Philip Hopkins

Lars Hernquist, T. J. Cox, Adam Lidz, Gordon Richards, Alison Coil, Adam Myers, Paul Martini, Volker Springel, Brant Robertson, Tiziana Di Matteo, Yuexing Li, Josh Younger

Motivation WHAT DO AGN MATTER TO THE REST OF COSMOLOGY?

Black holes somehow tied to galaxy formation:

Motivation

WHAT DO AGN MATTER TO THE REST OF COSMOLOGY?

Motivation WHAT DO AGN MATTER TO THE REST OF COSMOLOGY?

Yesterday's Quasar is today's Red, Early-Type Galaxy:

Quasars were active/BHs formed when SF shut down...

Hopkins, Lidz, Coil, Myers, et al. 2007

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- Mhalo still similar to before: dynamical friction merges the subhalos efficiently

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with ME>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback
- remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios
 - merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

NGC 7252

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) - "hot halo" from feedback
 - sets up quasi-static cooling

- halo grows to "large group" scales:
- mergers become inefficient
- growth by "dry" mergers

Three Outstanding (Inseparable?) Questions:

Three Outstanding (Inseparable?) Questions:

Triggering

How? When? Angular Momentum? Self-suppression?

Lightcurves

Lifetimes? Self-Regulation? Variability? Feedback?

Feedback

Coupling mechanisms? "Quasar" vs. "Radio" mode? Large-scale impact?

Three Outstanding (Inseparable?) Questions:

"Feeding the Monster" WHAT CAN BREAK DEGENERACIES IN DIFFERENT FUELING MODELS?

- If BHs trace spheroids, then
 most mass added in mergers
- Other candidates must also be:
- Fast, violent
- Blend of gas & stellar dynamics
- Why?
- * Soltan (1982): bulk of SMBH mass density grown through radiatively efficient accretion in quasars

→ gas dynamics; rapid (~ few 10⁷ years)

* Lynden-Bell (1967): orbits of stars redistributed in phase space by large, rapid potential fluctuations

 \rightarrow stellar dynamics; freefall timescale

Candidate Process: Gas-Rich, Major Merger

- Locally, seen related to:
 - growth of spheroids
 - causing starbursts (ULIRGs)
 - fueling SMBH growth, quasar activity

Komossa et al. (2003)

Plausible Physical Mechanism

- Tidal torques ⇒ large, rapid gas inflows (e.g. Barnes & LH 1991)
- Triggers starburst (e.g. Mihos & LH 1996)
- Feeds BH growth (e.g. Di Matteo et al. 2005)
- Merging stellar disks grow spheroid
- Requirements:
 - major merger
 - supply of cold gas

("cold" = rotationally supported)

Other Fueling Mechanisms?

- **Stellar Mass Loss**
 - Low Accretion Rate
 - No Bulge Formation/Violent Relaxation
 - Can't "allow" this gas to cool in already-formed ellipticals (too much star formation!) -- Recurring mini-bursts? PG-like quasars?

Other Fueling Mechanisms?

- **Relatively Late Phenomenon**
- No Bulge Formation

- 2 8 10 redshift
- BHs already massive in cooling-flow clusters
- *But* -- important for "radio mode" accretion?

Other Fueling Mechanisms?

left: Projected gas density right: Projected stellar density XY, the orbital plane

Isolated Disk (Sbc) Galaxy Run: execute/G3G1-u3 T.J. Cox & Patrik Jonsson, UC Santa Cruz UC Santa Cruz, 2004

- Minor Mergers
 - Not so violent -probably don't dominate spheroid formation (LMC/SMC)
 - Can they torque much gas?
 - Major mergers dominate mass growth in mergers (~L*)

Central Galaxy Major Mergers (per Halo)

Besla et al. (2007)

Other Fueling Mechanisms?

- Secular Evolution/Disk Instabilities
 - Most mass in "classical" bulges, not "pseudobulges":
 - But, *are* important below <~ Sa-types
 - Does it really solve the angular momentum problem? (Jogee et al.)

Some Basic Checks:

- Construct generic model of merger-driven quasar activity (PH et al. 2007; astro-ph/
 - Populate halo+subhalo MFs (from cosmological simulations) with "initial" galaxies (according to HODs/empirical constraints)
 - Let them grow (star formation & accretion)
 - Let them merge
 - Assume major, gas-rich merger > BH/bulge
 - "Paint on" detailed simulations where necessary

Predictions

• Predicts the QLF vs. redshift, luminosity, wavelength

Predictions

- Predicts the QLF vs. redshift, luminosity, wavelength
- There are "enough" mergers!

The Difficulty

- Quasar is at the *end* of the merger
 - Host is relaxed/tidal features fade
 - SB dimming & PSF de-convolution
 - Automated routines classify even *perfect* images as "relaxed" spheroids in the quasar phase (Lotz et al.)
 - Comparison samples?

Same *galaxy* masses (not luminosities)

QSO =0.1xHost

QSO =Host

QSO =

The Difficulty

e.g. Canalizo, Bennert et al.: PG QSO Hosts

The Difficulty

Red or IR-bright QSOs:

- Nearly ~100% mergers (Hutchings et al., Guyon et al., Urrutia)
- Need to prove they will turn into their bluer "cousins"

F2M0729+3336

F2M0830+3759

F2M0841+3604

F2M0825+4716

F2M0834+3506

F2M0915+2418

Color Evolution of Quasar Hosts

• Merger efficiently exhausts gas; feedback can expel what remains > remnant rapidly reddens

• Not true of secular evolution/pseudobulges (Kormendy, Balcells et al.)

Color Evolution of Quasar Hosts

Color Evolution of Quasar Hosts

- Quasars live in *blue spheroids*
- Need to go to next level: full stellar populations are these really post-SB?
- Examine the time/redshift dependence

Disk Instabilities/Bars

(Barazza et al. 2006)

2.5

3.0

1.0

2.0

1.5

2.0

2.5

3.0 PH07

1.5

2.0

2.5

3.0

1.0

1.5

Blue Galaxies

----- Red Galaxies

(Strateva et al. 2001)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

N (Arbitrary Units)

- Croom et al. (2005) (+others): from 2dF QSO survey
 - $= M_{halo}(QSO host) \sim$ $3.0 \pm 1.6 h^{-1} M_{solar} at z \sim 1 - 6$
 - Faucher Giguere et al. (2006): independent, similar conclusion from proximity effect analysis
- HOD theory: characteristic halo mass for 2 large galaxies
- Simulations: "Small Group" scale of efficient ~L* galaxy mergers

~L* disks (secular expectation) ?

• Observed excess of quasar clustering (quasar-galaxy and quasar-quasar pairs) on small scales, relative to "normal" galaxies with the same masses/large-intermediate scale clustering

• Predicted by merger models (Thacker & Scannapieco et al., PFH)

- Small-Scale Excess:
 - Predicted in merger models
 - Mergers biased to regions with *small-scale* overdensities
 - Seen in cosmological simulations (Thacker et al.)
 - Seen in merger remnants! (Goto et al.; Hogg et al.)
 - *Not* expected in secular/instability, cooling flow, stellar mass loss, or other models

- Small-Scale Excess:
 - Not seen in Seyferts:
 - Suggests different processes dominate fueling below M_B ~ -23 (M_bh ~ 10^7)?

Serber et al. 2006

Morphology of Quasar Hosts

- Mergers form "classical" bulges; secular evolution forms "pseudobulges"
- Pseudobulges important only in relatively late-type galaxies; small M_bh
- Bar fraction & pseudobulge fraction ~constant to z~1-2

Self-Regulation and Quasar Lightcurves

M-sigma Relation Suggests Self-Regulated BH Growth PREVENTS RUNAWAY BLACK HOLE GROWTH

Simplest Idea: FEEDBACK ENERGY BALANCE

Constant fraction (h) of BH radiated energy couples to the ISM: couple

 $E = h * (e_r * M_b h * c^2)$

when this is comparable to the binding energy of the gas in the galaxy, it will be blown out

 $E_g = y * (M_{halo} * v_c^2) \sim v_c^5 \sim s^5$

So, self-regulate when $M_bh \sim s^5$

(Silk & Rees 1998)

Tuesday, December 25, 12
Which Correlation Is "Most Fundamental"? COMPARE RESIDUALS

~3s significant residual trend with respect to ANY single variable correlation!

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

- Find a FP-like correlation:
 - M_{bh} ~ M_{bul}^a s^b
 - M_{bh} ∼ Re^a s^b
 - M_{bh} ∼ M_{bul}^a R_e^b

Given the spheroid FP, these are the same

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

What Does this FP-Like Relation Imply? IS THERE ANY PHYSICAL MEANING?

Reasonably close to binding energy, but with "tilt":

> $M_{bh} \sim E_{binding}^{2/3} \sim (M_{bul} s^2)^{2/3}$

> > 1.0

0.8

0.6

0.4

0.2

0.0

0

1

e,

M_{RH} × M.

Do Feedback-Regulated Simulations Predict This? SIMPLE COUPLING OF BH RADIATED ENERGY TO SURROUNDING GAS IN A MERGER

Supports basic Silk & Rees '98 argument:

- BH feedback self-regulates growth in ~fixed potential only "feel" the local potential of material to be unbound

Can We Get Away From This? HOW DOES THE RELATION DEPEND ON INITIAL CONDITIONS?

- Primarily a *local* correlation with *final* state:
 - Can't get "off" this correlation if feedback still self-regulates

Can move *along* the correlation

- Changes projections:
 - Mbh Mbul
 - M_{bh} s

Moving Along the BH FP-Like Correlation GIVEN THIS CORRELATION, HOW DO YOU MOVE IN ITS PROJECTIONS

Tuesday, December 25, 12

Moving Along the BH FP-Like Correlation IMPLICATIONS FOR REDSHIFT EVOLUTION

High-z galaxies are more gas-rich:

- Expect more compact remnants
 - Khochfar & Silk
- See them: smaller R_e, larger s at fixed M_{bul}
 - Trujillo et al.; Zirm et al.

Moving Along the BH FP-Like Correlation IMPLICATIONS FOR REDSHIFT EVOLUTION

- Peng et al.; Fine et al.; Shields et al.; Merloni et al.; Walter et al.
- Different evolution in Mbh-Mbul & Mbh-s

What about other fueling mechanisms? BLACK HOLE MASSES IN ISOLATED GALAXIES AND MERGER REMNANTS

What about other fueling mechanisms? BLACK HOLE MASSES IN ISOLATED GALAXIES AND MERGER REMNANTS

What about other fueling mechanisms? BLACK HOLE MASSES IN ISOLATED GALAXIES AND MERGER REMNANTS

Generalizing the Model NOT ALL AGN ARE MERGER-DRIVEN

- Almost any (ex. radio) AGN feedback will share key properties:
 - Point-like
 - Short input (~ t_Salpeter)
 - E~E_binding (defines when the feedback is important)
 - Suggests analytical solutions for decay of accretion rates in feedback-driven winds or blastwaves
 - Agrees well with simulations!
- Generalize to "Seyferts"
 - Disk-dominated galaxy, central molecular clouds
 - Calculate accretion rate(time) when a cloud "collides" with the BH

Quasar Lightcurves:

Multi-phase ISM decomposition: gas+dust+metal columns

- Simulation: Explosive blowout drives power-law decay in L
- No Feedback:
 - Runaway growth (exponential light curve)
 - "Plateau" as run out of gas but can't expel it (extended step function)

Tuesday, December 25, 12

- "Quasar Lifetime" : a conditional, luminositydependent distribution
- Robust as a function of BH mass or peak QSO luminosity
 - General solution depends just on energy injection

- "Quasar Lifetime" : a conditional, luminositydependent distribution
- Robust as a function of BH mass or peak QSO luminosity
 - General solution depends just on energy injection

Tuesday, December 25, 12

General solution

depends just on

energy injection

Tuesday, December 25, 12

[&]quot;Quasar Lifetime" : a conditional, luminositydependent distribution

 General solution depends just on energy injection

Tuesday, December 25, 12

Robust as a function of BH mass or peak QSO luminosity

$$\phi(L) \equiv \frac{d\Phi}{d\log L}(L) = \int \frac{dt(L, L_{peak})}{d\log(L)} n(L_{peak}) d\log(L_{peak}).$$
Simple quasar
lifetimes
$$\begin{array}{c} 2 \\ 0 \\ -2 \\ -4 \\ -6 \\ 8 \end{array} \begin{array}{c} 10 \\ 10 \\ 12 \\ 14 \end{array}$$

Log(L/L_{sun})

$$\phi(L) \equiv \frac{d\Phi}{d\log L}(L) = \int \frac{dt(L, L_{peak})}{d\log(L)} i(L_{peak}) d\log(L_{peak}).$$

Simple quasar
lifetimes
$$\begin{array}{c} 2 \\ 0 \\ -2 \\ -4 \\ -6 \\ 8 \\ 10 \\ Log(L/L_{sun}) \end{array}$$

$$\phi(L) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\log L}(L) = \int \frac{\mathrm{d}t(L, L_{\mathrm{peak}})}{\mathrm{d}\log(L)} \, \dot{n}(L_{\mathrm{peak}}) \, \mathrm{d}\log(L_{\mathrm{peak}}).$$

$$\phi(L) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\log L}(L) = \int \frac{\mathrm{d}t(L, L_{\mathrm{peak}})}{\mathrm{d}\log(L)} \, \dot{n}(L_{\mathrm{peak}}) \, \mathrm{d}\log(L_{\mathrm{peak}}).$$

$$\phi(L) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\log L}(L) = \int \frac{\mathrm{d}t(L, L_{\mathrm{peak}})}{\mathrm{d}\log(L)} \, \dot{n}(L_{\mathrm{peak}}) \, \mathrm{d}\log(L_{\mathrm{peak}}).$$

- Feedback-regulated lifetime drives a given QSO to lower L after blowout, and spends more time at low-L
- Much stronger turnover in formation/merger rate
- Faint-end QLF dominated by decaying sources with much larger peak luminosity/hosts

Quasar Clustering is a Strong Test of this Model IF FAINT QSOS ARE DECAYING BRIGHT QSOS - SHOULD BE IN SIMILAR HOSTS

- Weak dependence of clustering on observed luminosity
 - (Croom et al.,
 Adelberger & Steidel,
 Myers et al.,
 Coil et al., Porciani et al.)

Tuesday, December 25, 12

Hernquist

(also:

What Do We Learn? "SECOND ORDER"

- Faint End (X-ray "LDDE")
 - Change in effective duty cycle/lifetime for more massive BHs at low mdot

Luminosity-Dependent Quasar Lifetimes

The Feedback: Where Does It Go? QUASAR FEEDBACK *DOES* EXIST

Tuesday, December 25, 12

The Simulations WHAT ABOUT THE FEEDBACK PRESCRIPTION?

- Modeling "Quasar" Feedback
- ~5% to match observed M-sigma normalization (Silk & Rees '98)
 - Line opacities + AGN spectrum (Sazonov et al.)
 - Momentum driven winds (Murray et al.)
 - Disk wind simulations (Proga et al.)

Probably not radio jets

The feedback by the central black activity may drive a strong quasar wind GAS OUTFLOW BY AGN FEEDBACK

(outflow reaches speeds of up to ~1800 km/sec)

Outflows are Explosive and Clumpy

- Rapid BH growth => point-like injection
 - Explosion, independent of coupling
- Clumpy
 - ULIRG cold/warm transition (S. Chakrabarti)
 - CO outflows (D. Narayanan)

Observational Prospects "QUASAR" WINDS

- High-velocity outflows
 - >~ 1000 km/s at 1-1000 kpc
 - Local metal absorbers (Bowen+ 06)
 - BALs at "large distances" (deKool+ 01)
 - High-v outflow in non-BALs (Pounds 06)
- Clumpy substructure
- Preferentially w. high-Eddington ratio?

Tuesday, December 25, 12

Feedback-Driven Winds HEATING & ENTROPY

Single, high-impact event can "set up" observed T/S profiles & correlations in ellipticals

Groups, even Clusters as well?
Reflected in the Bright-End Slope of the QLF? "SECOND ORDER"

- Bright End
 - (Systematics?)
 - Reflects shape of halo MF/buildup?
 - Feedback again?

Tuesday, December 25, 12

Summary

• Our picture for quasar evolution can incorporate more detail:

- complex, evolving lightcurves, lifetimes
- evolving pattern of obscuration: increases with luminosity, drops during blowout
- "Higher-Order" measurements can break model degeneracies:
 - clustering vs: spatial scale, luminosity, redshift
 - QLF shape evolution
- How do we more tightly link observations of hosts & descendants (galaxies) with the quasars themselves?