Redshift Evolution in Galaxy Scaling Laws

"Fundamental Planes" part 2.1

Recall, TF follows (to lowest order) from halo scalings:

at fixed M: v~v_halo~(1+z)^{1/2}

Redshift Evolution THE TULLY-FISHER RELATION

Weiner et al. 2004

Redshift Evolution THE TULLY-FISHER RELATION

But *baryonic* TF:

Kassin et al. 2007

Redshift Evolution THE TULLY-FISHER RELATION

> Bouche et al. 2007: appears to hold out to $z \sim 2-3$

FF doen't evolve: doesn't mean projections (e.g. size-mass) don't

0.1 < z < 0.32 log(R_d [kpc]) 0 -1 -2 12 6 8 10 14 log(M/M_o)

Disk galaxies: naively assume (Mo, Mao, & White)

Rd ~ M/v^2 v~v_halo Rd ~ 1/H(z)

Weiner et al. 2005

FP and TF don't evolve: doesn't mean projections (e.g. size-mass) don't

COMBO-17: Disk galaxies Mass-radius relation No shift in zeropoint vs. time

GEMs sees the same: weak evolution in disk size-mass relation

Somerville et al. 2007

- Weak disk size-mass evolution: why?
 - Rd ~ R_c (break radius of halo profile), not R_200 (most mass in R_c, so V^2 ~ M / R_c)
 - $R_c = R_{200} / c$ (concentration)

Disks are weakly evolving: do we expect to see the same in ellipticals?

Caution: The red sequence at z~1 contains a wide range of morphologies

Many ellipticals being/recently formed: even normal E/S0s are often disturbed

Van Dokkum & Ellis 2003

Red-sequence E/SO galaxies in HDF-N. 40% of all spheroidal galaxies to 23 R mag are disturbed. Roughly 1/3 of these show blue centers and are also candidate AGNs.

See an offset in magnitude in the FP

See an offset in magnitude in the FP

But again, evolution consistent with stellar population fading

And scatter remains small

Given weak disk evolution, and that this is (to lowest order) the virial relation, perhaps we should not be surprised

What about spheroid sizes?

Tuesday, December 25, 12

Redshift

By z~3, massive ellipticals are little bigger than a starburst (~kpc)

Why are ellipticals so much smaller than disks at high-z?

Same answer as at low-z: gas. just more of it

Why are ellipticals so much smaller than disks at high-z?

Same answer as at low-z: gas. just more of it

Faber-Jackson & size-mass vs. disk gas content

fgas = 0.1

$$fgas = 0.4$$

fgas = 0.8

- High-z galaxies are more gas-rich:
 - Expect more compact remnants (see also Khochfar & Silk)

- Where are they now?
- Dry (spheroid-spheroid) merger:

Typical orbits weakly bound -- E_final = E_initial = 2 (M_i * sigma_i^2) M_f = 2 M_i -- so sigma_f = sigma_i virial theorem -- R_f = 2 * R_i

- Relative to the slope of the size mass relation (R ~ M^1/2), you're rapidly moving up (increasing R)
- High-z early mergers are *exactly* the systems expected to have more dry mergers

But....

unclear how much room there is for dry mergers in the most massive galaxies

Van Dokkum et al. (2005)

We see them happening...

Bell et al. (2006)

But....

unclear how much room there is for dry mergers in the most massive galaxies

But others argue even ~1 is too many for a massive galaxy

- Major caveat: our knowledge of stellar populations
 - Maraston: M/L is much lower *when galaxies are younger*

Recipial axies: How do we how galaxies shut down?

Fundamental Plane Tilt STELLAR POPULATION VARIATION

Hogg et al.,

Fundamental Plane Tilt STELLAR POPULATION VARIATION

Indeed, there are very significant stellar population trends as a function of elliptical mass:

Motivation QUASARS AND SPHEROID FORMATION

Tuesday, December 25, 12

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- Mhalo still similar to before: dynamical friction merges the subhalos efficiently

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with ME>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback,

1000

100

10

0.1

12

9

8

-2

logiol Lqso 10

[Mo yr-1

SFR

but, total stellar mass formed is small

C

-1

0

Time (Relative to Merger) [Gyr]

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) "hot halo" from feedback - sets up quasi-static cooling

Motivation MERGERS AND THE BLUE-RED TRANSITION

Woo et al.: Disks aren't "turned off" (red = bulge)?

Sbc201a–n4 Zsolar–imf2.35

urz color

Quasars were active/BHs formed when SF shut down...

Hopkins, Lidz, Hernquist, Coil, et al. 2007

Observed RS Buildup to z>~1 = Expectation if *all* new mass to the RS "transitions" in a quasar-producing merger

Tuesday, December 25, 12

The Model **PREDICTIONS**

z=0 mass functions

red fractions:

0.8

0.6 ourly

0.4

The Model PREDICTIONS

mass function redshift evolution:

mass density:

Lowest-Order Predictions are Fundamentally Non-Unique: HOW DO WE BREAK THE DEGENERACIES?

Identify broad classes of quenching models:

Are there unique, robust predictions of the different classes of quenching mechanisms?

Lowest-Order Predictions are Fundamentally Non-Unique: HOW DO WE BREAK THE DEGENERACIES?

Identify broad classes of quenching models:

Motivation WHAT DO WE KNOW?

	Mergers	Hot Halos	Secular
morphology:	classical bulges/ spheroids	little effect	"pseudobulges"
BH/AGN:	*quasar & remnant massive BH	*little BH growth *fuel for low Mdot modes?	*Seyferts? *small (<10^7 M_sun) BHs
feedback:	*kinematic *quasar *starburst	*accretion shocks *gravitational	*Seyfert? *stellar winds
timescales:	short (<gyr)< td=""><td>~Hubble time</td><td>~Gyr?</td></gyr)<>	~Hubble time	~Gyr?

- > f_red vs. M_halo and M_gal:
 - smooth dependence on M_halo
 - > no characteristic scale
 - high even in low M_halo (for massive galaxies)

"Halo Quenching" Model:

- step function in M_halo: strong characteristic scale
- no residual M_gal dependence
- > no f_red in low M_halo

- Merger Model:
 - appropriate mixed dependence on M_halo and M_gal
 - no sharp scale in M_halo

- same trends
- avoid dusty/metal-rich disk contamination

Comparing Quenching Models HIGH-REDSHIFT PASSIVE GALAXIES

High-z passive (low SSFR) galaxies:

> z~2-4

- Very compact, n~4: Spheroids/Merger remnants
- High (low-lum) AGN fraction

Kriek et al., Labbe et al., Zirm et al.

2.0

1.5

(am)

1.0

1.5

2.0

2.0

1.5

(auro)

2.5

Comparing Quenching Models HIGH-REDSHIFT PASSIVE GALAXIES

Comparing Quenching Models DICHOTOMY IN ELLIPTICAL KINEMATICS

Lauer et al., Bender et al., Pasquali et al.

1.0

0.8

0.6

Cusp

11.0 11.5 log(M_{gal} / M_☉)

12.0

12.5

10.5

Comparing Quenching Models DICHOTOMY IN ELLIPTICAL KINEMATICS

1.0

0.8

0.6

0.4

Core

12.5

Tuesday, December 25, 12

Comparing Quenching Models SUMMARY

- Strong arguments for association between mergers, quasars, & bluered transition:
 - clustering, number densities, merger fractions, morphologies, host colors/SFHs, LF evolution, kinematics, etc.

But, how is quenching over a Hubble time accomplished by a single, potentially high redshift gas-rich major merger?

How Could Mergers Be Associated with "Maintenance"?

- (1) "Complete" quenching from a single event
 - energetics might be ok...
 - high redshifts: densities larger, cooling in filaments
 - can it really work for a Hubble time?

(2) Buying time

- expel cold gas at the end of the merger
- heat remaining gas to much larger t_cool
- only need ~couple Gyr to "naturally" develop a hot halo
- still needs "radio mode" when that hot halo is formed

- (3) Hot halos from merger feedback
 - quasar/starburst heats gas
 to t_cool >> t_dyn
 - merger simulations end up with quasi-static, pressure supported gas equilibrium inside R_vir
 - new gas will shock: don't need to "pre-heat" everything

"Transition"

- Move mass from Blue to Red: Exhaust *all* cold gas
- Rapid (<~ Gyr)</p>
- Small scales (~pc kpc)
- "Quasar" mode (high mdot): Soltan: most BH mass short-lived (~10^7-10^8 yr)
- Morphological Transformation:
 Violent relaxation
 Classical spheroid formation
- Gas-rich/Dissipational Mergers

"Maintenance"

- Keep it Red: Prevent new cooling
- Long-lived (~Hubble time)
- Large (~R_vir) scales
- "Radio" mode (low mdot):
 small mass gain
 long-lived (~Hubble time)
- Subtle morphological change: (regular vs. giant ellipticals) "dry"/dissipationless mergers
- Halo Processes?

Tuesday, December 25, 12

VS.

Summary

- Models where merger history supplements quenching make robust, qualitatively distinct predictions
 - Detailed observations can break degeneracies
 - Compared to models where a simple halo mass threshold or secular mechanisms set quenching, only the merger model appears to match these observations:
 - Bivariate red fraction (vs. M_halo & M_gal)
 - High-z passive populations
 - Elliptical dichotomy
 - Evolution of color-morphology-density relations
- Mergers work *with* hot halos
 - Buy time for hot halos to develop
 - Directly shock low-mass systems to "hot halo" mode
- Caveats:
 - Satellites
 - Secular AGN fueling & pseudobulge formation are probably important: M_bulge < 10^10 M_sun, M_bh <~ 10^7 M_sun

COMBO-17: Color bi-modality to z=1.1

25,000 galaxies

deen

17-color photo z's

R-band selected to R = 24

Bell et al. 2004

COMBO-17: Disk galaxies Mass-radius relation No shift in zeropoint vs. time

