"Fundamental Planes" and Galaxy Formation

Philip Hopkins, NoviCosmo 2007

"Fundamental Planes" = Scaling Laws Obeyed by Galaxies

- Origin of scaling laws:
- Ideally, we'd understand every galaxy as an individual: but, "every galaxy is peculiar" if you look at it in enough detail
- Galaxies obey remarkable (and often puzzling) regularity

"Fundamental Planes" = Scaling Laws Obeyed by Galaxies

- Broadly speaking, the few most relevant categories:
- Disk scalings
 - Tully Fisher & size-mass relations: 1977+
- Bulge/Elliptical scalings
 - Faber-Jackson & size-mass :: 1976+
 - Fundamental Plane :: 1986+
- Black Holes
 - BH Host L or M :: 1995+
 - M-sigma :: 2000+

Scaling Laws and Galaxy Properties WHAT CAN BE MEASURED?

Galactic disks

The disk is the defining stellar component of late-type galaxies.

It is the end product of the dissipation of most of the baryons, and contains almost all of the baryonic angular momentum

Endpoint of "quiescent" galaxy formation

Disks have a roughly exponential light distribution in R and z

$$I(R,z) = I_o \exp(-R/h_R) \exp(-z/h_z)$$

or $I_o \exp(-R/h_R) \operatorname{sech}^2(z/z_o)$

out to $R = (3 \text{ to } 5) h_R$, then often truncated

van der Kruit 1979, van der Kruit & Searle 1981-1982

Galaxy Disks THE SEARCH FOR REGULARITY

Pure exponentials would be straight lines.

The exponential scale length α is a measure of the size of the baryonic disk.

Tuesday, December 25, 12

NGC 4656: small bulge and prominent thick disk

vdK&S

Reason for the form of the <u>exponential radial light</u> <u>distribution</u> is not well understood : extreme options are

1. collapse of a torqued gas cloud within dark halo with the right internal angular momentum distribution M(j), conserving M(j) -> exponential gas disk, in place before star formation

 gas in disk is radially redistributed by viscous torques: tends to an exponential disk if star formation timescale ≈ viscous timescale

Disk Galaxies TULLY-FISHER

Tully & Fisher (1977)

The Tully–Fisher relation is the correlation between rotation speed and absolute magnitude for disk galaxies.

Disk Galaxies TULLY-FISHER: SECONDARY VARIABLES?

Ellipticals & Bulges

What about the spheroidal components of galaxies?

Ellipticals & Bulges

De Vaucouleurs (1948): Spheroids follow an r^1/4 law

 $I(R) = I_{o} \exp(-b [R/R_e]^{1/4})$

Ellipticals & Bulges

r^1/4 law is (somewhat) better understood

Violent Relaxation (Lynden-Bell 1967)

Structure in Elliptical Light Profiles THEIR SCALING LAWS

Faber & Jackson (1976)

Structure in Elliptical Light Profiles THEIR SCALING LAWS

Structure in Elliptical Light Profiles THEIR SCALING LAWS: SECONDARY VARIABLES?

ls a significant secondary variable, unlike disks

Structure in Elliptical Light Profiles

THEIR SCALING LAWS: SECONDARY VARIABLES?

Originally, intended as a distance indicator

Structure in Elliptical Light Profiles THEIR SCALING LAWS: SECONDARY VARIABLES?

The Fundamental Plane correlates $R_{e},$ surface brightness, and σ for elliptical galaxies.

The Fundamental Plane for Coma and other nearby cluster ellipticals:

Fundamental Plane edge on

Fundamental Plane face on

Jorgensen 1996

Structure in Elliptical Light Profiles SEPARATION OF DIFFERENT POPULATIONS IN THESE CORRELATIONS

Structure in Ellipticals

- Line Indices tightly correlate with velocity dispersion
 - Some systematic variation in stellar populations with galaxy mass

Only recently (~1995+) has it become clear: every massive spheroid hosts a supermassive black hole (BH)

More surprising, those BH properties are tightly correlated with those of their host spheroids

Black Holes NEWCOMERS TO THE CORRELATIONS

Kormendy et al. (1995) & Magorrian (1998) BH mass – galaxy luminosity / mass correlation

Black Holes NEWCOMERS TO THE CORRELATIONS

Ferrarese & Merritt (2000) and Gebhardt et al. 2000:

Mbh ~ sigma^4.x

Black Holes NEWCOMERS TO THE CORRELATIONS

"Fundamental Planes" = Scaling Laws Obeyed by Galaxies

- Large degree of regularity in galaxy formation: need to get at what these correlations really "mean":
 - How do these observed correlations relate to physical properties of the galaxies?
 - How do other variables enter into them?
 - How do they evolve?
 - How do they arise?

"Fundamental Planes" and Galaxy Formation

Understanding the Origins and Physical Meaning of Local Galaxy Scaling Laws

Return to the Tully-Fisher Relation:

Return to the Tully-Fisher Relation:

Return to the Tully-Fisher Relation:

Optical luminosity =

stellar mass + age + metallicity + dust + star formation

Near-IR better -- get to stellar-mass Tully Fisher

Combine with gas mass & get Baryonic Tully-Fisher Relation

Bell & de Jong 2000

Tuesday, December 25, 12

 Origin of scaling laws: Halos collapse to the virial overdensity: r_halo ~ 180 r_matter ~ CONSTANT at a given z r ~ M^1/3 	
▷ v ~ (GM/r)^1/2 ~ M^1/3	

Roughly holds over a very large dynamic range: V~ 30 - 500 km/s

Likewise, size-mass relation: but this doesn't enter into the TF relation

COMBO-17: Disk galaxies Mass-radius relation

Earlier types: compact central mass -- smaller R at fixed M

- Systematic difference in e.g. B-band and stellar mass TF slopes are interesting:
 - L_B ~ v^3 :: v ~ L_B^1/3
 - M_star ~ v^4.5
 - \gg (L_B/M_star) ~ M_star^-1/3
- M_baryon ~ V^{3.5 4.0} --- actually < 1/3 at high significance:
 - M_baryon/M_halo not constant
 - v isn't exactly v_halo
 - halo concentration scales with mass
- Mo, Mau & White (1996) -- disk size set by conservation of specific angular momentum, with "stability criterion"
Structure in Disk Light Profiles UNDERSTANDING THE TULLY-FISHER RELATION

- There is still a zero-point problem: most models can't simultaneously fit the zero-points of the Tully-Fisher and size-mass relations (model disks are too small)
- But, we think we (more or less) understand the slopes/scalings themselves

Returning to Ellipticals & Bulges

What about the spheroidal components of galaxies?

Ellipticals & Bulges

Violent relaxation: rapidly changing potential: stars scatter off the changing potential, mixing their orbits and energies

Ellipticals & Bulges

Toomre & Toomre (1972) :: the "merger hyphothesis"

ellipticals are made by the collision and merger of spirals

T = 0 Myr

Gas

Structure in Elliptical Light Profiles

Faber & Jackson (1976)

- Faber-Jackson:
 - Convert v_c to sigma (randomize the velocities)
 - Tully-Fisher: M_baryon ~ 10^9.8 (V/100)^{3.5-4.0}
 - if ell M_baryon ~ M_stellar
 - Faber-Jackson: M_baryon ~ 10^{9.6-9.9} (sigma/100)^{3.5-4.0}
 - B-band differences owe to difference in (L_B/M_stellar) in ellipticals and disks
 - appear different in B, m_stellar, etc.


```
Size-Mass Relation:
R ~ M^1/2
```

```
    if:
M ~ sigma^4 (Faber-Jackson)
and virial theorem:
R ~ M / sigma^2
```

```
then get R \sim M^{1/2}
```

Both Faber-Jackson or Size-Mass relation have sufficient scatter that its unclear if anything "more accurate" for a mean relation is appropriate

- Kormendy:
 - mu R relation
 - Just a re-statement of the size-mass relation

Structure of Spheroids UNDERSTANDING THE FUNDAMENTAL PLANE

- If ellipticals were all homologous (self-similar), and L traced M reliably, then they would obey the virial relation:
 - sigma^2 = k G M / R_e ~ L / R_e, or M_dyn == sigma^2 R_e / G ~ L
 - k depends on the shape of the mass profile and the velocity structure (e.g. orbital anisotropy)

(L/M) decreases with mass: older, more metal rich?

Structure of Spheroids UNDERSTANDING THE FUNDAMENTAL PLANE

- Instead, the FP is "tilted":
 - (L / M_dyn) ~ M^{0.1-0.3, depending on the band}
 - three possible explanations:
 - stellar population variation:

M_dyn ~ M_stellar holds, but (L/M_stellar) varies with L

- kinematic non-homology:
 - velocity fields change
- structural non-homology:
 - profile shape changes with mass
 - stellar-to-dark-matter mass ratio changes (can be the same as the above, or different)

Indeed, there are very significant stellar population trends as a function of elliptical mass:

Hogg et al.,

Indeed, there are very significant stellar population trends as a function of elliptical mass:

These *do* explain much of the optical fundamental plane tilt:

but do they explain it all?

short answer: No

These *do* explain much of the optical fundamental plane tilt:

but do they explain it all?

Gallazzi et al. 2007

Fundamental Plane Tilt NON-HOMOLOGY

M_dyn / M_stellar is an increasing function of either M

SOME non-homology in ellipticals

Pahre et al. 1998

Fundamental Plane Tilt KINEMATIC NON-HOMOLOGY

Is sigma_obs systematically higher than it "should" be in highmass systems?

Inclusion of circular velocity in low-mass ellipticals should actually bias you the *opposite* way

- How do you get more baryons inside R_e?
- R_e is R_e of the stellar mass -- so this is equivalent to the question: how do you shrink R_e relative to the dark matter?
- Problem: dissipationless systems cannot increase their phase space density f

d M = f * dx dy dz dvx dvy dvz

> f ~ M / (r^3 * v^3) ~ 1 / (v * r^2)

Solution: Gas dissipation

Look at late-stage merger remnants

Bright ULIRGs make stars at a rate of $>100 M_{\odot}/yr$.

Extremely compact (<kpc scales)

Borne et al., 2000

Structure in Elliptical Light Profiles RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Structure in Elliptical Light Profiles RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Mergers *have* solved this problem: we just need to understand it

Structure in Elliptical Light Profiles RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Tuesday, December 25, 12

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS 12 M_p =-21.6 n_s = 3.0 f_s = 0.04 Ma =-21.6 n, = 2.2 15 16 16 17 = 0.03 18 19 17 18 11 20 19 21 20 0.0 0.2 0.4 0.6 1.80.0 0.2 0.4 0.6 1.0 1.4 1.8 1.0 0.6 0.6 1.4 15 16 17 Ma =-20.8 M₈ =-20.5 15 10 n = 1.5 f = 0.08 n, = 2.5 16 17 = 0.1718 19 20 21 18 19 20 9 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.6 1.0 1.4 0.6 1.0 1.4 M_e = 20.3 n = 1.9 1 = 0.07 15 16 17 18 19 20 21 Ma =-20.2 16 17 n, = 3.0 12 = 0.14 9 11 10 18 19 20 21 22 M_{gas}(before merger) [mag arcsec²] 1.0 0.0 0.2 0.4 0.6 0.6 1.0 1.4 0.0 0.2 0.4 0.6 0.6 1.4 M_p =-19.9 n, = 3.3 f, = 0.09 M_p =-19.9 15 16 16 17 n = 3.7 f = 0.08 17 18 19 ± 18 19 20 20 21 22 10 21 1.0 0.0 0.2 0.4 0.6 1.0 1.4 0.0 0.2 0.4 0.6 1.4 0.6 0.6 15 M₈ =-19.5 Ma =-19.3 16 17 n, = 3.1 n, = 2.9 17 $t_{*} = 0.06$ = 0.08 18 19 20 21 18 c" 19 20 21 1.0 1.4 0.0 0.2 0.4 0.6 1.0 1.4 0.0 0.2 0.4 0.6 0.6 0.6 DO M_a =-19.0 n, = 2.2 1, = 0.23 16 M_e =-18.4 n, = 1.3 0 17 16 18 19 20 21 = 0.430 0 18 0 20 22 22 10 12 13 9 11 1.0 r^{1/4} [kpc^{1/4}] 0.0 0.2 0.4 0.6 1.0 r¹⁴ [kpc¹⁴] 0.0 0.2 0.4 0.6 0.6 0.6 log(M,/M_e) fstarburst fatatourst

Put more mass into a central dissipational component: moves R_e inward more of the mass inside R_e is this (totally baryon-dominated) central cusp

- Can match all (cusp) ellipticals with simple gas-rich merger remnants
- NEED systematically higher gas content in the progenitors at lower masses to explain the observed profile shapes
- This just recovers the *observed* dependence of f_gas on disk mass!

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

Tuesday, December 25, 12

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

Emerging evidence that the FP reflects a sequence in dissipation in the formation of ellipticals

- Need more evidence:
 - velocities
 - kinematic substructure
 - stellar populations
 - orbital structure

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

