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Motivation
HOW DID WE GET TO GALAXIES TODAY?

Dark matter halos collapse:
gas cools into a disk

Brooks et al.

protogalactic cloud with more angular momentum spiral galaxy

What happens when that starts colliding into other galaxies?
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Major mergers destroy disks

Minor mergers make thick disk | v i L
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Our Conventional Wisdom (Toomre):

Major mergers destroy disks
Minor mergers make thick disk
Remnant has an r'#4 law profile

Remnant size/metallicity/shape retains
“memory” of disk “initial conditions”

F. Summers
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Motivation
HOW DID WE GET TO GALAXIES TODAY?

Many of these are *problems*...
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Stellar disk-disk merger remnants don’t look like bulges!
-- sizes too large
-- profiles too flat
-- shapes too flattened
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T= 0Myr Gas
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T= 0Myr Gas

\

Tidal torques = large, rapid gas inflows (e.g. Barnes & Hernquist 1991)
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T= 0Myr Gas

Tuesday, December 25, 12




T= 0Myr Gas

\

Triggers Starbursts (e.g. Mihos & Hernquist 1996)
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T= 0Myr Gas
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T= 0Myr Gas

\

Fuels Rapid BH Growth (e.g. D1 Matteo et al., PFH et al. 2005)
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T= 0Myr Gas
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T= 0Myr Gas

\

Feedback expels remaining gas, shutting down growth (more later...)
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T= 0Myr Gas
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T= 0Myr Gas

\

Merging stellar disks grow spheroid
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T= 0Myr Gas
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?
Borne et al., 2000

Funneled to the center
—» Mmassive
starbursts

Locally, all massive
starbursts (> 100 M/

yr) are late-stage mergers

Observe Compact Gas:
~1010 Mgun on <kpc scales

Are they the progenitors of ellipticals?
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?  More Gas (f,.)

>

—» Mmassive
starbursts

Locally, all massive
starbursts (> 100 M/

yr) are late-stage mergers

Observe Compact Gas:
~1010 Mgun on <kpc scales

More Bulge (B/T)
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?

New Work by

D. Narayanan,
C. Hayward,
P. Jonsson

SUNRISE code:

3-d, adaptive mesh (post-process)

Monte Carlo radiative transfer

sub-grid model for ISM clouds

dust radiative equilibrium

line transfer (polychromatic)

Mappings/CLOUDY model for
stellar birth clouds/PDRs
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?
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What About the Gas that Does Lose Angular Momentum?

CAN WE MAKE A REAL ELLIPTICAL?
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What About the Gas that Does Lose Angular Momentum?

CAN WE MAKE A REAL ELLIPTICAL?

3-d, adaptive mesh (post-proces:
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What About the Gas that Does Lose Angular Momentum?

CAN WE MAKE A REAL ELLIPTICAL?
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What About the Gas that Does Lose Angular Momentum?
STARBURSTS: ON THEIR WAY TO ELLIPTICALS?

Not just at z=0, but in high-redshift sub-millimeter galaxies
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So What Difterence Does this
Starburst Make?

Tuesday, December 25, 12



The Problem: The Fundamental
Plane & Bulge Densities:

Stellar R, [kpc]

heroid
Why are ellipticals smaller than disks? n Spheroids

106 108 110 112 114 116
log[ M. / Mg]

Gas | Stars Gas Dissipation
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The Problem

FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Increased dissipation—>smaller, more compact
remnants (Cox; Khochfar; Naab; Robertson)

PFH, Cox et al. 2008
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Bulge mass fraction formed in bursts
(versus violently relaxed from disks)
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The Problem
FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Increased dissipation—>smaller, more compact
remnants (Cox; Khochfar; Naab; Robertson)
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“Compact” Ellipticals?
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T. Naab et al.



Compare: massive spheroids
at z=2 to those today

... VS gas-rich merger with later
low-density/minor mergers
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Starburst Stars in Simulations Leave an “Imprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Mihos & Hernquist 1994

Merger remnant elliptical profiles
should be fundamentally
two-component:

£
g G P _starburst/Disk
| (dissipationless, violently
o | relaxed)
Starburst

(dissipational, no strong
violent relaxation)

e(1/4)
Not observed at the time:

“Can the merger hypothesis be reconciled with the lack of dense stellar cores in most normal
ellipticals?” (MH94)
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Starburst Stars in Simulations Leave an “Imprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Since then...
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“Normal and low-luminosity ellipticals... in fact, have extra, not missing light at at small radii
with respect to the inward extrapolation of their outer Sersic profiles.”
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008
PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008
PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:

S —
o AM1158-333
16: T \A\
\
i \ .
18! \
& ! \
> | \
& 20~ Gas “Needed”
B 14‘ \ -
g b
. 6l f,=0.31x=0.09

Direct \\
simulation-
20 observation®

\

. B BAL e BA

06 08 10 12 14
r1'4 [kpc1.'-1]

14
15

17
18

19/

20
14

15
16
17

18|

19
20

16

\ {,=0.17 £ 0.08)
\

\ i Simulation

\ .
: - profile

. ?
E \ _j

o &% . Simulation

N : starburst

10 12 14 16 18 20

< rofile
r' [kpc'] P

Tuesday, December 25, 12



Application: Merger Remnants PFH & Rothberg et al. 2008
RECOVERING THE ROLE OF GAS PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Structure in Elliptical Light Profiles PFH & Rothberg et al. 2008
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS PFH, Kormendy, & Lauer et al. 2008

Starburst gas mass needed to
match observed profile (or
fitted to profile shape):

fstarburst

- Observed Disk
Gas Fractions:
o 2=0

0 O
- 0 0
@ O
9.0 95 10.0 105 110 g b 120 9.0 95 100 105 110 ¢ b R 120
log( M, / Mg) log( M, / My)

You can and do get realistic ellipticals given the observed
amount of gas in progenitor disks

Independent checks: stellar populations (younger burst mass);
metallicity/color/age gradients; isophotal shapes; kinematics;
recent merger remnants; enrichment patterns
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Structure in Elliptical Light Profiles PFH, Cox, & Hernquist 2008
EXPLAINS THE “TILT” IN THE FP RELATIONS

T
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Fundamental Plane Tilt PFH, Cox, & Hernquist 2008
WHERE DOES IT COME FROM?

Fundamental plane: “tilt” driven by amount of dissipation
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?

Given a galaxy, isolate ‘burst relic’ Xl clic stars (R)
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?

If formed dissipationally, then this reflects gas-star conversion “in situ”

Z7“elz'c stafrs(R) ™ 2gas for bu’rst(Rat — tbufrst)
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?

Assume Schmidt-Kennicutt law applies: Recover SFH

Y s (By 1) — Su(R,t) — Syas(R,t + At)
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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Re-construct SFR(t) for each burst :

SFR (Total) [Mgyr']

04'{ - -- ﬁ?g:?éd (Two-Sided) B
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+ We know the nuclear SSP ages.... tGyr]
YT ]
: Best-Fit Trend
12+
10| |
gl - “place” each burst

OTrager et al. 2000 -
A Caldwell et al. 2003
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Recover the IR LF of dissipational starbursts!

Re-constructed burst LF

PFH & Hernquist 20
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PFH & Hernquist 20

Bursts always dominate at high L, but the threshold shifts

Re-constructed burst LF
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PFH & Hernquist 20

Bursts never dominate the SFR density!
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Why Is There Not Much More Efficient
Gas Consumption at High Redshifts?
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How Good Is Our Conventional Wisdom?

GaS'RICh (fgas ind 01)

Gas-Richer (fgas ~ 0.4)

stars gas
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Major Merger Remnants
DO MERGERS DESTROY DISKS?

Bulge (B/T =0.2) Stellar Disk Gas Disk

- ’

T

z [kpc]

| ARAS ARAS |

200
100
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The Unsolved Questions
HOW CAN A DISK SURVIVE?

Stellar disks are collisionless: they violently relax when they collide

Can’t “cool” into a new disk

Tuesday, December 25, 12



The Unsolved Questions
HOW CAN A DISK SURVIVE?

Gas, however, is collisional (will cool into new disk): only goes
to center and bursts if angular momentum is removed

alllll> - < -

Governato et al.
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How Do Disks Survive Mergers? PFH et al. 2008

companions -- bars -- gas/star offset -- torques --
gas inflow (see, e.g., Barnes 92, Barnes & Hernquist 96, Mihos &
W LI B BN R B B Hernquist94,96)

i | ; stars
: ; (color)

gas
(contours)

What does the torquing?
Stars in the same galaxy
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How Do Disks Survive Mergers?

Torque on gas:
t ~ G Mstellar distortion / dr

For the same merger/perturbation:
Msteliar distortion X Msteliar O<(1 - fgas)

PFH et al. 2008 (“How Do Disks Survive Mergers?”)

Burst mass vs. fgas
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How Do Disks Survive Mergers?

Can analytically determine
burst masses and properties
as a function of e.g.
orbital parameters, fgas,
merger mass ratio, etc.

Need to know these parameters
to say what mergers “do”

Remnant B/T

1.0
0.8
0.6

0.4

.OL.

0.0

PFH et al. 2008 (“How Do Disks Survive Mergers?”)
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How Do Disks Survive Mergers?

Can analytically determine
burst masses and properties
as a function of e.g.
orbital parameters, fgas,
merger mass ratio, etc.

Need to know these parameters
to say what mergers “do”

Not a step function!

Remnant B/T

1.0
0.8

0.6

PFH et al. 2008 (“How Do Disks Survive Mergers?”)
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How Do Disks Survive Mergers?

Can analytically determine
burst masses and properties
as a function of e.g.
orbital parameters, fgas,
merger mass ratio, etc.

Need to know these parameters
to say what mergers “do”

Remnant B/T
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How Do Disks Survive Mergers?

O o 4]
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Why Do We Care? PFH & Somerville et al. 200
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Fold this into a cosmological model: why do we care?

1.0 _ﬁn,.y_I.‘Y .-,”, T 1.0
: ' * Relic B/T after a major
0.8 ¥ T Z=2 0.8 merger with these gas
‘ . I 1= fractions
T O
0.6 o i % 0.6
% { | s |
4] R | (2 0.4
el I, 1= %
0.2f A N T @ 0.2
| Erbetal - = i
0.0 L bdid (SR SR WWRRRETEEE e - 0.0 r L33 Laia
8 9 10 11 12 8 9 10 11 12
log( M, / M) log( M, / M)

Low-mass galaxies have high gas fractions: less B/T for the same mergers
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Predict lots of high-z disks!

Needed for their existence
We see them
(Genzel, Tacconi, Erb, Law, et al.)

May explain some properties (turbulence etc.)
(Robertson & Bullock, 2009)
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How does this relate to starbursts?
SAME MODEL GIVES STARBURST PROPERTIES FOR EACH MERGER

Surviving disk

For each merger,
can estimate mass in: > Violently relaxed
(from disk stars)

Starburst

— I ' ' ik (from disk gas)
5 10;
= ;
T 4. 1 Given Mpurst,
e SFR(t) well-defined
L
»n 0.1:

-0.5 0.0 0.5 1.0

t [Gyr]
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Burst versus “Normal” (Non-Merger) Luminosity Functions PFH, Younger et al. 20

Normal/Disk
Burst/Merger
Obscured AGN

log(®) [Mpc®log™(Lp)]

11 12 13 14 11 12 13 14 11 12 13 14
log(Lir) [Lo]
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Have burst predictions -- why not use them?

PFH, Younger et al. 20
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Have burst predictions -- why not use them? PFH, Younger et al. 20

All SF in Merglng Systems # All SF Induced by Mergers
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Have burst predictions -- why not use them?

PFH, Younger et al. 20
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Summary

Ellipticals are smaller than spirals! How do we make a real elliptical?

Gas! Dissipation builds central mass densities, explains observed scaling laws:
just need disks as gas rich as observed (fgas ~ 0.1 - 0.5)

Explains compact z~2 galaxy and SMG sizes: Inside-out formation via mergers

Relics of starbursts are important in today’s Universe
What to expect at high redshifts: naturally link today’s spheroids with high-z starbursts

How do disks survive mergers? (How do we avoid making all ellipticals?)

Gas! No stars = No angular momentum loss

Particularly important at high-z

Drives the starburst history of the Universe...
but not always as you’d expect

Understanding the structure and scalings
of galaxies can be reduced to understanding
their gas-consumption histories...
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