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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.

2 THE SPH LAGRANGIAN & EQUATIONS OF MOTION

2.1 A Fully General Derivation

Following S02, note that the SPH equations can be derived self-
consistently from the discrete particle Lagrangian
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h are constant, then the only independent variables are the ri and
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where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
carried ui, then self-consistency with the thermodynamic equation
above requires that we define the pressure in the above equation
as Pi = (�� 1)ui (mi/�Vi); if we follow the entropy Ai we must
define Pi = Ai (mi/�Vi)
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makes it differentiable in order to make progress. This usually
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number” or “mass inside a kernel.” We stress that this language is
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a continuous relation between h and some local volumetric quantity
is enforced, for example (4⇡/3)h3

i ⇢i = Mkernel = mi Nngb (so that
hi / ⇢�1/3

i ). Any such constraint (if continuous) is equally valid:
motivated by the “effective neighbor number” approach we can de-
fine the constraint equation

�i(q)⌘
4⇡
3

h3
i

1
�Ṽi
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where �Ṽi is some continuous estimator of the “particle volume”;
e.g. for �Ṽi = mi/⇢i, we recover the approximate “mass in kernel”
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We stress that �Ṽ does not need to be the same as �V ; one is
the effective volume used to evolve the thermodynamics, the other
is simply any continuous function used to define the hi, so as to
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ate “rh” terms in the EOM.

The equations of motion can then be determined from

d
dt
@L
@q̇i

� @L
@qi

=
NX

j=1

� j
@� j

@qi
(4)

where �i are the Lagrange multipliers. The second half of these
equations (qi = hi) lead to the Lagrange multipliers

�i =�3Pi �Ṽ 2
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3�Ṽi

@�Vi

@hi

h
1� hi

3�Ṽi
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Inserting this into the first half of the equations gives the EOM
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Now we require some way of defining “volumes.” In SPH
this is done with respect to the kernel sum: for any particle-carried
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
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ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.
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i �

NX

i=1

mi ui (1)

in the independent variables q = (r1, ...,rN ,h1, ...,hN), namely the
positions and smoothing lengths of each volume element/particle,
and the internal energy per unit mass u. If the smoothing lengths
h are constant, then the only independent variables are the ri and
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where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
carried ui, then self-consistency with the thermodynamic equation
above requires that we define the pressure in the above equation
as Pi = (�� 1)ui (mi/�Vi); if we follow the entropy Ai we must
define Pi = Ai (mi/�Vi)
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If h is allowed to vary, then we require some relation which

makes it differentiable in order to make progress. This usually
amounts to enforcing some condition on the effective “neighbor
number” or “mass inside a kernel.” We stress that this language is
somewhat misleading: it is not actually the case that there is exactly
a certain neighbor number or mass inside the kernel, but rather that
a continuous relation between h and some local volumetric quantity
is enforced, for example (4⇡/3)h3
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i ). Any such constraint (if continuous) is equally valid:
motivated by the “effective neighbor number” approach we can de-
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where �Ṽi is some continuous estimator of the “particle volume”;
e.g. for �Ṽi = mi/⇢i, we recover the approximate “mass in kernel”
constraint.

We stress that �Ṽ does not need to be the same as �V ; one is
the effective volume used to evolve the thermodynamics, the other
is simply any continuous function used to define the hi, so as to
make them differentiable and thus allow us to include the appropri-
ate “rh” terms in the EOM.
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.
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where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
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�Ṽi

�Nngb = 0 (3)
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3�Ṽi

@�Ṽi
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.
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where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
carried ui, then self-consistency with the thermodynamic equation
above requires that we define the pressure in the above equation
as Pi = (�� 1)ui (mi/�Vi); if we follow the entropy Ai we must
define Pi = Ai (mi/�Vi)
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.

2 THE SPH LAGRANGIAN & EQUATIONS OF MOTION
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P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
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a certain neighbor number or mass inside the kernel, but rather that
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is enforced, for example (4⇡/3)h3
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where �Ṽi is some continuous estimator of the “particle volume”;
e.g. for �Ṽi = mi/⇢i, we recover the approximate “mass in kernel”
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We stress that �Ṽ does not need to be the same as �V ; one is
the effective volume used to evolve the thermodynamics, the other
is simply any continuous function used to define the hi, so as to
make them differentiable and thus allow us to include the appropri-
ate “rh” terms in the EOM.
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3�Ṽi

@�Ṽi
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.
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the equations of motion follow from d(@L/@q̇i)/dt = @L/@qi. We
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where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
carried ui, then self-consistency with the thermodynamic equation
above requires that we define the pressure in the above equation
as Pi = (�� 1)ui (mi/�Vi); if we follow the entropy Ai we must
define Pi = Ai (mi/�Vi)
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If h is allowed to vary, then we require some relation which

makes it differentiable in order to make progress. This usually
amounts to enforcing some condition on the effective “neighbor
number” or “mass inside a kernel.” We stress that this language is
somewhat misleading: it is not actually the case that there is exactly
a certain neighbor number or mass inside the kernel, but rather that
a continuous relation between h and some local volumetric quantity
is enforced, for example (4⇡/3)h3
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where �Ṽi is some continuous estimator of the “particle volume”;
e.g. for �Ṽi = mi/⇢i, we recover the approximate “mass in kernel”
constraint.

We stress that �Ṽ does not need to be the same as �V ; one is
the effective volume used to evolve the thermodynamics, the other
is simply any continuous function used to define the hi, so as to
make them differentiable and thus allow us to include the appropri-
ate “rh” terms in the EOM.
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.
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the equations of motion follow from d(@L/@q̇i)/dt = @L/@qi. We
require the derivatives of the ui; recalling that this is at constant
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where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
carried ui, then self-consistency with the thermodynamic equation
above requires that we define the pressure in the above equation
as Pi = (�� 1)ui (mi/�Vi); if we follow the entropy Ai we must
define Pi = Ai (mi/�Vi)

� .
If h is allowed to vary, then we require some relation which

makes it differentiable in order to make progress. This usually
amounts to enforcing some condition on the effective “neighbor
number” or “mass inside a kernel.” We stress that this language is
somewhat misleading: it is not actually the case that there is exactly
a certain neighbor number or mass inside the kernel, but rather that
a continuous relation between h and some local volumetric quantity
is enforced, for example (4⇡/3)h3
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hi / ⇢�1/3
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where �Ṽi is some continuous estimator of the “particle volume”;
e.g. for �Ṽi = mi/⇢i, we recover the approximate “mass in kernel”
constraint.

We stress that �Ṽ does not need to be the same as �V ; one is
the effective volume used to evolve the thermodynamics, the other
is simply any continuous function used to define the hi, so as to
make them differentiable and thus allow us to include the appropri-
ate “rh” terms in the EOM.
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.
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Following S02, note that the SPH equations can be derived self-
consistently from the discrete particle Lagrangian

L(q, q̇) = 1
2

NX

i=1

mi ṙ2
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where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
carried ui, then self-consistency with the thermodynamic equation
above requires that we define the pressure in the above equation
as Pi = (�� 1)ui (mi/�Vi); if we follow the entropy Ai we must
define Pi = Ai (mi/�Vi)
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where �Ṽi is some continuous estimator of the “particle volume”;
e.g. for �Ṽi = mi/⇢i, we recover the approximate “mass in kernel”
constraint.

We stress that �Ṽ does not need to be the same as �V ; one is
the effective volume used to evolve the thermodynamics, the other
is simply any continuous function used to define the hi, so as to
make them differentiable and thus allow us to include the appropri-
ate “rh” terms in the EOM.
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@�Ṽi

@hi

i�1
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Inserting this into the first half of the equations gives the EOM

mi
dvi

dt
=

NX

j=1

Pj

h
ri�Vj + j ri�Ṽj

i
(7)

Now we require some way of defining “volumes.” In SPH
this is done with respect to the kernel sum: for any particle-carried
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the surface tension term). Some of these show great promise. How-
ever, many (though not all) of these formulations either introduce
additional (potentially unphysical) dissipation terms and/or explic-
itly violate the manifest conservation and continuity solutions de-
scribed above – perhaps the greatest advantages of SPH. This can
lead to severe errors in problems with strong shocks or high-Mach
number flows, limited resolution, or much larger gradients between
phase boundaries (J. Read, private communication; see also the dis-
cussion in Price 2012b; Read & Hayfield 2012; Abel 2011). All
of these regimes are inevitable in most astrophysically interesting
problems.

Recently however, Saitoh & Makino (2012) (henceforth
SM12) pointed out that the essential results of most of these fla-
vors can be derived self-consistently in a manner that does properly
conserve energy. The key insight is that the “problematic” inclusion
of the density in the EOM (as opposed to some continuous prop-
erty near contact discontinuities) arises because of the ultimately
arbitrary choice of how to discretize the SPH volume element (typ-
ically chosen to be ⇠ mi/⇢i). Beginning with an alterative choice of
volume element, one can in fact consistently derive a conservative
EOM. They propose a specific form of the volume element involv-
ing internal energy and pressure, and show that this eliminates the
surface tension term and resolves many problems of mixing near
contact discontinuities.

In this paper, we develop this approach to provide a rigorous,
conservative, Lagrangian basis for the formulation of alternative
“flavors” of SPH, and show that this can robustly resolve certain
issues in mixing. Although the EOM derived in SM12 conserves
energy, it was derived from an ad-hoc discretization of the hydro-
dynamic equations, not the discrete particle Lagrangian. As such
it cannot guarantee simultaneous conservation of energy and en-
tropy (as well as momentum and angular momentum). And the
EOM they derive is conservative only for constant SPH smooth-
ing lengths (in time and space); to allow for adaptive smoothing
(another major motivation for SPH), it is necessary to derive the
“rh” terms which account for their variations. This links the vol-
ume elements used for smoothing in a manner that necessitates a
Lagrangian derivation. And their derivation depends on explicitly
evolving the particle internal energy; there are a number of advan-
tages to adopting entropy-based formulations of the SPH equations
instead.

We show here that – allowing for a different initial choice
of which thermodynamic volume variable is discretized – an en-
tire extensible class of SPH algorithms can be derived from the
discrete particle Lagrangian, and write a general EOM for these
methods (Eq. 12, our key result). We derive specific “pressure-
energy” (Eq. 18) and “pressure-entropy” (Eq. 21) formulations of
the EOM, motivated by the approaches above that endeavor to en-
force single-valued SPH pressures near contact discontinuities. We
consider these methods in a wide range of idealized and more com-
plex test problems, and show that they simultaneously maintain
manifest conservation while tremendously improving the treatment
of contact discontinuities and fluid mixing processes.

2 THE SPH LAGRANGIAN & EQUATIONS OF MOTION

2.1 A Fully General Derivation

Following S02, note that the SPH equations can be derived self-
consistently from the discrete particle Lagrangian

L(q, q̇) = 1
2

NX

i=1

mi ṙ2
i �

NX

i=1

mi ui (1)

in the independent variables q = (r1, ...,rN ,h1, ...,hN), namely the
positions and smoothing lengths of each volume element/particle,
and the internal energy per unit mass u. If the smoothing lengths
h are constant, then the only independent variables are the ri and
the equations of motion follow from d(@L/@q̇i)/dt = @L/@qi. We
require the derivatives of the ui; recalling that this is at constant
entropy, so du =�(P/m)dV , we have:

@ui

@qi

���
A
=� Pi

mi

@�Vi

@qi
(2)

where Pi is the pressure and �Vi is some estimator of the particle
“volume.”

We clearly require some thermodynamic variable to determine
P; we can choose “which” to follow, for example internal energy u
or entropy A. For a gas which is polytropic under adiabatic evolu-
tion (we consider more general cases below), if we follow particle-
carried ui, then self-consistency with the thermodynamic equation
above requires that we define the pressure in the above equation
as Pi = (�� 1)ui (mi/�Vi); if we follow the entropy Ai we must
define Pi = Ai (mi/�Vi)

� .
If h is allowed to vary, then we require some relation which

makes it differentiable in order to make progress. This usually
amounts to enforcing some condition on the effective “neighbor
number” or “mass inside a kernel.” We stress that this language is
somewhat misleading: it is not actually the case that there is exactly
a certain neighbor number or mass inside the kernel, but rather that
a continuous relation between h and some local volumetric quantity
is enforced, for example (4⇡/3)h3

i ⇢i = Mkernel = mi Nngb (so that
hi / ⇢�1/3

i ). Any such constraint (if continuous) is equally valid:
motivated by the “effective neighbor number” approach we can de-
fine the constraint equation

�i(q)⌘
4⇡
3

h3
i

1
�Ṽi

�Nngb = 0 (3)

where �Ṽi is some continuous estimator of the “particle volume”;
e.g. for �Ṽi = mi/⇢i, we recover the approximate “mass in kernel”
constraint.

We stress that �Ṽ does not need to be the same as �V ; one is
the effective volume used to evolve the thermodynamics, the other
is simply any continuous function used to define the hi, so as to
make them differentiable and thus allow us to include the appropri-
ate “rh” terms in the EOM.

The equations of motion can then be determined from

d
dt
@L
@q̇i

� @L
@qi

=
NX

j=1

� j
@� j

@qi
(4)

where �i are the Lagrange multipliers. The second half of these
equations (qi = hi) lead to the Lagrange multipliers

�i =�3Pi �Ṽ 2
i

4⇡ h3
i
 i (5)

 i ⌘
hi

3�Ṽi

@�Vi

@hi

h
1� hi

3�Ṽi

@�Ṽi

@hi

i�1
(6)

Inserting this into the first half of the equations gives the EOM

mi
dvi

dt
=

NX

j=1

Pj

h
ri�Vj + j ri�Ṽj

i
(7)

Now we require some way of defining “volumes.” In SPH
this is done with respect to the kernel sum: for any particle-carried
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scalar value xi, the x-weighted volume average yi = ȳ can be con-
structed as

yi ⌘
NX

j=1

x j Wi j(hi) (8)

where Wi j(hi) = Wi j(|r|i j/hi) is the smoothing kernel (discussed
further below) as a function of |r|i j ⌘ |ri � r j|. The corresponding
x-weighted volume element can then be defined as �Vi ⌘ xi/yi.
Note that for the choice xi = mi, we recover the familiar “standard”
SPH choices of yi = ⇢i and �Vi = mi/⇢i; but any other choice of
xi is in principle equally valid. For any well-behaved kernel, this
makes the �Vi fully differentiable functions of r and h:

@�Vi

@hi
=� xi

y2
i

@yi

@hi
, ri�Vj =� x j

y2
j
ri y j (9)

with

ri y j = xi ri Wi j(hj)+ �i j

NX

k=1

xk ri Wik(hi) (10)

@yi

@hi
=�

NX

j=1

x j

hi

⇣
3Wi j(hi)+

|r|i j

hi

@W (|r|/h)
@(|r|/h)

���
|r|i j/hi

⌘
(11)

Putting all of this together, we obtain

mi
dvi

dt
=�

NX

j=1

xi x j

hPi

y2
i

fi j riWi j(hi)+
Pj

y2
j

f ji riWi j(hj)
i

(12)

fi j ⌘ 1� x̃ j

x j

⇣ hi

3 ỹi

@yi

@hi

⌘h
1+

hi

3 ỹi

@ỹi

@hi

i�1
(13)

Because the “potential” (thermal energy) in the Lagrangian
here depends only on coordinate differences and is rotationally
symmetric, the pair-wise force in Eq. 12 is automatically anti-
symmetric (i.e. obeys Newton’s third law); energy, entropy, mo-
mentum, and angular momentum are all manifestly conserved, pro-
vided that smoothing lengths are adjusted to ensure the appropri-
ate � constraint (it is straightforward to verify this explicitly). The
so-called “rh” terms, which depend on derivatives in time and
space of the smoothing lengths, are implicitly included to all or-
ders, via the f terms. The final EOM for any choice of xi and x̃i

involves essentially identical information, constraints, and cost. In
other words, because all of the formulations we consider are sim-
ply replacing the choice of particle-carried scalar in Eq. 12, they
involve identical computational expense for otherwise equal gas
conditions.

2.2 Formulations of the SPH Equations

2.2.1 Density-Entropy Formulation

If we take xi = x̃i = mi (giving yi = ỹi = ⇢̄i, the kernel-averaged
mass density estimator, and volume estimator �Vi = mi/⇢i), and
follow the entropy Ai (giving Pi = P̄i = Ai ⇢̄

�
i ), we obtain the EOM

from S02:

dvi

dt
=�

NX

j=1

mj

h fi P̄i

⇢̄2
i
riWi j(hi)+

f j P̄j

⇢̄2
j
riWi j(hj)

i
(14)

=�
NX

j=1

mj

h
fi Ai ⇢̄

��2
i riWi j(hi)+ f j A j ⇢̄

��2
j riWi j(hj)

i

fi =
h
1+

hi

3 ⇢̄i

@⇢̄i

@hi

i�1
, ⇢̄i ⌘

NX

j=1

mj Wi j(hi)

Note that for adiabatic evolution, we require no energy equa-
tion, since entropy is followed; for a specific energy defined as
u ⌘ P̄i/[(� � 1) ⇢̄i] = (� � 1)�1 Ai ⇢̄

��1
i , energy conservation is

manifest from the EOM above.
As discussed in § 1, this formulation is known to have

trouble treating certain contact discontinuities. Because the only
volumetric quantity that enters is the density, this fails when
the densities are no longer differentiable, even when pressure
is smooth/constant. Specifically, consider a contact discontinuity,
⇢1 c2

1 = ⇢2 c2
2 (where quantities ‘1’ and ‘2’ are on either side of

the discontinuity). As we approach the discontinuity, the kernel-
estimated density must trend to some average because it spherically
averages over both “sides,” ⇢! h⇢i, but the particle-carried sound
speeds c remain distinct, so the pressure is now multi-valued, with
a ‘pressure blip’ of magnitude ⇠ (⇢max/⇢min)Ptrue appearing. This
has a gradient across the central smoothing length, causing an ar-
tificial, repulsive “surface tension” force that suppresses interpene-
tration across the discontinuity.

2.2.2 Pressure-Energy Formulation

Instead consider xi = x̃i = (�� 1)Ui ⌘ (�� 1)mi ui, proportional
to the particle internal energy. Now, yi = ỹi is by definition a di-
rect kernel-averaged pressure estimator yi = P̄i, and �Vi = (� �
1)mi ui/Pi. This means that the pressure itself is now the directly
kernel-averaged quantity entering the EOM and is therefore al-
ways single-valued. So long as the pressure is smooth/differentiable
(regardless of how the density varies), the EOM should be well-
behaved. For this choice, we obtain:3

dvi

dt
=�

NX

j=1

(��1)2mj ui u j

h fi

P̄i
riWi j(hi)+

f j

P̄j
riWi j(hj)

i

fi =
h
1+

hi

3 P̄i

@P̄i

@hi

i�1
, P̄i ⌘

NX

j=1

(��1)mj u j Wi j(hi) (15)

Recall, we now need to evolve the energy explicitly. From
Eq. 2, du/dt =�(P/m)(d�V/dt), and the evolution of the volume
element �V just follows from the Lagrangian continuity equation,
so we obtain

dui

dt
=

NX

j=1

(��1)2 mj ui u j
fi

P̄i
(vi �v j) ·riWi j(hi) (16)

It is straightforward to see that this guarantees explicit energy con-
servation; entropy conservation is implicit and also easily verified.

There are, however, significant drawbacks to the choice of
x̃i = xi (�Ṽ =�V ), in which case we are implicitly defining h such
that h3

i / ui/P̄i. This is, by itself, perfectly valid and is easily solved
by the same bisector method as in the “standard” (�Ṽ = m/⇢) for-
mulation. However, in practice, the particle ui values vary much
more widely than the mi. This leads to some potential problems.
First, if there is large variation in ui, convergence in hi can become

3 Eq. 15 is similar to the EOM derived in SM12, itself identical to that de-
rived earlier in Ritchie & Thomas (2001) from purely heuristic arguments.
These do, after all, motivate the derivation here. However there are two key
differences. First, we derive and include the rh terms ( fi = 1 in SM12),
necessary for conservation if h varies. Second, the rW terms enter dif-
ferently (with different multipliers and indices). This stems from the La-
grangian derivation and is necessary – even for constant h – for the EOM
to simultaneously conserve energy and entropy (i.e. to properly advect the
thermodynamic volume element).
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quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:

dvi

dt
=�

NX

j=1

(��1)2mj ui u j

h fi j

P̄i
riWi j(hi)+

f ji

P̄j
riWi j(hj)

i

fi j = 1�
⇣ hi

3(��1) n̄i m j u j

@P̄i

@hi

⌘h
1+

hi

3 n̄i

@n̄i

@hi

i�1
(18)

Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)

P̄i = y�i =
h NX

j=1

mj A1/�
j Wi j(hi)

i�
(19)

If we also assume x̃i = xi, the EOM become

dvi

dt
=�

NX

j=1

mj (Ai Aj)
1
�

h fi P̄i

P̄2/�
i

riWi j(hi)+
f j P̄j

P̄2/�
j

riWi j(hj)
i

fi =
h
1+

hi

3 P̄1/�
i

@P̄1/�
i

@hi

i�1
(20)

4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:

dvi

dt
=�

NX

j=1

mj (Ai Aj)
1
�

h fi j P̄i

P̄2/�
i

riWi j(hi)+
f ji P̄j

P̄2/�
j

riWi j(hj)
i

(21)

with

fi j = 1�
⇣ hi

3A1/�
j m j n̄i

@P̄1/�
i

@hi

⌘h
1+

hi

3 n̄i

@n̄i

@hi

i�1
(22)

As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:
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Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)
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If we also assume x̃i = xi, the EOM become
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4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:
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As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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�Ṽi =
1

ni
ni =

X

j

W (rj , hi)

Saturday, March 9, 13



4 Hopkins et al.

quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:

dvi

dt
=�

NX

j=1

(��1)2mj ui u j

h fi j

P̄i
riWi j(hi)+

f ji

P̄j
riWi j(hj)

i

fi j = 1�
⇣ hi

3(��1) n̄i m j u j

@P̄i

@hi

⌘h
1+

hi

3 n̄i

@n̄i

@hi

i�1
(18)

Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)

P̄i = y�i =
h NX

j=1

mj A1/�
j Wi j(hi)

i�
(19)

If we also assume x̃i = xi, the EOM become

dvi

dt
=�

NX

j=1

mj (Ai Aj)
1
�

h fi P̄i

P̄2/�
i

riWi j(hi)+
f j P̄j

P̄2/�
j
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i

fi =
h
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3 P̄1/�
i
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i
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4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:

dvi

dt
=�
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1
�

h fi j P̄i
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i
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j
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with
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As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:

dvi

dt
=�

NX

j=1

(��1)2mj ui u j

h fi j

P̄i
riWi j(hi)+

f ji

P̄j
riWi j(hj)

i

fi j = 1�
⇣ hi

3(��1) n̄i m j u j
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⌘h
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hi
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@n̄i

@hi

i�1
(18)

Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)

P̄i = y�i =
h NX

j=1

mj A1/�
j Wi j(hi)

i�
(19)

If we also assume x̃i = xi, the EOM become

dvi

dt
=�
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j=1

mj (Ai Aj)
1
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h fi P̄i

P̄2/�
i
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f j P̄j
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j
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i
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h
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i
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4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:

dvi

dt
=�

NX

j=1

mj (Ai Aj)
1
�

h fi j P̄i

P̄2/�
i

riWi j(hi)+
f ji P̄j
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(21)

with

fi j = 1�
⇣ hi
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As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:

dvi

dt
=�

NX

j=1

(��1)2mj ui u j
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Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)

P̄i = y�i =
h NX

j=1

mj A1/�
j Wi j(hi)

i�
(19)

If we also assume x̃i = xi, the EOM become
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dt
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4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:
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dt
=�

NX

j=1

mj (Ai Aj)
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with
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As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:
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Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)

P̄i = y�i =
h NX

j=1

mj A1/�
j Wi j(hi)

i�
(19)

If we also assume x̃i = xi, the EOM become
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4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:
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As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:
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Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)

P̄i = y�i =
h NX

j=1

mj A1/�
j Wi j(hi)

i�
(19)

If we also assume x̃i = xi, the EOM become
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4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:
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=�
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As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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quite expensive. Second, again under circumstances with large dis-
order, the required hi can become very large, leading to an effective
loss of resolution. Third and most problematic, under some circum-
stances the constraint � can have multiple solutions; in this case if
hi “jumps,” it is no longer continuously differentiable, and so exact
energy conservation is broken.

An obvious alternative is to use x̃ ⌘ 1, i.e. �Ṽi ⌘ 1/n̄i, where
n̄i is the “particle number density”

n̄i = ỹi(x̃ = 1)⌘
NX

j=1

Wi j(hi) (17)

This restores the effective “number of neighbors” criterion for hi,
and is always well-behaved since all particles are weighted equally.
If we do this, the EOM become:
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Note that this is just the previous equation with fi ! fi j; in other
words, the EOM are identical up to the “rh” corrections, which
is what we expect, since the only function of the �Ṽ term is to
determine how the hi evolve. Trivially, then, the energy equation is
also the same as above but with fi ! fi j.

As discussed in SM12, because the volumetric quantity used
in the EOM here is now directly the kernel-estimated pressure (in-
stead of the density), this formulation automatically guarantees that
pressure is single-valued at contact discontinuities, and so removes
the pressure “blip” and surface tension force. The equations will
now be well-behaved so long as pressure is smooth. This is true
by definition in contact discontinuities; it is of course not true at
shocks, but neither (typically) is the density constant there – so we
do not lose any desirable behaviors of the density-entropy formu-
lation. In either case, we require some artificial viscosity to treat
shocks.

2.2.3 Pressure-Entropy Formulation

If we wish to retain a direct kernel-estimate of the pressure entering
the EOM, but formulate this in terms of entropy, we must instead
consider xi = mi A1/�

i . In this case,4 we obtain by definition (from
the consistency requirement for Pi)

P̄i = y�i =
h NX

j=1

mj A1/�
j Wi j(hi)
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(19)

If we also assume x̃i = xi, the EOM become
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4 This choice of xi may seem a bit strange, but in fact this is the only self-
consistent “entropy formulation” which directly evaluates the pressure. If
we simply substituted u j =A j ⇢̄

��1
j /(��1) in xi =(��1)mi ui, we would

re-introduce the density ⇢̄ (which we are trying to avoid in this formulation
of the equations); we could instead define u j = A j (P̄j/A j)��1/(� � 1),
but this involves P̄j in its own definition and would require a prohibitively
expensive iterative solution over all particles every timestep.

Note however that using x̃i = xi implies �Ṽi = mi (Ai/P̄i)
1/� ;

as in the previous section, this can introduce problems of conver-
gence and diffusion. Therefore, instead consider as before x̃i = 1
(�Ṽi = 1/n̄i). This gives:
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As in the density-entropy formulation, we explicitly evolve the
entropy so for adiabatic evolution require no additional evolution
equation.

This formulation is very similar to the pressure-energy for-
mulation, (and has the identical advantages of good behavior at
contact discontinuities). The only difference is the free choice of
thermodynamic variable. This formulation trivially conserves en-
tropy, and manifestly conserves energy to machine differencing ac-
curacy if constant timesteps are used (the choice of pressure-energy
or pressure-entropy formulation can lead to some differences when
adaptive timesteps are used, but we show these are generally small).
It is largely a matter of convenience and minor computational ex-
pense which method is preferred.

When the pressure is smooth and there is good particle order,
the fi j ⇡ 1 here, which means our choice of how to regularize h is
unimportant, and no spurious “surface tension” force is introduced.
For the choice x̃ = 1, the correction terms remain well-behaved
even if there is large particle disorder in Ai, critical to stability
in simulations when heating/cooling are included and entropy is
no longer conserved. Another useful feature here is the following:
imagine the case where there is large particle disorder so Pj � Pi

and Aj � Ai. Since the A terms enter as multiplicative pre-factors,
their difference does not introduce errors into the sum; gradient er-
rors will arise from differencing the Pi terms, but for � = 5/3, these
enter only as P�1/5

i , so differencing errors are greatly suppressed.

2.2.4 More General Cases

In § 2.2.1-2.2.3, we simplify by assuming the gas obeys a poly-
tropic equation of state under differential adiabatic compression or
expansion. We emphasize that this does not exclude the gas under-
going shocks (in which the entropy and energy change according to
artificial viscosity), cooling, and/or chemical evolution (additional
operations to dui in Eq. 2); these are just handled in an additional,
separate step or loop each timestep (see an example in § 4.8).

However, some situations call for more complicated equations
of state. Consider the case where the pressure of a given particle
Pi is an arbitrarily complicated (but single-valued) function g of
the thermodynamic volume element �Vi and the local (particle-
carried) state variables ai = (ai,1, ai,2, ...,ai,m), so Pi = g(�Vi, ai).
The a might include mi and ui or Ai, as in our previous examples,
but also information about the chemical state, radiation field, po-
sition or velocity, phase, etc, of the gas. Our general form of the
EOS in Eq. 12 made no assumption about the equation of state,
and still holds. The question is how to determine the appropriate
xi and x̃i for a “pressure formulation.” This requires any xi such
that there is a one-to-one mapping between the smoothing kernel
sum and the pressure (so that r(�V ) vanishes when rP does).
We can ensure this by choosing xi to be the solution to the equation
g(�Vi = xi, ai) = 1 (i.e. if we were to replace �Vi by xi, which
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Figure 9. Comparison of Kelvin-Helmholtz behavior with different initial
conditions in the Pressure-Entropy formulation at t ⇡ 1⌧KH (top) and t ⇡
3⌧KH (bottom) on smoothing kernel (left: quintic spline with NNGB = 128;
right: cubic spline with NNGB = 32). Compared to Fig. 6-8, we modify
the initial conditions by multiplying the particle number, density, sound
speed, pressure, shear velocity, and initial perturbation amplitude by fac-
tors of = 0.5, 2.0, 2.0, 8.0, 0.5, 0.5, respectively. All of these changes in-
crease the ratio of particle noise and pressure gradient errors relative to the
KH growth. In this limit, the cubic spline with NNGB = 32, which involves
larger gradient errors, is barely able to capture the instability; however the
quintic spline with NNGB = 128 does well. “Standard” SPH completely fails
to develop any “curls” in this limit.

pears to significantly reduce the importance of kernel-level pressure
gradient errors in obtaining the correct KH solution (compare e.g.
the more significant kernel dependence found for standard but non-
conservative density-entropy SPH in Read et al. 2010, Figs. 4 & 6).
We have also tested the Wendland kernels proposed in Dehnen &
Aly (2012) and find (as they do) essentially identical performance
to our spline results for the neighbor numbers here (although the
kernels proposed there show greatly improved stability properties
at higher neighbor number).

However, in Fig. 9 we again examine the effects of different
kernels (with the pressure-entropy formulation), but with different
initial conditions. We reduce the particle number, shear velocity,
and initial perturbation amplitude by factors of 2 and double the ini-
tial sound speed; these changes all reduce the magnitude of the ini-
tial KH instability and its growth rate, relative to the particle noise
and error terms stemming from the kernel sum in the SPH pressure
gradients that enter the EOM. This is designed to be challenging
(even for grid codes). With this much weaker seeding and noisier
particle distribution, we begin to see a dependence on the smooth-
ing kernel. The simplest NNGB = 32 cubic spline, with the smallest
neighbor number, leads to particle noise in the pressure gradients
comparable to the actual signal. While the instability is still (barely)
captured, the rolls are “too thin” and end up being sheared before
they reach the proper height and can wrap appropriately. However,
our standard quintic spline with NNGB = 128 performs well, recov-
ering all the key behaviors (note that the non-linear behavior is dif-
ferent here than in the previous test, as it should be for the different
pressure and shear velocities). Going to still higher resolution or
varying the kernel at higher NNGB gives well-converged results at
this point.

In Fig. 10, we repeat our KH test again but multiply the initial

Figure 10. Comparison of KH instabilities at t ⇡ 2⌧KH (top) and t ⇡ 10⌧KH
(bottom), for the “standard” (density-entropy) SPH (left) and pressure-
entropy (right; with x̃i = 1) SPH formulations. The initial conditions are
as Fig. 6, but the initial density contrast is increased from a factor of 2
to a factor of 20, with the initial particles no longer being equal mass but
4 times more massive in the initial high-density region. Sharp boundary
layers that lead to “gloopy” morphology are evident in standard SPH. In
Pressure-Entropy SPH it remains well-behaved, although hints of “gloop-
iness” appear in the transition between linear growth and fully non-linear
instability.

density contrast by a factor of 10, and instead of using constant-
mass particles we use particles with masses a factor of 4 larger in
the high-density region. As discussed in Read & Hayfield (2012),
many proposed alternative formulations of SPH, designed to im-
prove fluid mixing, fail in this regime (see e.g. Fig 6 in Read et al.
2010 and Figs. A1 & E1 in Read & Hayfield 2012). And we see an
even more pronounced “boundary layer” separating the phases in
the standard density-entropy SPH formulation. This occurs because
the higher density contrast exacerbates any (even small residual)
surface tension term, and the multi-mass particles increase particle
disorder and leading-order errors in the pressure gradient estimator.
Multi-mass particles also make it critical to have a well-behaved
criterion for smoothing lengths, and increase the errors from ne-
glecting rh terms. But we see that the pressure-entropy formu-
lation remains well-behaved in this case. There is some increased
hint of “gloopiness” as the instability transitions between linear and
non-linear growth, but at least some of this is because of the (cor-
rect) slower growth of the small-wavelength modes.

Finally, it is worth noting (though perhaps as more of a cu-
riosity) that the “poor” solution of the density-entropy formulation
in the cases above looks very similar to the “correct” solution for
a modestly magnetized medium (with some field component paral-
lel to the shear or tangled; see e.g. Frank et al. 1996 and references
therein). This occurs because, if we consider the linear perturbation
analysis of the KH instability, the “incorrect” surface tension force
here is (for the initial linear stage) almost mathematically identical
to a “correct” magnetic tension term for parallel fields with strength
� ⇠ 1.
4.5 Rayleigh-Taylor Instabilities

We now consider the Rayleigh-Taylor (RT) instability, with initial
conditions from Abel (2011). In a two-dimensional slice with 5122

particles and 0 < x < 1/2 (periodic boundaries) and 0 < y < 1

c� 0000 RAS, MNRAS 000, 000–000

Saturday, March 9, 13



Saturday, March 9, 13



Saturday, March 9, 13



SPH in Pressure-Entropy Formulation

Saturday, March 9, 13



SPH in Pressure-Entropy Formulation

Saturday, March 9, 13



Saturday, March 9, 13



Wind:

Disk

Saturday, March 9, 13



Caution: Artificial Viscosity & Particle Order

Saturday, March 9, 13



Caution: Artificial Viscosity & Particle Order

- worse if we neglect timestepping issues

Saturday, March 9, 13



Caution: Artificial Viscosity & Particle Order

- “old” SPH instead now

Saturday, March 9, 13



Caution: Artificial Viscosity & Particle Order

- new SPH with timestep limiter 
     & better artificial viscosity

Saturday, March 9, 13



Caution: Artificial Viscosity & Particle Order:

Saturday, March 9, 13



Caution: Artificial Viscosity & Particle Order:

Saturday, March 9, 13



Caution: Artificial Viscosity & Particle Order:

Saturday, March 9, 13



Saturday, March 9, 13



Mixing:

P-SPHC-SPH Moving
Mesh

“Blobs”

Cooling:

Too Little Too Much

K-H AMR

Saturday, March 9, 13



Mixing:

P-SPHC-SPH Moving
Mesh

“Blobs”

Cooling:

Too Little Too Much

K-H AMR

   Angular 
Momentum: AMR P-SPH

C-SPH

O(2) (machine
accuracy)errors?errors

O(1)

Fixed Grid
Moving
Mesh

Saturday, March 9, 13



Mixing:

P-SPHC-SPH Moving
Mesh

“Blobs”

Cooling:

Too Little Too Much

K-H AMR

   Angular 
Momentum: AMR P-SPH

C-SPH

O(2) (machine
accuracy)errors?errors

O(1)

Fixed Grid
Moving
Mesh

  Galilean 
Invariance: Moving

MeshFixed Grid
P-SPH
C-SPH

AMR

(machine
accuracy)

(re-mesh
errors)

(error grows
with velocity)

Saturday, March 9, 13



Saturday, March 9, 13



Strong
Shocks:

  P-SPH
(Adiabatic)

C-SPH   P-SPH
(Radiative)

Grid
Codes

Conservation

Resolution
(~ smoothing) (~ cell)

P-SPH
C-SPH

(Lagrangian)

Grid
Codes

(Reimann)

C-SPH
(non-Lagrangian)

O(0) O(2) (~machine)

[Poorer]

Errors

Saturday, March 9, 13



   Subsonic
 Turbulence: C-SPH

P-SPH
(old/standard AV)

C-SPH
P-SPH

(modern AV)

Moving
Mesh

Spectral
Methods

M & 1 M & 0.1 M & 0.03 M & 0.001

Strong
Shocks:

  P-SPH
(Adiabatic)

C-SPH   P-SPH
(Radiative)

Grid
Codes

Conservation

Resolution
(~ smoothing) (~ cell)

P-SPH
C-SPH

(Lagrangian)

Grid
Codes

(Reimann)

C-SPH
(non-Lagrangian)

O(0) O(2) (~machine)

[Poorer]

Errors

Saturday, March 9, 13



   Subsonic
 Turbulence: C-SPH

P-SPH
(old/standard AV)

C-SPH
P-SPH

(modern AV)

Moving
Mesh

Spectral
Methods

M & 1 M & 0.1 M & 0.03 M & 0.001

MHD:
(Errors) SPH AMR Fixed

GridMoving Mesh

(div-cleaning)
(refinement

errors?)
(constrained

transport)
r ·B 6= 0

Strong
Shocks:

  P-SPH
(Adiabatic)

C-SPH   P-SPH
(Radiative)

Grid
Codes

Conservation

Resolution
(~ smoothing) (~ cell)

P-SPH
C-SPH

(Lagrangian)

Grid
Codes

(Reimann)

C-SPH
(non-Lagrangian)

O(0) O(2) (~machine)

[Poorer]

Errors

Saturday, March 9, 13



Public version (in GADGET-2):

arXiv: 1206.5006

http://astrosim.net/code/doku.php?id=home:code:nbody:multipurpose

Not-so public version (GADGET-3): contact me
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http://astrosim.net/code/doku.php?id=home:code:nbody:multipurpose
http://astrosim.net/code/doku.php?id=home:code:nbody:multipurpose

