Two key equations we want to solve:

$$\frac{\partial u_i}{\partial q_i}\Big|_A = -\frac{P_i}{m_i} \frac{\partial \Delta V_i}{\partial q_i}$$

$$\phi_i(\mathbf{q}) \equiv \frac{4\pi}{3} h_i^3 \frac{1}{\Delta \tilde{V}_i} - N_{\text{ngb}} = 0$$

"Standard" (classical) SPH:

$$\Delta V_i = \Delta \tilde{V}_i = \frac{m_i}{\rho_i} \qquad \rho_i = \sum_j m_j W(r_j, h_i)$$

Can derive equations of motion & correction terms from Lagrangian:

$$L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i^2 - \sum_{i=1}^{N} m_i u_i$$

$$\phi_i(\mathbf{q}) \equiv \frac{4\pi}{3} h_i^3 \frac{1}{\Delta \tilde{V}_i} - N_{\text{ngb}} = 0$$

- Manifestly energy & entropy conserving

Can derive equations of motion & correction terms from Lagrangian:

$$L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i^2 - \sum_{i=1}^{N} m_i u_i$$

$$\phi_i(\mathbf{q}) \equiv \frac{4\pi}{3} h_i^3 \frac{1}{\Delta \tilde{V}_i} - N_{\text{ngb}} = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q_i}} - \frac{\partial L}{\partial q_i} = \sum_{j=1}^N \lambda_j \frac{\partial \phi_j}{\partial q_i}$$

- Manifestly energy & entropy conserving

Can derive equations of motion & correction terms from Lagrangian:

$$L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i^2 - \sum_{i=1}^{N} m_i u_i$$

$$\phi_i(\mathbf{q}) \equiv \frac{4\pi}{3} h_i^3 \frac{1}{\Delta \tilde{V}_i} - N_{\text{ngb}} = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q_i}} - \frac{\partial L}{\partial q_i} = \sum_{j=1}^N \lambda_j \frac{\partial \phi_j}{\partial q_i}$$

$$m_{i} \frac{\mathrm{d}\mathbf{v}_{i}}{\mathrm{d}t} = -\sum_{j=1}^{N} x_{i} x_{j} \left[\frac{P_{i}}{y_{i}^{2}} f_{ij} \nabla_{i} W_{ij}(h_{i}) + \frac{P_{j}}{y_{j}^{2}} f_{ji} \nabla_{i} W_{ij}(h_{j}) \right]$$
$$f_{ij} \equiv 1 - \frac{\tilde{x}_{j}}{x_{j}} \left(\frac{h_{i}}{3 \tilde{y}_{i}} \frac{\partial y_{i}}{\partial h_{i}} \right) \left[1 + \frac{h_{i}}{3 \tilde{y}_{i}} \frac{\partial \tilde{y}_{i}}{\partial h_{i}} \right]^{-1}$$

- Manifestly energy & entropy conserving

$$\bar{P}_i = y_i^{\gamma} = \left[\sum_{j=1}^N m_j A_j^{1/\gamma} W_{ij}(h_i)\right]^{\gamma}$$

(Ritchie & Thomas, Read et al., Price et al., Saitoh & Makino)

$$\Delta V_i = m_i \left(\frac{A_i}{\bar{P}_i}\right)^{1/\gamma} = \frac{(\gamma - 1) m_i u_i}{\bar{P}_i}$$

$$\bar{P}_i = y_i^{\gamma} = \left[\sum_{j=1}^N m_j A_j^{1/\gamma} W_{ij}(h_i)\right]^{\gamma}$$

(Ritchie & Thomas, Read et al., Price et al., Saitoh & Makino)

$$\Delta V_i = m_i \left(\frac{A_i}{\bar{P}_i}\right)^{1/\gamma} = \frac{(\gamma - 1) m_i u_i}{\bar{P}_i}$$

But *avoid* too much dissipation & huge neighbor numbers/kernel problems:

$$\Delta \tilde{V}_i = \frac{1}{n_i} \qquad n_i = \sum_j W(r_j, h_i)$$

$$\bar{P}_i = y_i^{\gamma} = \left[\sum_{j=1}^N m_j A_j^{1/\gamma} W_{ij}(h_i)\right]^{\gamma}$$

$$\bar{P}_i = y_i^{\gamma} = \left[\sum_{j=1}^N m_j A_j^{1/\gamma} W_{ij}(h_i)\right]^{\gamma}$$

$$\frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = -\sum_{j=1}^N m_j (A_i A_j)^{\frac{1}{\gamma}} \left[\frac{f_{ij} \bar{P}_i}{\bar{P}_i^{2/\gamma}} \nabla_i W_{ij}(h_i) + \frac{f_{ji} \bar{P}_j}{\bar{P}_j^{2/\gamma}} \nabla_i W_{ij}(h_j) \right]$$

$$\bar{P}_i = y_i^{\gamma} = \left[\sum_{j=1}^N m_j A_j^{1/\gamma} W_{ij}(h_i)\right]^{\gamma}$$

$$\frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = -\sum_{j=1}^N m_j \left(A_i A_j\right)^{\frac{1}{\gamma}} \left[\frac{f_{ij} \bar{P}_i}{\bar{P}_i^{2/\gamma}} \nabla_i W_{ij}(h_i) + \frac{f_{ji} \bar{P}_j}{\bar{P}_j^{2/\gamma}} \nabla_i W_{ij}(h_j)\right]$$
$$f_{ij} = 1 - \left(\frac{h_i}{3A_j^{1/\gamma} m_j \bar{n}_i} \frac{\partial \bar{P}_i^{1/\gamma}}{\partial h_i}\right) \left[1 + \frac{h_i}{3 \bar{n}_i} \frac{\partial \bar{n}_i}{\partial h_i}\right]^{-1}$$

SPH in Pressure-Entropy Formulation SURFACE TENSION IS FIX-ABLE

Pressure-Entropy Formulation

Density Formulation (Standard)

SPH in Pressure-Entropy Formulation SURFACE TENSION IS FIX-ABLE

Density Formulation (Standard)

SPH in Pressure-Entropy Formulation SURFACE TENSION IS FIX-ABLE

Density Formulation (Standard)

Athena (with magnetic $v_A = c_S$)

Saturday, March 9, 13

SPH in Pressure-Entropy Formulation

SPH in Pressure-Entropy Formulation

- worse if we neglect timestepping issues

- "old" SPH instead now

new SPH with timestep limiter
& better artificial viscosity

z=4.10 box=200/h kpc(phys)

	[Poorer]	(~ smoothing)		(~ cell)	
Strong Shocks:	Resolution	P-SPH C-SH (Adiabatic)	PH P-SPH (Radiative)	Grid Codes	
	Conservation	$\mathcal{O}(0)$	$\mathcal{O}(2)$	(~machine)	
	Errors	C-SPH (non-Lagrangian)	Grid Codes (Reimann)	P-SPH C-SPH (Lagrangian)	

	[Poorer]	(~ smoo	(*	(~ cell)		
Strong Shocks:	Resolution	P-SPH C-SPH P-SPH (Adiabatic) (Radiative)			Grid Codes	
	Conservation	$\mathcal{O}(0)$	$\mathcal{O}(2)$		(~machine)	
	Errors	C-SPH (non-Lagrangian)	Grid Codes (Reimann	1)	P-SPH C-SPH (Lagrangian)	
Subsonic	$\mathcal{M}\gtrsim 1$	$\mathcal{M}\gtrsim 0.1$	$\mathcal{M}\gtrsim 0.03$		$\mathcal{M}\gtrsim 0.001$	
Turbulence:	C-SPH P-SPH (old/standard AV)	C-SPH P-SPH (modern AV)	Moving Mesh		Spectral Methods	
MHD:	$\nabla \cdot \mathbf{B} \neq 0$ (div-cleaning	;)		(refinement errors?)	(constrained transport)	
(Errors)	SPH Moving Mes	h		AMR	Fixed Grid	
Saturday, March 9, 13						

Public version (in GADGET-2):

arXiv: 1206.5006

http://astrosim.net/code/doku.php?id=home:code:nbody:multipurpose

Not-so public version (GADGET-3): contact me