Feedback: Now With Physics!

0.0 Gyr

Stars 0.1 Gyr

Stars

10 kpc

10 kpc

Philip Hopkins

Eliot Quataert, Norm Murray,

Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more

Q: WHY IS STAR FORMATION SO INEFFICIENT?

Stellar Feedback is (a/the) Key to Galaxy Formation! SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation):
 Couple SNe energy as "heating"/thermal energy **FAILS**:

$$t_{\rm cool} \sim 4000 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1}$$
$$t_{\rm dyn} \sim 10^8 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1/2}$$

 High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating (no cheating!):
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating (no cheating!):
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Hopkins, Quataert, & Murray, 2011

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

PFH, Quataert, & Murray, 2011a

PFH, Quataert, & Murray, 2011a

PFH, Quataert, & Murray, 2011a

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

 \gg Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 $\dot{P}_* \sim \dot{P}_{\rm diss}$

Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

$$\dot{P}_* \sim \dot{P}_{\text{diss}}$$

 $\dot{P}_* \sim \text{few} \times \frac{L}{c} \sim \epsilon_* \dot{M}_* c$

•

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma\Omega}{\pi G\Sigma}$$

$$\dot{P}_* \sim \dot{P}_{\rm diss}$$

$$\dot{P}_* \sim few \times \frac{L}{c} \sim \epsilon_* \, \dot{M}_* \, c$$

$$\longrightarrow \dot{\Sigma}_* \sim \left(\frac{\sigma}{\epsilon_* c}\right) \, \Sigma_{\rm gas} \Omega \sim 0.02 \, \Sigma_{\rm gas} \Omega$$

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

• Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Molecules Don't Matter! THEY ARE A *TRACER*

Molecules Don't Matter! THEY ARE A *TRACER*

> Just need *some* cooling channel: changes at $M_{gal} < 10^6 M_{sun}$, Z<0.01 Z_{sun}

Star Formation is Feedback-Regulated: MORE FEEDBACK = LESS STAR FORMATION

Star Formation is Feedback-Regulated: MORE FEEDBACK = LESS STAR FORMATION

Starburst Galaxy (Gas-Rich) Merger

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Properties of GMCs & Gas "Clumps"

SMC

Feedback is Reflected in Dense Gas TRACERS OF STAR FORMATION EFFICIENCY

Gas

How Efficient Are Galactic Super-Winds?

How Efficient Are Galactic Super-Winds?

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

Cosmological Simulations "ZOOM-IN" RUNS

Proto-MW: Gas Temperature:

Phenomenological Winds	Full Feedback

Starburst-Driven Winds SUB-GRID vs. PHYSICAL MATTERS!

"Clumpy" Disks FEEDBACK SUPPRESSES CLUMP INSPIRAL

"Clumpy" Disks FEEDBACK SUPPRESSES CLUMP INSPIRAL

"Clumpy" Disks FEEDBACK SUPPRESSES CLUMP INSPIRAL

Tuesday, December 25, 12

What About the AGN?

What can AGN Feedback Do For You?

Removing/heating gas in groups

What can AGN Feedback Do For You?

- Lowering mass of >M* galaxies
- Removing/heating gas in groups

Step 1: Inflow

Step 1: Inflow

100 pc

Step 2: Stellar Feedback & the ISM

- Heating:
 - > SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
 - *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Do we need 'Quasar Mode' Feedback?

Do we need 'Quasar Mode' Feedback?

Step 3: Observed Sources of AGN Feedback

• Jets

• heat IGM/ICM (low-density), but not dense ISM

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - L_{AGN} >> L_{stars}

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - $L_{AGN} >> L_{stars}$
- Accretion Disk Winds
 - Broad Absorption Line Winds 3

BAL Winds on ~1pc - 1kpc scales:

PFH in prep Wada et al.

 $v_{\rm launch}(0.1\,{\rm pc}) = 10,000\,{\rm km/s}$

Do we need 'Quasar Mode' Feedback?

BH Growth in Isolated Disks?

Summary:

- Star formation is Feedback-Regulated:
 - Independent of small-scale SF 'law' & chemistry
 - Leads to Kennicutt relation & super-winds
- Different mechanisms dominate different regimes:
 - High-r: radiation pressure
 - Intermediate: HII heating, stellar wind momentum
 - Low-r: SNe & stellar wind shock-heating
 - No one mechanism works
- Mergers: Extreme laboratory (>100x GMC densities!)
 - No "unique" physics
 - Super-winds: ~10-500 M_{sun}/yr
- Most Massive Galaxies: Need "AGN" Feedback!
 - Disk Winds+Radiation Pressure+Jets: Explain M_{BH}-s & suppress SF
 - BH Requires Bulge Growth